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We present results of different approaches to model the evolution of the COVID-19 epidemic in Argentina,
with a special focus on the megacity conformed by the city of Buenos Aires and its metropolitan area,
including a total of 41 districts with over 13 million inhabitants. We first highlight the relevance of in-
terpreting the early stage of the epidemic in light of incoming infectious travelers from abroad. Next, we
critically evaluate certain proposed solutions to contain the epidemic based on instantaneous modifica-
tions of the reproductive number. Finally, we build increasingly complex and realistic models, ranging
from simple homogeneous models used to estimate local reproduction numbers, to fully coupled inho-
mogeneous (deterministic or stochastic) models incorporating mobility estimates from cell phone loca-
tion data. The models are capable of producing forecasts highly consistent with the official number of
cases with minimal parameter fitting and fine-tuning. We discuss the strengths and limitations of the
proposed models, focusing on the validity of different necessary first approximations, and caution future
modeling efforts to exercise great care in the interpretation of long-term forecasts, and in the adoption
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of non-pharmaceutical interventions backed by numerical simulations.
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1. Introduction

Since the sudden outbreak of the COVID-19 virus in Wuhan,
China, in December 2019, the SARS-CoV-2 epidemic (i.e. the se-
vere acute respiratory syndrome caused by the virus) was declared
a pandemic by the World Health Organization on March 11th 2020
and changed the way we live almost all over the world. As of May
2020, around 4 million cases have been detected worldwide, with
over 284,000 reported deaths. Great efforts are currently under-
way towards the characterization of the virus and the treatment
of its disease. Without the possibility of a vaccine envisioned for
the near future, disease containment has focused mainly on non-
pharmaceutical interventions (NPIs) aimed at restricting the circu-
lation of the population, as well as at reducing the risk of con-
tagion in groups of vulnerable individuals. The choice of contain-
ment strategy is a key factor to forecast the local severity of the
epidemic, as evidenced by the outcome of divergent public health
policies adapted by different countries. It is becoming increasingly
clear that the development of models to assess the outcome of al-
ternative NPIs will play an important role in the formulation of
new public health policies.

* Corresponding author.
E-mail address: gabo@df.uba.ar (G.B. Mindlin).
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1.1. Determination of characteristic disease parameters

Important first contributions were carried out by studying pop-
ulations for which the disease spread autonomously, allowing to
determine the characteristic parameters of the disease, such as
Ref. [1], which allowed the estimation of the effective contagion
rate and serial interval in Lombardy, Italy, or the estimation of the
infection and case fatality ratios using data from passengers of the
Diamond Princess cruise [2].

1.2. Previously developed models for seasonal influenza

SARS-CoV-2 presents multiple similarities and differences with
diseases caused by influenza virus that may result in respiratory
syndromes. It is then reasonable to build upon previous knowledge
when attempting to forecast the evolution of the pandemic. Pre-
vious relevant work includes Refs. [3]| and [4], where data-driven
agent based models were developed for modeling the spread of
seasonal influenza. In [5] the authors developed a structured meta-
population scheme integrating a stochastic model for disease dy-
namics, with high-resolution worldwide census data and human
mobility patterns at the global scale. In [6], the authors proposed
a theoretical framework for the study of spreading processes in
structured meta-populations with heterogeneous agents, subject to
different recurrent mobility patterns. All these examples highlight
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the need for a data-driven approach capable of generating effective
descriptions of complex contact patterns [7], and for the develop-
ment of methods allowing the reuse of empirical contact matrices
estimated from different demographics [8].

1.3. Some basic models adapted for COVID-19

Models specific for the COVID-19 pandemic have been devel-
oped using well-known compartmental models as a starting point.
For instance, in [9] the author developed a model based on ordi-
nary differential equations (ODEs) for compartments of susceptible
(S), exposed (E), infected (I) and recovered or removed (R) individ-
uals (i.e. SEIR model) with the objective of predicting the epidemic
peak in Japan. Using this method, the author found a basic repro-
duction number of Ry ~ 2.6 by adjusting the infection rate to re-
produce the accumulated number of cases reported during the first
40 days of the epidemic in Japan. As another example, in [10] the
authors developed a variant of the SEIR model without a compart-
ment for exposed individuals (a SIR model) to fit data obtained
from different regions of China, also estimating the local basic re-
production number.

