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We introduce a general framework to study moiré structures
of two-dimensional Van der Waals magnets using continuum
field theory. The formalism eliminates quasiperiodicity and allows
a full understanding of magnetic structures and their excita-
tions. In particular, we analyze in detail twisted bilayers of Néel
antiferromagnets on the honeycomb lattice. A rich phase dia-
gram with noncollinear twisted phases is obtained, and spin
waves are further calculated. Direct extensions to zigzag anti-
ferromagnets and ferromagnets are also presented. We antic-
ipate the results and formalism demonstrated to lead to a
broad range of applications to both fundamental research and
experiments.
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he wealth of new phenomena revealed in incommensurate

layered structures of graphene and other two-dimensional
(2D) semiconductors and semimetals have sparked major efforts
in the study of electronic physics atop moiré patterns. The mate-
rials from which these structures are made, Van der Waals
(VdW) solids, come in many varieties, inspiring a nascent field
going well beyond graphene (1). In particular, a growing family
of VAW magnets are being explored both for their magnetism
directly as well as for the interplay of that magnetism with elec-
tronics (2). Two-dimensional magnets are of particular interest
for the fluctuation effects inherent to them. For example, the
Mermin-Wagner theorem (3) proves that a strictly 2D magnet
with Heisenberg or XY symmetry cannot show long-range order
at any nonzero temperature. Exotic quantum phases of mag-
nets, e.g., quantum spin liquids, are widely expected to be more
prevalent in two dimensions (4).

In this paper, we introduce a framework to study moiré
structures of 2D magnets, under assumptions which are widely
applicable and achievable in VAW systems. We present a gen-
eral methodology to derive continuum models for incommen-
surate/twisted/strained multilayers including the effects of inter-
layer coupling, obviating the need to consider thousands or tens
of thousands of lattice sites/spins with complicated local environ-
ments. We illustrate the method with detailed calculations for
the case of a twisted bilayer of two-sublattice Néel antiferromag-
nets on the honeycomb lattice, a situation realized in MnPS3 and
MnPSes, and also discuss applications to honeycomb lattice anti-
ferromagnets with zigzag magnetic order [as in FePS3, CoPSs,
and NiPSs; see ref. 5 for a review] and to the honeycomb lattice
ferromagnet Crls (6). We show that twisting these magnets leads
to controllable emergent noncollinear spin textures (despite the
fact that the parent materials all exhibit collinear ordering) and
a rich spectrum of magnonic subbands.

Now we turn to the exposition of the problem and approach,
which we illustrate as we go for the simplest case of a two-
sublattice Néel order on the honeycomb lattice. First, we detail
the assumptions under which a continuum description is possi-
ble. We consider structures built from 2D magnets with long-
range magnetic order at zero temperature and assume that
the interlayer exchange interactions ~ J’ are weak compared
to the intralayer exchange J, ie., J' < J. Additionally, we
assume that the lattice in each layer may be regarded as a
deformed version of a parent structure shared by all layers. Each
layer [ is described by a displacement field u;(x) in Eulerian
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coordinates:

ui(x;) =x *x§0)7 1]

where x; andxgo) are the deformed and original positions, respec-
tively, of points in layer [. The displacement field of each layer
need not be uniform or small, but its gradients should be small,
i.e., |Ouw,v| < 1. For uniform layers, this allows any long-period
moiré structure, i.e., for which the period of the moiré pattern is
large compared to the magnetic unit cell. For two identical but
twisted layers, it corresponds to the case of a small twist angle,
0 < m. This construction is directly analogous to the procedure
to build the continuum model of twisted bilayer graphene (7) fol-
lowing the recent derivation in ref. 8 which is valid under nearly
identical assumptions.

In this situation the interlayer couplings and the displacement
gradients are small perturbations on the intrinsic magnetism of
the layers and therefore have significant effects only at low ener-
gies. This allows a continuum representation of the magnetism
of each layer in terms of its low-energy modes: space—time fluc-
tuations of the order parameters. The order parameter of the
two-sublattice antiferromagnet is a Néel vector N; with fixed
length |[N,| = 1, and its low-energy dynamics for an isolated unde-
formed layer is described by the nonlinear sigma model with the
Lagrange density

Lo[N)] = ﬁ (ON)? — g (VN.)? + d (N?)?, [2]

where p ~ J is the spin stiffness, v is the spin-wave velocity, and d
is a uniaxial anisotropy with d > 0 signifying Ising-like and d < 0
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XY-like antiferromagnetism. For MnPSs, there is weak Ising-
like anisotropy (9) so 0 < d < J/Au.c. (Au.c. is the area of the
2D unit cell). Such smallness (but not the sign) of the anisotropy
is common for third row transition metal magnets.

