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Replicability tests of scientific papers show that the majority of
papers fail replication. Moreover, failed papers circulate through
the literature as quickly as replicating papers. This dynamic weak-
ens the literature, raises research costs, and demonstrates the
need for new approaches for estimating a study’s replicability.
Here, we trained an artificial intelligence model to estimate a
paper’s replicability using ground truth data on studies that had
passed or failed manual replication tests, and then tested the
model’s generalizability on an extensive set of out-of-sample
studies. The model predicts replicability better than the base
rate of reviewers and comparably as well as prediction mar-
kets, the best present-day method for predicting replicability. In
out-of-sample tests on manually replicated papers from diverse
disciplines and methods, the model had strong accuracy levels
of 0.65 to 0.78. Exploring the reasons behind the model’s predic-
tions, we found no evidence for bias based on topics, journals,
disciplines, base rates of failure, persuasion words, or novelty
words like “remarkable” or “unexpected.” We did find that the
model’s accuracy is higher when trained on a paper’s text rather
than its reported statistics and that n-grams, higher order word
combinations that humans have difficulty processing, correlate
with replication. We discuss how combining human and machine
intelligence can raise confidence in research, provide research
self-assessment techniques, and create methods that are scal-
able and efficient enough to review the ever-growing numbers
of publications—a task that entails extensive human resources to
accomplish with prediction markets and manual replication alone.
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When 100 papers from top psychology journals were ran-
domly selected and manually tested for their replica-

bility using the same procedures as the original studies [the
“Reproducibility Project: Psychology” (RPP)], 61 of 100 papers
failed the test (1). Additional replication studies in psychol-
ogy, medicine, and economics similarly determine that papers
more often fail than pass replicability tests (2–7) and that,
once published, these nonreplicable results permeate the lit-
erature as quickly as the results of replicating studies. In the
RPP, the 61 nonreplicating psychology papers were cited as
frequently as the 39 papers that passed replication, a pattern
that continued even after the nonreplicating results were iden-
tified in manual replication tests (Fig. 1). Beyond tainting the
scientific literature (8), nonreplicability has and continues to
diminish public funding support (9, 10), engender pessimism
toward the validity and value of scientific findings, and drive
up costs. Half of scientists surveyed consider replicability a cri-
sis, and a third distrust half the papers in their fields (11).
The annual costs of replication failures are estimated to be
$28 billion (12).

Conducting manual replication research is time-consuming
and involves high opportunity costs for scientists. For example,
individual replication studies in the RPP took an average of 314 d
from the claim date to complete analysis. Consequently, research
has turned to evaluating the accuracy of different methods
for estimating a study’s replicability. This approach is spear-

headed by the Defense Advanced Research Projects Agency’s
(DARPA’s) Systematizing Confidence in Open Research and
Evidence (SCORE) program, which funds research that devel-
ops new approaches for prioritizing studies to be manually
replicated (13).

Three methods to estimate a study’s risk of passing or failing
replication have been assessed: the statistics reported in the orig-
inal study (e.g., P values and effect size, also known as “reviewer
metrics”), prediction markets, and surveys (10). Currently, inves-
tigations of reviewer metrics report pairwise correlations of 0.044
to 0.277 between individual metrics and replicability (1, 7, 14, 15)
(details are in SI Appendix, Section S1 and Table S1). In a predic-
tion market, hundreds of researchers “bet” whether a published
study will successfully replicate in a future manual replication
test as well as record their subjective predictions about a study’s
replicability in surveys. A paper’s final “market price” and survey
responses reflect the crowd judgment of a paper’s replicability
(10). Markets and surveys produce varied, but generally high,
levels of predictive accuracy in small samples. Prediction markets
have examined a variety of samples that have included between
21 and 41 papers and reported accuracy levels between 0.71 to
0.85 across all samples (7, 10, 16, 17). Despite their high accuracy,
prediction markets and surveys are costly to scale. They require
the time commitment of many “judges/experts,” take almost a
year to run, and necessitate additional overhead specific to the
effort (18).