1.4. Regional models for the COVID-19 pandemic

Several groups have pursued model-based analyses focused on
their own countries and regions. For instance, in [11] the authors
analyzed a multi-compartmental SEIR model to estimate the max-
imal intensive care unit (ICU) bed capacity required in the city of
Santiago, Chile, during the peak of the COVID-19 outbreak, while
taking different values of the basic reproduction number into ac-
count. In [12] the authors adapted a meta-population mobility
model to capture the spread of COVID-19 in Spain, incorporat-
ing empirical epidemiological parameters as well as mobility and
census data. The Ferguson group at Imperial College built upon
the previously mentioned models for the spread of influenza [3,4],
with the purpose of estimating the effect of different potential
public health measures, with a focus on Great Britain and the
United States of America (USA) [13].

1.5. Non-pharmaceutical Interventions (NPIs)

One of the most controversial proposed NPI is the formulation
of periodic quarantines, which in Ferguson’s report are regulated
by the availability and saturation of ICU beds. This idea was taken
up in [14], where the authors proposed a cyclic schedule of 4-
day work and 10-day lockdown, based on the predictions of a SEIR
model with an ad-hoc square function modulation of the time de-
pendent reproduction number R(t).

Other models were developed to study the effect of NPIs on
smaller populations, as in the cases of studies performed using
data from the Boston residential area in the US. In [15] the authors
used a data-driven SEIR model (previously developed in [8]) to test
six different social distancing strategies, namely (i) school closures,
(ii) self-distancing and teleworking, (iii) self-distancing, telework-
ing, and school closure, (iv) restaurants, nightlife, and closures of
cultural venues, (v) non-essential workplace closures, and (vi) to-
tal confinement. In [16], authors integrated highly detailed mobil-
ity data from cell phone devices, together with census and demo-
graphic data, with the purpose of building a detailed agent-based
model to describe the transmission dynamics of SARS-CoV-2 in the
Boston metropolitan area. The model intended to explore strate-
gies based on lifting social distancing interventions in combination
with testing and isolation of confirmed new cases, contact tracing
and quarantining of exposed contacts. A similar study was carried
out in [17], simulating the outbreak in Wuhan using a determinis-
tic age-structured SEIR model over a 1 year period.

The effects of NPIs were also studied in deterministic models,
such as those proposed in [18], where the authors presented a new
mean-field epidemiological model for the COVID-19 epidemic in
Italy that extended the classical SIR model, called the SIDARTHE
model. The model contributed towards evaluating and predicting
the effects of implementing different guidelines and protocols (for
example, more extensive screening for new cases, or stricter social-
distancing).

1.6. Estimations of the reproduction number

The main goal of NPIs is to flatten the curve of total infected
individuals, delaying the peak while keeping the number of cases
within the capacity of the health system. Different countries have
achieved this objective with varying degrees of success, which can
at least be partially explained by their choice of NPIs. Thus, it be-
comes essential to measure the relative success of each case and
to incorporate this knowledge into models capable of assisting de-
cision makers in the formulation of new NPIs. As mentioned be-
fore, a key parameter that reflects the dynamics of the epidemics
is the reproduction number. However, in [19] authors found that
the classical concept of the basic reproduction number Ry is unten-
able in realistic populations, and provides very little understanding
of the evolution of the epidemic. This departure from the classical
theoretical picture is not due to behavioral factors and other ex-
ogenous epidemiological determinants. Rather, it can be simply ex-
plained by the (clustered) contact structure of the population. The
authors also provided evidence that methodologies aimed at esti-
mating the instantaneous reproduction number R(t) can be used
operationally to characterize the correct dynamics of the epidemic
from incidence data.