Next we consider the first-order effects of displacement gra-
dients upon the intralayer terms in Eq. 2. As in ref. 8, such
terms arise from pure geometry, i.e., carrying out the coordinate

transformation from xgo) to x; defined in Eq. 1, and from strain-
induced changes in energetics. Taking them together, the leading

corrections to Eq. 2 are

1
L[Ny, wi] = p(€t,00 +€lyy) ;%U%Nﬂzfﬁ(VNﬂ2 B3]

+ 63€l,uuauNl . aVNl7

where d12,3 are dimensionless O(1) constants and e, =
(Opur,y + Ovwi,n)/2 is the strain field in layer [. For simplic-
ity we assumed that spin-orbit effects (e.g., anisotropy d) are
small and hence that deformation terms in Eq. 3 are SU(2)
invariant: anisotropic deformation terms must be small in both
spin-orbit coupling and in displacement gradients and hence are
neglected.

Next we turn to the interlayer coupling terms. By locality and
translational symmetry, it is generally of the form

Ez[Nl,Nz,ul*uz]:J/[lll*uz}Nl'N% [4]

where J'[u] is a function with the periodicity of the undeformed
Bravais lattice. Due to the smallness of J’, we neglect corrections
proportional to displacement gradients in Eq. 4. Generally, J' [u]
can be expanded in a Fourier series and well approximated by a
small number of harmonics. We obtain a specific form by consid-
ering local coupling of the spin densities in the two layers. Using
the symmetries of the honeycomb lattice, the minimal Fourier
expansion of the spin density S; of a single layer contains the
three minimal reciprocal lattice vectors b,

3 3
Si(x)=noN; Y _sin(ba -x”) =noN; Y _sinfb, - (x —u1)], [5]

a=1 a=1

where ny measures the size of the ordered moment, and we
define the origin x =0 at the center of a hexagon. Taking the
product S; - Sz and applying trigonometric identities to extract
the terms which vary slowly on the lattice scale (rapidly varying
components do not contribute at low energy) gives the form of
Eq. 4, with

3
J'[u}:J/Zcos(ba ‘u), [6]
a=1

where the constant J’ is proportional to the interlayer exchange
and nd. Physically, Eq. 6 captures the fact that, e.g., for
intrinsically ferromagnetic exchange J' >0, the preferred rel-
ative orientation of the A sublattice spins of the two layers
is parallel for AA stacking but antiparallel for AB and BA
stackings.

The full Lagrange density £L=73",_, ,(Lo[N:] + L1[N:,w1]) +
L2[N1,N2,u1 —us] captures the low-energy physics of a bilayer
with arbitrary deformations of the two layers. We now specialize
to the case of a rigid twist of the two layers by a relative angle 6:
Uy =—us= gi x x. In this case the strain vanishes, and one finds
the full Lagrangian is

P 2
ﬁzgjiﬁuMW)—Hm [71
where
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Ha=Y [g (VN)? —d (N;‘)Z] —J®(x)N:-N2  [8]
is the classical energy density. Here the coupling function

3
D(x) :Zcos(qa -X), 91
a=1

and g, =62 x b, are the reciprocal lattice vectors of the moiré
superlattice.

Egs. 7-9 form the basis for an analysis of the magnetic struc-
ture on the moiré scale, as well as for the magnon excitations
above them. The magnetic ground state is obtained as the vari-
ational minimum of H.[N1,N2]. Owing to the sign change of
®(x), the problem is frustrated: the Néel vectors of the two lay-
ers wish to be parallel in some regions and antiparallel in others,
forcing them to develop gradients within the plane—the rep-
resentation in the continuum of incompletely satisfied in-plane
bonds. We find that the optimal classical solution is coplanar
but not necessarily collinear (see SI Appendix for a complete
weak coupling analysis), and without loss of generality we can
take the spins to lie in the x—z plane: N§' =sin ¢k 4 cos ¢z.
The formulae are simplified by forming symmetric and anti-
symmetric combinations, ¢, =¢1 + ¢2 and ¢, = P1 — ¢p2, and
adopting dimensionless coordinates x = gm,x, with ¢, =|q,| the
moiré wavevector. Then the dimensionless energy density He =
Hea/(3pgr,) becomes, up to an additive constant,