We conducted an exploratory investigation into the use of
machine learning to estimate a study’s replicability. Our research
aligns with the research goals of developing approaches for esti-
mating a study’s risk for replication failure and can be used to
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Fig. 1. Citation rates of replicating and nonreplicating studies are indistinguishable. We measured the direct citations and second-degree cita-
tions (citations to papers that have cited a nonreplicating study) of the 100 studies published in 2008 and reported in the RPP (1) in 2015. The
61 of 100 papers that failed to replicate are cited at the same yearly rate as papers that successfully replicated (per Google Scholar) for direct
and second-degree citations, suggesting that papers with fluke results are incorporated into future research as much as papers with reproducible
facts.

prioritize studies submitted to manual replication. If machine
intelligence has predictive utility similar to other methods (like
prediction markets) but can, in addition, scale to review larger
samples of papers while also lowering costs (machine time, not
people time) and making faster, comparably accurate predictions
(minutes instead of months), it can potentially advance current
programs of replication research.

Our model estimates differences in predictive power accord-
ing to the information used to construct the model—the paper’s
narrative, papers reported statistics, or both. The first model
uses only the study’s narrative text under the assumption that
machine intelligence can identify in text latent replicability
information conveyed by the authors of the study (19, 20).
The second model uses just a paper’s reviewer metrics (i.e.,
no text). The third model uses both text and reviewer met-
rics. After calibrating the model with the training data, we
test it on hundreds of out-of-sample, manually replicated stud-
ies. Table 1 presents the study’s data sources, which include
2 million abstracts from scientific papers (21) and 413 man-
ually replicated studies from 80 journals. These data, while
meager by most machine learning study standards, nonethe-
less encompass the available majority of replication projects
across disciplines, topics, journals, methods, and publication
dates that include the definitive pass/fail information needed
for training and testing models (see SI Appendix, Section S2 for
details).

Analysis
We began with the narrative-only model, which was trained on
the RPP’s manually replicated papers. Our methodology involves
three stages of development, and in stage 1 of this analysis, we
obtained the manuscripts of all 96 studies and stripped each
paper of all nontext content (e.g., authors, numbers, graphics,
etc.; SI Appendix, Section S3.1).

In stage 2, a neural-network-based method—word2vec (29)
with standard settings—was used to quantitatively represent a
paper’s narrative content by defining the quantitative relation-
ship (co-occurrence) of each word with every other word in

the corpus of words in the training set. First, to establish a
reliable estimate of word co-occurrences, we used data from
the Microsoft Academic Graph (MAG) to train our word2vec
model on 2 million scientific article abstracts that were published
between 2000 and 2017 (21). This training set has about 200 mil-
lion tokens (words, letters, or symbols) and 18 million sentences.
Second, we used word2vec to extract from the full matrix of word
pairings a smaller matrix of underlying “factors” that more eco-
nomically represent the interrelationships among all words in
the corpus (30). As a result, each word is represented by a 200-
dimension vector that defines its relationship with all other words
in the corpus. We used 200 dimensions for two reasons. Prior
analysis has used 200 dimensions in training word2vec models
with large data (31), and retraining the word2vec model on 100
dimensions produced similar cross-validation results. Third, we
multiplied the normalized frequency of each word in a paper
by its corresponding word vector. These steps resulted in a final
paper-level vector representing the unique linguistic information
of each of the 96 papers (see SI Appendix, Section S3 for details).

In stage 3, we predicted a study’s manually replicated out-
come (pass or fail) from its paper-level vector using a simple
ensemble model of bagging with random forests and bagging
with logistic (32–34), which works well with small datasets (see
SI Appendix, Section S3.2.2 for details). This simple ensemble
model generates predictions of a study’s likelihood of replicating
[0.0, 1.0] using threefold repeated cross-validation. It is trained
on a random draw of 67% of the papers to predict outcome for
the remaining 33%, and the process is repeated 100 times with
different random splits of training sets vs. test sets. Hence, each
study has a unique distribution of 100 predictions between 0.0
and 1.0. The random forests and logit models produced similar
results (see SI Appendix, Section S3.2 for details).