It should be noted that the correct estimation of R(t) also de-
pends on the accurate detection of infected individuals, along-
side other secondary hypotheses. In [20], the authors estimated
the contagiousness and proportion of undocumented infectious
cases in China during the weeks before and after the shutdown
of travel in and out of Wuhan. They combined data from Tencent
(a large social media and technology company) with a networked
dynamic meta-population model with Bayesian inference to ana-
lyze the early spread within China. Recently, in [13] the authors
used a semi-mechanistic Bayesian hierarchical model to infer the
impact of NPIs across 11 European countries. The authors studied
the course of the epidemic by back-calculating infections from ob-
served deaths, and provided confidence intervals for the impact of
different NPIs on the reproduction numbers. A similar analysis was
performed in [21].

1.7. Reproduction number and mobility

It is important to note that even though NPIs can have a no-
ticeable effect on the reproduction number R(t), their effects are
not instantaneous; instead, they are modulated by the proper char-
acteristic times of the disease. Since R(t) is an emergent quan-
tity resulting from decreased social contact in large groups of in-
dividuals, proposals depending on the capacity to enforce sudden
changes of the reproduction number (e.g. as in the modulation of
infection rate by a periodic square function, as mentioned above)
must be evaluated critically. One of the keys points for understand-
ing the spreading of the disease is the variability in the contagion
rate and its dependence on the density and movement of people
within or between cities and regions. In this context, in [22] the
authors used cell phone data from approximately 11 million de-
vices to study how the flow of people through the city of Wuhan
contributed to dispersing SARS-CoV-2 throughout China. The au-
thors confirmed the efficacy of lockdown measures for decreasing
mobility, and showed that the distribution of population outflow
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from Wuhan accurately predicted the relative frequency and geo-
graphic distribution of COVID-19 infections across China.

1.8. Modeling the spread of COVID-19 in Argentina

Buenos Aires and its suburbs comprise a megacity offering a
unique opportunity to investigate how the virus spreads in large,
highly-connected, and densely populated areas, and how real-time
mobility information from cell phone devices can be used to as-
sist the prediction of new cases with regional specificity. We be-
lieve that the results we will present here can be useful for other
researchers being challenged with the task of modeling the early
stages of the COVID-19 epidemic in very large cities or in similar
demographic contexts.

With this motivation, we summarize our attempts to model the
early COVID-19 outbreak and its subsequent evolution in Argentina
with a special focus on Buenos Aires and its metropolitan area. We
caution the reader to adopt a critical stance towards simple epi-
demiological models. Even when these models are fed with popu-
lation census data and realistic mobility estimates, they are funda-
mentally limited in what they can tell us about the mid- to long-
term evolution of the epidemic. While the simplest epidemiolog-
ical models have several limitations of their own, building more
complex models does not necessarily improve our understanding
of the epidemic, and can certainly obfuscate the basic limitations
that are intrinsic to the very foundations of the models. Here,
models are considered only as ways of exploring the possible fu-
ture courses of the epidemic, without claims of accuracy, let alone
of infallibility. Claims concerning the outcomes of public policies
based solely on numerical simulations should be approached with
utmost care. The situation is both novel and challenging, full of un-
knowns that cannot be dispelled by comparison with previous epi-
demics, and several of the proposed NPIs (such as the enforcement
of periodic lockdowns, or the pursuit of massive herd immunity)
are unheard of in modern public health policy. The cost of imple-
menting such policies could be huge, and failures could be even
costlier. When advising public policy makers, it is our position that
models, no matter how detailed, only represent one among multi-
ple sources of information, and should supplement the analysis of
actual data, the epidemiological situation, and the advice of public
health experts.