1 .
Ha = 3 (|Vx¢s |2 + |Vx¢a|2) _ (aq>(x) + 3 cos qﬁs)cos da.
[10]
Here we have introduced the dimensionless parameters
’
a=22 =20 [11]
Plm Plm

and & (x) = S8 cos(q, - x), where §, =q,/qn are unit vectors.
We can obtain partial differential equations for the phase angles
by applying calculus of variations to Eq. 10:

V2ps = cos ¢ sin ¢,
Vipa= (B cos ¢s + o@(x))sin da.-

[12]
[13]

We must find the solutions of the saddle point equations which
minimize the integral of H.. There is always a trivial solu-
tion with ¢ = ¢, =0, 7, which corresponds to the Ising limit
of aligned or counteraligned spins. Nontrivial solutions with
potentially lower energies will be discussed in different limits
below. We first focus on the case of 5> 0, i.e., the Ising-like
anisotropy.

For a, 8 < 1, corresponding to large angles, the gradient terms
in the Hamiltonian dominate and the solution is nearly con-
stant. Perturbation theory with fixed § = 3/a? gives a nontrivial
solution

¢s:7T7

b= ¢7SLO) —a sin gz&f,p) ('i'(x) - ¢0)+ O(ozz, B), [14]

with cos z,zSE,,O) = —% 0, and where ®, is a constant given in S/
Appendix, Section C. In this twisted solution, cos ¢, tends to imi-
tate the sign of ®(x), to gain energy from the potential term.
This change of ¢,, however, will need to be balanced against
the energy penalty due to the kinetic term. Comparing the
energy of the twisted solution with that of the trivial one, we see
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that the former has a lower energy for 6 < %, i.e., whenever it

exists. In this limit, at 6 = 2, the system undergoes a continuous

transition to the collinear phase. More details can be found in S/
Appendix.

For small twist angles, on the other hand, o> 1. In this limit,
we first consider small values of §; the potential term ad(x)
in Eq. 10 dominates, and the energy is minimized by choosing

¢o =0 or 7 almost everywhere, such that cos ¢, = sign[®(x)],
which means the order parameter vectors in the two layers are
locally parallel or antiparallel. At small values of 3, ¢, prefers
to take a constant value, and since the total area with negative

®(x) is larger than the positive area, ¢, = 7 is chosen; this solu-
tion lies in the same phase as that of the twisted solution found
for a < 1 above, that also showed the property ¢; =7; we call
this phase twisted-s. The twisted-s solution obviously breaks the
U(1) symmetry of spin rotations about the z axis of spin space,
but it retains an Ising symmetry under interchanging layers and
reflecting spin N* — —N?. One may check that o =¢, — 7 is
odd under this symmetry.

Interestingly, however, one can further check that in the same
limit of o> 1, above some order 1 value of 3, another twisted
solution becomes more energetically favored. It belongs to what
we call a twisted-a phase, where ¢, is no longer constant and
actually shows a twisted pattern similar to that of ¢,, such that
cos ¢ exhibits spatial variations following those of ®(x) (see
SI Appendix for details). This implies a nonzero value for ¢ so
that the twisted-a phase spontaneously breaks the aforemen-
tioned Ising symmetry. The value of ¢ #0 increases smoothly
from zero on entering the twisted-a phase from the twisted-
s one, consistent with the expected continuous behavior of an
Ising transition (treated at mean-field level by the saddle point
analysis).