Results
Fig. 2 visualizes the raw prediction data for the narrative-only
machine learning model. To evaluate the model’s accuracy in
predicting the true outcome of the manual replication, we cal-
culated each paper’s average prediction from its 100 rounds.
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Table 1. Training and out-of-sample test datasets

No. of No. of Original Original study Replication report Training vs.
Project studies Discipline journals study year methodology Replication method publication status test

1 RPP (1) 96 Cog psych; social/ 3 2008 Experiments & Single-lab, Published Training set
personality psych correlational studies same method

2 RRR (22) 8 Cog psych; 4 1988 to 2014 Experiments Multi-lab, Published Test set I
social psych same method

3 to 5 ML1 (23), 42 Cog psych; 22 1973 to 2013 Experiments Multi-lab, Published
2 (2), 3 (24) social psych same method

6 JSP (25) 16 Social psych 7 1999 to 2012 Experiments Multi-lab, Published
Cog psych; social same method

7 SSRP (16) 21 Social psych; 2 2011 to 2015 Experiments Single lab, Published
economics same method

8 Individual Cog psych; 8 1972 to 2013 Experiments Single-lab/Multi-lab, Published
efforts (26) 33 social psych same method

9 PFD (27) 57 Cog psych 20 2001 to 2017 Experiments & Single lab, Unpublished, includes Test set II
correlational studies same method class projects

10 EERP (7) 18 Economics 2 2011 to 2014 Experiments Single-lab, Published Test set III
same method

11 ERW (28) 122 Economics 45 1973 to 2015 Experiments, correlational 1) Same data, Published Test set IV
studies, & modeling same code

2) New data,
same methods

3) Same data,
new methods

4) New methods,
new data

Total 413 80 unique 1972 to 2017 Test set
total = 317

For the initial training of the word2vec model, we used 2 million abstracts from the MAG database (21) to estimate the relationships among words in
scientific papers. This step established a reliable quantification of word co-occurrences in scientific papers based on 200 million tokens (words, letters, or
symbols) and 18 million sentences that was then used to digitally represent the word content of papers used in the analysis (n = 413). The training data
(n = 96 papers) and out-of-sample testing datasets (n = 317 papers) used in the analysis encompass available manual replication studies that have reported
pass vs. fail information for each paper. These data cover diverse disciplines, journals, publication dates, research methods, replication methods, topics, and
published and unpublished reports, as described in the table. The final sample of RPP replications excluded three studies and combined two replications
of the same paper into one record for a final sample size of 96 studies (see SI Appendix, Section S2 for data details). Cog, cognitive; ML1, Many Labs 1;
PFD, Psychfiledrawer; psych, psychology; RRR, registered replication reports; SSRP, Social Sciences Replication Project. JSP, Journal Social Psychology; EERP,
Experimental Economics Replication Project.

A typical standard for evaluating accuracy, which is assessed
relative to a threshold selected according to the evaluator’s inter-
est, is the base rate of failure in the ground-truth data (35). At
the base rate threshold we chose, 59 of 96 studies failed manual
replication (61%). We found that the average accuracy of the
machine learning narrative-only model was 0.68 (SD = 0.034).
In other words, on average, our model correctly predicted the
true pass or fail outcome for 69% of the studies, a 13% increase
over the performance of a dummy predictor with 0.61 accuracy
(predict all as nonreplicated).

A second standard approach to assessing predictive accuracy
is top-k precision, which measures the number of actual failures
among the k lowest-ranked studies (35) based on a study’s aver-
age prediction. When k is equal to the true failure base rate, the
machine learning model’s top-k precision is 0.74 (SD = 0.028).
In both cases, a simple bag-of-words model did relatively poorly,
with an accuracy of 0.60.

To compare the accuracy of the narrative-only model with con-
ventionally used reviewer metrics, we designed a statistics-only
model using the same procedure used to design the narrative-
only model. Prior research reported only pairwise correlations
between replicability and reviewer metrics. Here, we clustered
all reviewer metrics into one model under the assumption that
the effects of statistics on reviewers’ judgments may offer more
information as a group than as individual metrics. The reviewer
metrics-only model achieved an average accuracy and top-k pre-
cision of 0.66 (SD = 0.034) and 0.72 (SD = 0.027), respectively.
Though the sample of 96 papers was necessarily small, the dis-
tribution of both accuracy and top-k precision values were lower
(P < 0.001) than the same values of the narrative-only model per
the Kolmogorov–Smirnov (KS), Wilcoxon rank-sum, Cramer–
von Mises, and Anderson–Darling tests (36, 37) (SI Appendix,
Section S3.6).