This report is structured as follows. First, we consider the prob-
lem of interpreting the dynamics of the first cases, with special
focus on infectious travelers from abroad (Section 2). Next, we
ponder on the dangers of solutions based on instantaneous ma-
nipulations of R(t) (Section 3). We consider focal dynamics and
how they may lead towards the homogenization of the epidemics
(Section 4). Then, after estimating relevant parameters from fit-
ting the models to local data in Section 5, we consider coupled
models (Section 6) and the role of mobility as estimated from
cell phone data (Section 7). We incorporate this data to deter-
ministic and stochastic models, discussing their comparative weak-
nesses and advantages, and use them to forecast the number of
new cases based on possible changes to the isolation policy. Fi-
nally, in Section 8 we summarize our conclusions.

2. The interpretation of the dynamics of the first cases:
Travelers as inputs

We start with very simple models, and discuss how to study
the beginning of the epidemic in the context of a virus known
to be spread between countries mostly by air travelers. Through-
out this work we will consider models for the officially reported
number of infected cases. While the number of actual cases could
be larger due to undetected cases, we will assume that as long as
testing procedures and protocols are not changed, the percentage

of detected cases (with respect to the total number of cases) re-
mains approximately constant. Thus, restricting our analysis to the
officially reported number of cases will allow us to decrease the
number of unknowns in the system.

We will progressively move from models that assume homoge-
neous mixing of the population in the entire country or in large
provinces, towards more complex models, including inhomoge-
neous coupled models. However, we will always assume homo-
geneous mixing at the level of each individual district. Moreover,
we will use cell phone data to reduce the number of unknowns
by estimating the coupling between these regions. In our experi-
ence, and as will be shown in the following sections, increasing
model complexity without incorporating precise empirical infor-
mation results in models that are hard to validate and interpret,
rapidly resulting in homogeneous mixing if ensemble averages are
performed to compensate for the lack of detailed knowledge, and
thus providing very limited extra information when compared to
simpler models.

A brief explanation of Argentinian demographics and the mea-
surements taken by the Argentinian government in the context of
the COVID-19 pandemic is in order. Argentina has a total popu-
lation of nearly 45 millions, distributed between 23 federal states
(provinces), plus an autonomous city (the city of Buenos Aires, or
CABA). Most of the population lives in this city (2.9 millions) plus
its suburbs (the metropolitan area of Buenos Aires, Greater Buenos
Aires or AMBA, plus nearby districts, totaling 40 districts with a
population over 13 millions). The next most populated regions are
the rest of the province of Buenos Aires (PBA), and the provinces of
Cérdoba and Santa Fe. The first officially confirmed case of SARS-
CoV-2 was an infected traveler coming from abroad identified on
March 3rd. On March 11th, all travellers from countries with con-
firmed COVID-19 cases were requested to stay in isolation for 14
days. Schools and universities were closed on March 16th, and a
complete lockdown was enforced on March 19th. Almost imme-
diately afterwards, borders were closed except for flights bringing
stranded Argentinians back from abroad, and vice-versa for for-
eigners. As a result of these measures, the number of infectious
travelers slowly increased until reaching a maximum, and then de-
creased monotonously with time (see Fig. 1). The nationwide lock-
down was maintained until April 26th, when provinces with zero
or very few cases were allowed to relax lockdown rules. In con-
trast, densely populated areas (over 500,000 inhabitants) or with
a large number of confirmed cases were maintained in strict lock-
down for at least two more weeks, with the possibility of further
extensions to the lockdown.

As mentioned in the introduction, some of the most frequently
employed epidemiological models are compartmental; for instance,
the SEIR model includes compartments for susceptible (S), exposed
(E), infectious (I), and recovered or removed (R) individuals. How-
ever, since the COVID-19 epidemic started with travelers coming
from other countries, modeling the increase of infected individu-
als solely as an interaction with the compartment of exposed in-
dividuals will fail to reproduce the early dynamics of the disease.
As discussed next, considering the contribution of these individu-
als results in more reasonable estimates of the disease transmis-
sion rate, which are in better agreement with those obtained in
other countries by other methods [2,9,10,18]. We thus briefly sum-
marize how to include incoming infectious individuals in the sim-
plest models, and then adopt the same mechanism when develop-
ing more complicated models in the following sections.