Finally, we study the «, 8> 1 limit, where the twisted-a solu-
tion is the lowest energy nontrivial solution. It requires ¢, to
take the values 0 or 7 almost everywhere along with ¢,, such
that cos ¢, matches the sign of ®(x); this means simply that
the vectors N; align or counteralign along the +Z axis almost
everywhere. The order parameter rotations occur in a narrow
domain wall centered on the zeros of i(x), i.e., forming a closed
almost circular loop in the middle of the unit cell. This domain
wall costs an amount of energy proportional to its length; as a
result of this energy penalty, the twisted-a phase gives way to the
collinear phase when the energy gain from the twist is exceeded
by the domain wall energy. In order to study this competition,
we assume that such transition occurs when > «, which we
later check is self-consistent. The widths w, and w, (in dimen-
sionless distance normal to the domain wall) over which ¢, and
¢s wind are determined by the balance of the gradient terms
and the corresponding potential terms. This gives w, /s ~1/+/8
in this limit and an energy cost per unit length of the wall of
E ~ +/B. Now the bulk energy gain of the twisted state is simply
proportional to o, so we obtain the result that the twist collapses
when /8> «. This treatment is valid since under these condi-
tions 8/a 2 o> 1 (we did not determine the multiplicative order
1 constant in this inequality). Note that the transition between
the collinear and twisted-a phase is a level crossing between
two distinct and disconnected saddle points; consequently it cor-
responds to a first-order transition, and the first derivatives of
the energy are discontinuous across this boundary. A tricrit-
ical point separates the two continuous transitions from this
first-order one.

To summarize, we find three different phases for 5> 0, two
of which correspond to twisted configurations. The transition
between the two twisted phases happens at some 3 of order 1,
when the phase boundary is crossed in the large o limit; the
twisted phases collapse on the other hand when 8> 2o in the

o, B <1 limit (twisted-s to Ising transition) and when 8> o?
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Fig. 1. The phase diagram with respect to the normalized dimensionless
parameters a/(1+ «) and 3/(1+ ). In the collinear phase, the Néel vec-
tors of the two layers are constant and either aligned or counteraligned.
The characteristics of the twisted phases are most obvious when the poten-
tial term plays the dominant role: in the twisted-s phase, ¢s =, while the
sign of cos ¢, exhibits modulations resembling those of d(x) (see Fig. 2A).
In the twisted-a phase, on the other hand, the signs of both cos ¢s and
cos ¢, follow that of ®(x). The twisted-s phase terminates at (0.88, 0.94)
near the right top corner of the diagram. The dashed line shows 3 = 10q,
while the dotted line corresponds to 3 =0.1a. For 3 = «, the correspond-
ing line would be the diagonal one connecting the left bottom and right top
corners.

in the o, > 1 limit (twisted-a to Ising transition). We sketch
a phase diagram in Fig. 1 based on the numerical solutions
to Eq. 12, Eq. 13, which is consistent with and in fact inter-
polates between the perturbative and strong-coupling analyses
above. The dashed and dotted lines in Fig. 1 show examples
of paths with a fixed ratio 3/« = d/J’; this ratio is determined
by the material, but one can tune the twisting angle 6 to move
along the lines and consequently enter/leave different phases.
Remarkably, for a fixed d/J’, the twisted-a state is always sta-
bilized for sufficiently small #; this can be understood by noting
that 8/« is invariant when 6 changes as mentioned above,
and thus, decreasing the twist angle increases « linearly with
[ forming a straight line in the o — 3 plane (different from
the axes in Fig. 1), but the twisted-a phase, when «a, 8> 1, is
separated from the collinear phase by a 3~ o relation and
from the twisted-s phase by S~ const. Thus, the above men-
tioned straight line lies between these two phase boundaries
at sufficiently small 6. Plots of the real space configurations of
the ground states in the two twisted solutions are presented in
Fig. 24 and B.

Once the minimum energy saddle point is obtained, the full
Lagrangian allows for calculation of the magnon spectrum. We
define

Ni=1/1—u2 — 02N5 (x) + wui(x) + vvi(x), [15]

where u; = cos ¢;(x)x — sin ¢;(x)Z and v; =y complete a spatially
dependent orthonormal basis such that & x # =N§' at every x.
The fluctuations about the classical solution are described by
space-time-dependent fields w;(x, ), v;(x, ¢). Inserting Eq. 15
into Eq. 7, expanding to quadratic order in the fluctuations, and
finding the Euler-Lagrange equations for u,,, = u1 & u2, v5/, =
v1 £ v, one obtains linear wave equations for four branches of
excitations. For simplicity, we present the results for d=5=0
(see SI Appendix for the general result), in which case the four
modes decouple immediately,
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Fig. 2. Real space configurations and spin wave plots in twisted antiferromagnets. (A) Spatial configurations of N - N, = cos ¢,. It can be seen that cos ¢, is
either +1 or —1 almost everywhere, based on the sign of &(x); indeed, the choice of a =4, 3=4 corresponds to a solution in which the potential term plays
the dominant role and that lies in the twisted-a phase; the same quantity, i.e., cos ¢,, looks very similar if 3 is lowered even into the twisted-s phase while
keeping « fixed. (B) A schematic diagram of the spatial dependence of the orientation of the Néel vectors (not actual spins) in the two layers in the strong
coupling limit. A vertical (horizontal) arrow denotes out-of-plane (in-plane) orientation; the brown and gray areas show regions with positive and negative
values for &(x). The main difference is that in the brown region, the twisted-s phase shows in plane orientation, and the twisted-a phase shows out-of-plane
orientation. (C) The lowest 10 magnon bands at « = 2 for the four branches, in the isotropic case (d = 0) of two coupled two-sublattice antiferromagnets.