To investigate whether combining the narrative-only and
reviewer metrics-only models provides more explanatory power
than either model alone, we trained a model on a paper’s
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Fig. 2. Machine-predicted replication scores for the 96 RPP studies. Each
row in a gray column represents the machine learning model’s prediction
[0.0, 1.00] of whether a study will replicate or not. There are 100 columns
per study—one column for each round of cross-validation. Each cell in a dark
blue column displays the average prediction score (and ranking) for each
study across its 100 rounds of threefold cross-validation. Each cell in light
blue shows the average accuracy and top-k precision for each one of the 100
rounds of cross-validation, with the last column in light blue showing the
grand mean of the machine learning model’s overall accuracy and precision
scores. Avg, average.
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Fig. 3. Out-of-sample tests. From left to right, we present the accuracy
and top-k precision results of four out-of-sample tests. Green, blue, and
orange bars represent the percentage of correctly classified papers for
the reviewer metrics-only model, narrative-only model, and combined nar-
rative and reviewer metrics model. Numbers shown above narrative-only
model bars indicate the percentage increase in accuracy/top-k relative to
the reviewer metric-only model (reviewer metrics are unavailable for test
set IV). Vertical bars are 95% CIs calculated by bootstrapping 100 random
samples of 90% of the data with replacement. NA, not available.

narrative and reviewer metrics. The combined narrative and
reviewer-metrics model achieved an average accuracy of 0.71
(SD = 0.031; KS, P < 0.01) and top-k precision of 0.76 (SD =
0.026; KS, P < 0.01). The combined model performed signifi-
cantly better in terms of accuracy and top-k precision than either
the narrative or reviewer metrics model alone, with an average
increase of 27.8% (binomial test, P < 0.01; SI Appendix, Sec-
tion S3.3). These tests suggest that the machine learning model
based on the narrative of a study better predicts replicability than
a reviewer metric-only model and that it may be advantageous in
some circumstances to combine reviewer metric information into
one model.

Out-of-Sample Tests We ran robustness tests of our machine
learning model on five currently available out-of-sample datasets
that report pass or fail outcomes (Table 1, rows 2 to 11). Fig. 3
summarizes the out-of-sample testing results for narrative (blue),
reviewer metrics (green), and narrative-plus-reviewer metrics
(orange) models. Test set I (described in Table 1, rows 2 to
8) consists of eight similarly conducted published psychology
replication datasets (n = 117). The machine learning model gen-
erated an out-of-sample accuracy and top-k precision of 0.69 and
0.76, respectively.

Test set II (Table 1, row 9) consists of one set of 57 psy-
chology replications done primarily by students as class projects,
suggesting more noise in the “ground truth” data. Under these
conditions of relatively high noise in the data, the machine learn-
ing model yielded an out-of-sample accuracy and top-k precision
of 0.65 and 0.69, respectively.

Test sets III and IV are notable because they represent out-
of-sample tests in the discipline of economics, a discipline that
uses different jargon and studies different behavioral topics than
does psychology—the discipline on which the model was trained
(38). Test set III includes 18 economics experiments (Table 1,
row 10). Test set IV includes 122 economics studies compiled
by the Economics Replication Wiki (ERW) (Table 1, row 11).

We tested these samples separately because the former consists
of behavioral experiments, and the latter includes economet-
ric modeling of archival data. The accuracy scores were 0.78
and 0.66, and the top-k precision scores were 0.71 and 0.73,
respectively. To assess any training bias, we also conducted sev-
eral cross-validation tests, which produced consistent results (SI
Appendix, Section S3.7).

In another type of out-sample-test, we compared the machine
learning model with prediction markets, the method with the
highest prediction accuracy currently. Prediction markets pro-
vide pass/fail results and a level of confidence in each pass/fail
prediction. The higher the confidence score, the more certain
the market or survey participants were of their pass/fail predic-
tions. Thus, we performed an out-of-sample test that focused on
gauging the relative accuracy of machine learning and predic-
tion markets from the point of view of correct classification and
confidence. To construct our test, we collected the subsample
of 100 papers from test sets I to IV that were included in pre-
diction markets and ranked papers from least to most likely to
replicate per the reported results of each prediction market and
each associated survey. We then ranked the machine learning
model’s predictions of the same papers from least to most likely
to replicate.