In stochastic models, the number of infectious travelers can be
added directly to the infectious compartment. Consider a simple
stochastic SEIR model [23]:

S(t+ A) = S(t) — B(t), (1)
E(t+ A) =E(t) + B(t) —C(t), (2)
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Fig. 1. Top: Evolution of the number of reported infectious travelers arriving to Ar-
gentina since the first official case. Dots and crosses correspond to the accumulated
(minus recoveries) and new per-day cases, respectively, and the solid and dashed
lines represent the best fits to the data. Bottom: Number of accumulated cases in
the first 25 days, and the best fit obtained using a forced deterministic SEIR model.

I(t+ A) =1(t) + C(t) — D(t) + F(t), (3)

where R is obtained from fixing the total population N (plus
the incoming infectious travelers). Here B(t) = Bin(S(t), P:(t)),
C(t) =Bin(E(t),P(t)), and D(t) = Bin(I(t), Pz(t)) are binomial
distributions with exponential probability distribution functions
Pe(t) =1—exp(—=BAI(t)/N), B(t)=1—-exp(—€A), and P(t) =
1—exp(-yA), and where g is the mean transmission rate, € is
the onset rate (the inverse of the average duration of incubation
in days), and y the removal or recovery rate (the inverse of the
average duration of the infection). The stochastic variable F(t) rep-
resents the number of incoming infectious travelers per day (when
A =1 day), and can be obtained from official data.

In deterministic models it is better to fit the data with a smooth
function to satisfy mean field approximations. The simplest deter-
ministic and homogeneous SEIR model can be written as

S=-psI, (4)
E = BSI — €E, (5)
[=—yIl+€E+F, (6)
R=yl (7)

Note that variables in deterministic models are normalized to 1,
and individuals are obtained later by multiplying them by N. Note
also that a forcing term F has been also added to I, representing

the rate of change in the number of cases from the travelers (i.e.,
the derivative of I resulting from incoming infectious travelers). We
also consider a more complex SEIR model with additional compart-
ments that will be used many times in the rest of this work (see,
e.g., [10,11,24]),

§=—BSU+ (1 - pI+ (1 - pw)H], (8)
E=BSU+ (1 —pI+ (1 - py)H] - €E, 9)
J=-vI+e-9)E, (10)
[=—yl+€®E +F, (11)
H=—-yH+y(1-x)I, (12)
R=y(J+ xI+H), (13)

Here J is the number of mild infectious individuals, I are moder-
ately infectious individuals, and H are hospitalized individuals. F,
as before, represents the rate of change in I because of infectious
travelers (we assume all detected infectious travelers are moder-
ate, and may be hospitalized later or not). The new coefficients are
p; (the fraction of moderate infectious individuals that are prop-
erly isolated), py (the fraction of hospitalized infectious individ-
uals that are isolated), ¢ (the fraction of exposed individuals with
moderate to severe symptoms) and x (the fraction of moderate in-
fectious individuals that do not require hospitalization).

As mentioned before, F should be represented by a smooth
function in these ODEs. The product of two logistic functions was
found to give a good approximation to the data of accumulated
infectious travelers (minus discharged cases, see Fig. 1), and its
derivative caped to only positive values (as the passage from infec-
tious to recovered compartments is already included in the mod-
els) provides a smooth approximation to the daily cases (associated
to F). Similar results were obtained for each province or district
with cases of incoming infectious travelers.

With the simplest SEIR model given by Eqgs. (4)-(7), we ad-
just all the data available for Argentina as a homogeneous group
with a single local propagation mechanism, but treating sepa-
rately infectious individuals from abroad. To this end, we fix € =
1/(5.1days) and y = 1/(14days) [10,13,18], and we apply a least
square approximation to obtain S using the method described in
[9]. Fig. 1 illustrates the result of adjusting the model to the num-
ber of accumulated cases in Argentina during the first 25 days. The
least square approximation yields 8 ~ 0.22 (or, equivalently, a ba-
sic reproduction number Ry = 8/y ~ 3), a value that will be used
in the following sections. As the system evolves in time and the
epidemic spreads, the role of local infectious cases becomes more
relevant, and the forcing due to infectious travelers begins to play
a smaller role.