2 2 2R 2 2 2 A
_8t Us/a =T quu,s/auS,(u _8t Vs/a =V q'mDv,s/aUs,a,

[16]
with the linear operators
Dus=— Vi, [17]
Du,o= — Vi + ad(x) cos da,
Doe=— V2 = IVl — 280 (1 - cos ),
Dya=—V; — i\vxqsa\? + %é(x) (1 + cos ¢a).

Taking u,,(x, t) = e“"ug,,(x), we obtain eigenvalue problems
such that the magnon frequencies are (vg, multiplied by) the
square roots of the eigenvalues of the D operators. These
eigenvalue problems have the form of continuum nonrelativistic
Schrodinger—Bloch problems and therefore can be solved using
the Bloch ansatz to find an infinite series of magnon bands. When
a is large, the potential terms in the above equations become
alternated deep wells and hard walls, which confine the magnons
to either of the two domains. This leads to the flattening of
magnon bands in branches u, and v,. Fig. 2C shows the lowest
magnon bands when « is at intermediate value. There are three
gapless Goldstone modes in the us, vs, and v, branches, which
correspond to the three generators of the O(3) group.

Finally, we comment on the case of d <0 in brief, where the
anisotropy term favors the spins to lie in the XY plane. The cor-
responding equations of motion resemble those of the isotropic
case, i.e., ¢s tends to be uniform everywhere, while cos ¢, imi-
tates the sign of ®(x) due to the interlayer exchange, leading to
twisted configurations. More details can be found in ST Appendix.

Zigzag Antiferromagnet

Having described the case of the Néel antiferromagnet in detail,
we give further results more succinctly for other types of 2D mag-
nets. The materials FePSs, CoPSs, and NiPS3 all have the same
lattice structure as MnPS3 but exhibit zigzag magnetic order. It
is a collinear magnetic order which doubles the unit cell. There
are three possible ordering wavevectors: the M points at the cen-
ters of the edges of the moiré Brillouin zone, which are half
reciprocal lattice vectors, b, /2, with a =1, 2, 3. The spin density
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(analogous to Eq. 5) therefore contains three order parameter
“flavors,” N ,:

Si(x) =no Z Ni,qsin

a=1,2,3

Bba : (xful)}. [18]

Here in a zigzag state, just a single one of the three N, vectors is
nonzero: this describes three possible spatial orientations of the
zigzag chains of aligned spins. Proceeding as before, we obtain
the effective classical Hamiltonian in the form

zig—zag __
7-[cl - E

a,l

[gwwm +50,- VNa,zf] [19]

J' X
+Z VIN1,;,N2,1,N3,] — 5 ZNa,l N2 cos (an)
l a

Here p, p are two stiffness constants, and V is a potential which
may be taken in the form

V[N1,N2,Ns]= u<z |No|? — 1>
—d)_(N:),

with u,v >0 to model the energetic preference for a single
nonzero stripe orientation and d as before to tune anisotropy.

Eq. 19 gives a continuum model to determine the magnetic
ordering texture for arbitrary twist angles. The most impor-
tant difference from the two-sublattice antiferromagnet is that
here each spatial harmonic couples to a single flavor, while
in the former case, Eq. 18, the single flavor of order parame-
ter couples to the sum of harmonics. While we do not present
a general solution, we note immediate consequences in the
strong coupling limit, J' > pg¢2, pgZ. In this situation, for each
x we must choose the largest harmonic, i.e., the a which max-
imizes | cos (Y4)|, and then take N1 =sign[J’ cos (4% )N, 2
and N, ;=0 for a’#a. Remarkably, the result is a tiling
of six possible zig-zag domains which evokes a dice lattice,
as shown in Fig. 3. Narrow domain walls separate these
regions.