In comparing prediction markets, survey, and our machine
learning model, we operated under the assumption that the most
important papers to correctly identify for manual replication
tests are the papers predicted to be least and most likely to
replicate (DARPA SCORE objective; ref. 13). Fig. 4 shows that
among the 10 most confident predictions of passing, the machine
learning model correctly classified 90% of the studies, whereas
the market or survey methods also correctly classified 90% of
the studies. With respect to the 10 most confident failure predic-
tions, the market or survey methods correctly classified 90% of
the studies, and the machine learning model correctly classified

Fig. 4. Comparative performances of prediction market, survey, and
machine learning models. One hundred psychology and economics studies
from four different replication projects had likelihood scores assigned by
prediction markets, surveys, and the machine learning model. The higher
the likelihood score, the more certain the market or survey participants
were of their pass predictions. In the figure, the likelihood scores are plot-
ted from lowest to highest under the assumption that the chief papers to
correctly identify for manual replication tests are the ones predicted to be
least and most likely to replicate (13). With respect to the 10 most con-
fident predictions of passing, the machine learning model predicts 90%
of the studies correctly; the market or survey methods correctly classify
90% of the studies. Among the 10 most confident predictions of fail-
ing, the market or survey methods correctly classify 100% of the studies,
and the machine learning model correctly classifies 90% of the studies.
All three models have accuracy and top-k precision over 0.70. Norm.,
normalized.
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Table 2. Tests of inherited bias in the machine learning model

Tests of inherited bias Description of test and result

Prestigious authors and institutions are favored Adding citation information for first and senior authors and university
in the review process (39). affiliation prestige information to the RPP training data does not produce

an accuracy significantly greater than the model without authors or
affiliation information (P = 0.36).

Sex of authors has been associated with sex differences Adding the sex of authors to the RPP training data does not produce
in the review process (40). produce an accuracy statistically greater than the model without sex of

author information (P = 0.49).
Journal-specific submission rates, reviewer norms, editors, or Adding journal-specific information to the RPP training data does not

tastes can affect acceptance and rejection rates (41). produce an accuracy significantly greater than the model without journal
information (P = 0.16).

Disciplinary differences in replication failure rates (e.g., Adding a disciplinary indicator to the RPP training data does not produce
social psychology [72%] vs. cognitive psychology [47%]) or an accuracy statistically greater that the model without it (P = 0.29).
topics of analysis drive the machine learning model’s
predictions (42, 43).

Scientific words, jargon, or native-English-speaking The frequency distributions of all words in replicating and nonreplicating
grammar is favored in the review process (44). papers showed that only one word differed: “experimenter” (r = −0.26,

P < 0.001). Based on LIME (45), we also did not find any specific words
highly associated with the reproducibility. Tests comparing the all-text model
against the text model with all content words (nouns representing topics)
removed demonstrated that the accuracy scores of the model containing
content works are not significantly different from each other (KS test, P <

0.05). Tests comparing that all-text model against the text model with all
function and stop words removed demonstrated that the accuracy scores
of the model containing function and stop words are not significantly
different from each other (KS test, P = 0.91).

Subjective probability language and hedging words/ The frequency distributions of subjective probability language hedging
persuasion phrases positively shape reviewers’ interpretations or persuasion phrases (“highly unlikely” or “little chance”) produce
of the findings (46). no significant difference in replicating and nonreplicating

papers (t = 0.20, P = 0.84).

We tested whether different lexical and nonlexical features of the training data resulted in bias in the model’s predictions. The table summarizes the
analyses and results. The text and SI Appendix, Section S4 describe the analyses in detail.

90%. Overall, the three models had accuracy and top-k precision
over 0.70.

A machine learning model can inherit the predispositions
found in the data used to create it (47). For example, human
reviewers have been found to show partiality regarding author
prestige and sex, institutional prestige, discipline, journal char-
acteristics, word choice and grammar, English as a second lan-
guage, and persuasive phrasing, leading to bias in reviewers’
evaluations of a study (39, 42–44, 46, 48–51). We conducted tests
to detect whether our machine learning framework was making
classification decisions based on the preceding study character-
istics. Our tests were done manually and with LIME, a popular
and standardized algorithm for interpreting a machine’s “reason-
ing” for its decisions (45). For example, LIME identifies if the
machine used any particular word to make its classification deci-
sion. In addition, we did not detect statistical evidence of model
bias regarding authorship prestige, sex of authors, discipline,
journal, specific words, or subjective probabilities/persuasive lan-
guage (SI Appendix, Section S4). Nascent forensic linguistic
methods using n-grams—strings of neighboring words—have
shown promise in identifying the authorship of anonymous texts,
even though n-grams remain difficult to interpret (52). We found
that the frequencies of two to five n-grams differed signifi-
cantly in replicating and nonreplicating papers (Table 2 and SI
Appendix, Section SI4).