Equipped with this simple model and a first approximation to
the relevant parameters, we now consider some NPIs and other
proposed solutions based on numerical simulations that have been
suggested in the literature.

3. A caution note on time dependent lockdowns

It has been suggested that a way to simultaneously address the
need to bound the spread of the pandemic while keeping some
significant level of economic activity is the application of time de-
pendent lockdowns. These policies consist in the alternation be-
tween periods during which individuals are allowed to move, trade
and travel, with others during which social interactions are min-
imized. Numerical simulations with time dependent parameters
have been carried out to model the effect of these policies and in-
deed, some of these simulations show the suppression of the epi-
demic [14].
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Fig. 2. Simulation of a deterministic SIR model for a population of 106 individuals.
The infection rate parameter is periodically modulated (8p = 0.3 x 1076, A=0.2 x
10-%), with ¥ =0.12 and w = 27 /10. This corresponds to variations of the basic
reproduction number Ry € [0.8, 4.16] with a period of 10 days.

Yet, it is important to address the viability of these policies by
analyzing the general conditions under which suppression could
be achieved. Since time dependent lockdowns introduce two time
scales (a slow scale characteristic of the epidemic, and a faster
scale characteristic of the time dependent policies) we will ana-
lyze the problem under the light of the averaging theorem [25].
This theorem states that for a (slow) dynamical system, periodi-
cally forced at a (high) forcing frequency,

dx
T ef(x,t, €), (14)

withx e R", 0 <e « 1, f:R" xRxR* - R"is (", and f(x,t, €)=
f(x,t +T,¢), there is an associated autonomous dynamical system
(its averaged system), defined as:

T —
%:e%/o f(y,t:0)dt =€f(y), (15)

such that there is a change of coordinates mapping the solutions
of the original system into those of its associated averaged au-
tonomous system. In other words, up to first order in €, we have
that |x(t) —y(t)| ~ € (if |x(0) —y(0)| ~ €), on a time scale t ~ 1/e.
The application of this theorem to the problem is pertinent.
Suppose several periodic interventions are expected during the
evolution of the epidemic. Let us model these with an even simpler
dynamical model for an epidemic, the deterministic SIR model:

S = —[Bo +Acos(wt)]SI, (16)
[ =[Bo+Acos(wt)]SI -yl (17)
R=yl (18)

In these equations, the policy is translated into the periodic
modulation of S.

In Fig. 2 we compare the simulation of the periodically mod-
ulated problem with the solution of its associated averaged ver-
sion. In this simulation, we studied an epidemic event lasting 100
days, with a time dependent policy of social distancing with a 10
day period. Note that the averaged system constitutes a good ap-
proximation of the original problem. The parameters in our simu-
lation correspond to R(t) € [0.8, 4.16], with and average of R = 2.5.
It is for this reason that in this example there is an epidemic peak.
Suppression can indeed be achieved, but only if the average of the
modulation leads to R < 1. In the case of Argentina, which imple-
mented a long lockdown at an early stage of the epidemic, R(t)
reached a value of ~ 0.9 as the most optimisic estimate (other

countries reported similar values, see, e.g., [18,26]). It is therefore
very difficult (or simply unrealistic) to implement an alternating
policy that translates into average parameters leading to suppres-
sion. Moreover, as will be shown next, the periods without lock-
down may lead to rapid homogeneization of the infected cases in
the real system, leading to even longer times for the extinction of
the epidemic.