+u Y [ Nal*[No?

a>b

[20]
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Twisted Ferromagnet

Naively, twisting a homobilayer of ferromagnets is relatively
innocuous. However, experiments and theory (10-16) for Crls
have indicated that the interlayer exchange has a strength and
sign that depends upon the displacement between neighboring
layers. This can be directly incorporated into a continuum model
following our methodology.

To this end, for a general twisted bilayer of a ferromagnetic
material with the above property, one can use the energy func-
tional shown in Eq. 8 with minimal modifications: 1) the Néel
vectors N; should be everywhere replaced by the uniform magne-
tization M| since in fact each layer is ferromagnetic within itself
and 2) the function ®(u; —us) takes a more complicated form.
Assuming a small twist angle, the latter may be determined from
the dependence of the interlayer exchange of untwisted layers
on a uniform interlayer displacement. For the case of Crls, we
have extracted the stacking dependent interlayer exchange data
from the first principle calculations in ref. 14. Similar to the case
of twisted antiferromagnets, a variational analysis of Eq. 8 can
be performed, which leads to the same set of Euler-Lagrange
equations, i.e., Eqs. 12 and 13. In order to simplify the anal-
ysis, we will only consider an infinitesimal 8 here; its effect is
to fix the value of ¢, =0 for Crls as discussed in SI Appendix.
The effects of nonzero S can also be studied in a way similar to
the previous case. The mathematical problem is then to obtain
the functional form of ¢, (x) and its dependence upon «. In the
ferromagnetic case, the Fourier expansion of <i>(x) generally has
a nonzero constant term, which dominates the solution at small
«. In the case of Crls, the constant term is small and ferro-
magnetic; thus, ¢, =0 is chosen for small a. However, if other
harmonics of ®(x) are strong enough, a twisted solution starts
to appear at a finite value of a with a lower energy. As in the
antiferromagnetic case, cos ¢, shows spatial modulations imitat-
ing the changes of ®(x) in this twisted solution. This property
of the twisted solution is most visible in the large « limit, where
the kinetic energy penalty is least important: one observes then
domains with cos ¢, = sign[®(x)], separated by narrow domain
walls. For a detailed analysis of the above statements in the case
of Crls, see SI Appendix. A plot of the average magnetization in
the system is shown in Fig. 44 with a transition from collinear
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Fig. 3. The real space tiling with six possible domains which appear in a
twisted bilayer of zigzag antiferromagnets in the strong coupling (small
angle) limit. The colors show which flavor of the order parameter is nonzero
in each domain, while the + signs label the relative sign between the order
parameter in the two layers. The dashed hexagon shows a moiré structural
unit cell.
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to twisted phase at finite «. Unlike the antiferromagnets dis-
cussed above, there is a finite interval of twist angles where the
collinear phase exists even with infinitesimal anisotropy param-
eter 8. Also a plot of the spatial configuration of a twisted
solution is presented in Fig. 4B; it shows that there are large
regions in real space with maximal magnetization while at the
same time there are also other regions exhibiting close to zero
magnetization.

Conclusion

In this work, we have considered moiré 2D magnets and in
particular the twisted bilayers of VAW magnetic materials. We
have developed a low-energy formalism in the continuum and
studied in detail three different examples of twisted bilayers:
antiferromagnetic, zigzag antiferromagnetic, and ferromagnetic.
Remarkably, a rich phase diagram is obtained as one varies
the twist angle and material parameters; there are interest-
ing twisted ground state solutions comprising long-wavelength
noncollinear magnetic textures. Such spatial patterns can poten-
tially be observed in experiments, where the twist angle control
adds to the tunability of the system. Furthermore, at small twist
angles in the noncollinear phases, certain spin waves also exhibit
interesting features such as flattening dispersion curves.