Discussion
Machine learning appears to have the potential to aid the sci-
ence of replication. Used alone, it offers accurate predictions at
levels similar to prediction markets or surveys. In combination
with prediction market or surveys predictions, accuracy scores
are better than those from any other method on its own.

Though the findings should be taken as preliminary given the
necessarily limited datasets with ground-truth data, our out-of-
sample tests offer initial results that machine learning produces
consistent predictions across studies having diverse methods,
topics, disciplines, journals, replication procedures, and periods.

These research findings align with the DARPA SCORE pro-
gram for developing new theories and approaches for replica-
tion. The SCORE program attempts to address the problem of
replicability by assigning likelihood scores to published papers.
The likelihood score is aimed at providing one piece of diagnos-
tic information regarding the robustness of a study’s findings and
should be used in combination with a scientist’s or user’s own
standards of review. The likelihood score can also be used by
an author for self-reflection and diagnostics or by a researcher
who, because of scarce resources, must prioritize the studies
that should be replicated first. Our machine learning model can
support SCORE by providing a scalable and rapid response
approach to estimating a confidence score for all candidate stud-
ies of interest in a discipline. When scientists and users can set
their own thresholds of confidence, a list of studies most and
least likely to replicate can be determined generally or on a
scientist-by-scientist basis. Manual replication-test allocation can
then be prioritized for those studies with the lowest estimated
confidence.

The machine learning model offers insights into how a scien-
tific paper’s narrative content hints at its replicability. Although
reviewers generally estimate a paper’s replicability from its statis-
tics, we found that a model trained only on the narrative (text
only) of a study achieves higher accuracy and top-k precision
than reviewer metrics models, suggesting that the narrative-
only method captures information that the reviewer metrics-only
model does not. Moreover, no single reviewer metric predictor
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was found to be a strong estimator of replicability in the liter-
ature. In our work, we tried to go beyond current literature on
reviewer metrics and combine all metrics together to mimic the
real-world use of a paper’s reported statistics. When we com-
bined reviewer metrics together, their predictive utility went up,
but did not significantly surpass our text-only model. It may be
that reviewers use reviewer metrics according to personal stan-
dards, which lowers their consistency. For example, P values are
rules of thumb that can vary across reviewers. Nevertheless, if
this conjecture is true, it may offer one explanation for why text
provides a more consistent and higher level of predictability than
reviewer metrics.

Our preliminary results indicate that the machine learning
model capitalizes on differences in n-grams in replicating and
nonreplicating papers. N-grams are strings of consecutive words
that are colloquially referred to as writing “style” or phrasing.
Forensic linguists have begun to research how to use n-grams to
link anonymous or disguised authors with the documents they
write. Consistent with their use of n-grams, we found that the
frequency of n-grams differs in replicating and nonreplicating
texts, with nonreplicating papers displaying a higher frequency of
unusual n-grams and a lower frequency of common n-grams than
do replicating papers. Nevertheless, because n-grams of three-,
four-, and five-word strings are not yet directly interpretable by
humans as style markers, n-grams require further testing to eval-
uate their usefulness for developing a theory of why text-based
information reveals a paper’s replicability (52).

In our investigative study, we marshalled nearly all avail-
able data sources of ground-truth manual replications to train
and test our model. We found that tests of the predictive
utility of machine learning are comparable to the best cur-
rent methods, but also potentially have the distinct advan-
tage of reducing burdens on researchers’ scarce resources of
time, money, and opportunity for conducting original research.
Nevertheless, our samples are necessarily limited by being one-
shot replication tests. Our research has been one instantiation
of what we call deep-replicability research. Deep-replicability
research aims to improve research and confidence in findings
as data, methods, and scientific topics emerge by fruitfully com-
bining human and machine intelligence in novel ways. Future
research should continue to diversify and expand manual repli-
cation tests to all scientific disciplines with the aim of building a
theory of replication and designing robust systems.

Materials and Methods
The manually replicated studies used to train and test our model came from
seven projects in psychology and two projects in economics. The detailed
information of all datasets used in our study can be found in Table 1. The
data are available upon request.
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