Material-wise, MnPSs has 8= 4.54a, and the system is in
the collinear phase for generic twist angles. The ratio can be
derived using d = A?/ (12JAy.)and J' = J/;, 8%/ (2Auc.), where
the intralayer exchange J, interlayer coupling Je,, and the
magnon gap A are extracted from ref. 9. On the other hand, for
Crls, we have derived 5~ 0.62«a using the intralayer exchange
and anisotropy parameter as given in ref. 17 and the interlayer
exchange data as given in ref. 14. A plot of average magnetization
for Crls in the perpendicular and parallel directions for which
the above parameters are used is presented in Fig. 44, Bottom;
it can be seen that at large angles, the system is in the collinear
phase, but the twisted-s phase (¢, =0) starts to be preferred at
0 =17.5°; upon further decreasing the angle, starting at = 6.4°,
the twisted-a phase becomes the ground state (see the legend of
Fig. 4 for details). This shows that in a twisted bilayer of CrIs, it
is reasonable to expect both of the twisted phases to be realized
in experimentally accessible settings.

The present methodology can be utilized with minimal mod-
ifications in further analyses of other moiré systems in the vast
collection of possible bilayer magnetic materials. For example,
here we have mainly presented the examples of homobilayers,
but interesting phenomena can also arise for heterobilayers of
VdW magnets, such as the stacking of ferromagnets on antiferro-
magnets (18). The magnetic properties of general moiré systems
as well as their interplay with the electronic/transport properties
could be the subject of future studies. Given the extremely fruit-
ful research done in the field of moiré electronic systems, one can
anticipate that the magnetic moiré systems could play the role of
a new platform where novel exciting physics could be pursued.

Materials and Methods

In this section, we explain our numerical manipulations.

In order to find the ground states, one needs to solve Egs. 12 and
13 simultaneously. We have done so by two different methods: The first
method is solving the equations in real space by the use of overdamped
dynamics, i.e., adding fictitious time derivatives of ¢, and ¢ to the equa-
tions and running the time evolution; a final configuration with zero time
derivative ensures that the equations are satisfied. The second method is
solving the equations in the Fourier representation iteratively by starting
from a well-chosen simple guess; most of the time, ¢,(x) = ¢s(x) =m/2 is
a suitable initial seed. The results from the above two approaches agree
completely

In Fig. 1, the phase boundaries can be extracted by observing the changes
of behavior of cos ¢s and cos ¢,. We first solve Egs. 12 and 13 for vari-
ous combinations of « and 3 and plot the corresponding functions cos ¢
and cos ¢, in real space. In the collinear phase, both are constant. Fixing 3
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Fig. 4. Phase diagrams and a real space configuration plot in twisted bilayers of the ferromagnet Crls. (A) (Top) The average value of the z component of
the sum of the two layers’ spins for Crl3, when the anisotropy parameter is taken to be positive and infinitesimal. A continuous transition from the collinear
phase to the twisted phase occurs at o =0.025. This phase is analogous to the twisted-s phase discussed previously. The total area in which &(x) >0 is
shown with a dashed red line here as the limiting value of % for very large «. (Bottom) The average value of the z and in-plane components of the total
magnetization calculated with physical parameters chosen as discussed in the main text for Crls. In particular, the anisotropy is nonzero here. At § = 17.5°,
a transition from collinear to twisted-s phase occurs at which point M; starts to be nonzero. Moreover, a transition to the twisted-a phase occurs at 8 = 6.4°,

which exhibits itself in W starting to be nonzero for smaller angles. (B) Spatial profile of local magnetization =

Yz = I (My, + M,,;)for a twisted solution in

Crl3. The anisotropy parameter is taken to be positive and infinitesimal. There are large regions in real space with a net magnetization, while other regions

have vanishingly small net magnetization.

while increasing o from zero, cos ¢, will begin to have spatial variations at
the phase boundary between the collinear and the twisted-s phase. On the
other hand, if one fixes o while increasing 8 from zero, the cos ¢s will start
from a constant in the twisted-s phase and begin to have spatial variations
once it crosses the phase boundary and enters the twisted-a phase. Similar
reasoning works for finding the phase boundaries in the case of Crls, i.e.,
results presented in Fig. 4A.

As for Fig. 2C, the spin waves are obtained from the Bloch ansatz
us/a(x):Ds/a(x)e"k'X and similarly for v;,,. The variables in Eq. 17 thus
become &/, and Vs, with the substitutions V2 — (Vy + ik)* and —87 — w?.
Discretizing the moiré unit cell, the linear operators become large matri-
ces and can subsequently be diagonalized using Mathematica to find the
magnon bands.

The interlayer exchange for Crlz is extracted from figure 2b of ref. 14,
where the dependence upon displacement is presented along two spe-
cial lines. The interlayer exchange is a periodic function with the same
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