4. Homogeneous or stochastic? Dynamics of foci, ensembles,
and homogeneization

The stochastic modeling of epidemics as in Eqgs. (1)-(3) is im-
portant when the number of infectious individuals is small, since
in those situations fluctuations can lead to the extinction of the
epidemic, even for a highly contagious disease (this can happen,
for instance, if the first few infectious individuals had very limited
contact with the susceptible population). Typically, an epidemic
outbreak starts with few infectious cases that are spatially scat-
tered. If the mobility of those cases is small, the epidemic will first
develop in scattered foci and then slowly spread until all the inter-
connected susceptible subjects interact with the infectious popu-
lation, reaching what is known as the homogeneous situation, de-
scribed, e.g., by the system of Eqs. (4)-(7). Typically, the deter-
ministic model used to describe the homogeneous case is there-
fore thought as the appropriate way to address the evolution of an
epidemic outbreak involving a large number of individuals. How-
ever, it can also serve as an estimation of the result obtained by
analyzing an ensemble of stochastic simulations. To this end, in
this section we consider inhomogeneous distributions of infectious
cases as obtained by coupling stochastic epidemic models as those
in Egs. (1)-(3).

To explore the process of homogenization of the epidemic out-
break, we performed an ensemble of stochastic simulations of this
system, with a small number of infectious subjects seeded into a
susceptible population. We assumed that the population could be
grouped into 15 regions (where the number was chosen to repro-
duce the internal division of the city of Buenos Aires into so-called
“communes”, note these are smaller and different from the dis-
tricts in the suburbs considered later). The number of inhabitants
in each commune was obtained from census data. In our numerical
experiments, each subject spends half of the day in its commune
and a second half either in the same or a different one (the full
mathematical details of the coupled stochastic model are described
later in Section 6). In the first half of the day, the probability of
contagion in the jth commune is given by:

Py () =1 exp(—ﬂﬁl,-(t)/w,-), (19)

giving rise to a number of new exposed individuals E;(t + %) =
Bin (Sj (t), PEj (t)). In the second part of the day, we use a mobility

matrix [27] to estimate m;j, the proportion of residents from the
ith commune that travel to work in the jth commune. In this way,
the number of people that will be found in the jth commune dur-
ing the second part of the day is N;(t + %) = Z,l; my j, leading to
Yq My il (t + £)/Ny infectious people. Therefore, in this part of
the day, the probability of contagion is:

ASE m i (t+ )
P () =1-— exp|:—ﬂ2 Lic 1’;'1 k 22,
2k My j

We can now compute the number [;; of infectious individuals in

the jth commune which are residents of the ith commune as I;; =

(20)

Bin(mi'js,‘(t + %),PE]. (t+ %)). Adding all the communes, we ob-
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Fig. 3. Fifty simulations of the stochastic SEIR model for a set of communes inside the city of Buenos Aires (CABA). The top panels display the simulations for the entire
city, and for one of the 15 communes. The solutions of the continuous model are displayed, in both cases, with dashed lines. A detail of the simulation at early times is
shown in the bottom panels, also for the whole city (left) and for one of the communes (right). The average of the simulations (thick dark lines) is shown together with the

solution of a homogeneous deterministic model (dashed lines).

tain,

Ej(t+1)=ZBil'l(mj’ij(f+2)/Nj,PEk(t+§)> (21)
k

This method of updating stochastic models every half day will be
found useful in the following sections, when we use cell phone
data to estimate actual mobility between larger districts.

We display 50 simulations in Fig. 3, starting with three cases in
one commune, with parameters that correspond to Ry = 3.92 and
mobility extracted from Sarraute et al. [27]. The dashed line shows
the results obtained from integrating the homogeneous model us-
ing the parameters that correspond to the whole city. Not surpris-
ingly, the homogeneous continuous model is a good approxima-
tion for the large population of Buenos Aires city. Yet, notice how
rapidly the dynamics of the city become similar to the dynamics of
the first commune. Note again the remarkable similarity between
the average of the simulations and the solution of the continuous
model in the two bottom panels representing the first days of the
stochastic simulations, their average, and the solution of the ho-
mogeneous continuous model.

With these results in mind, we now consider the cost of letting
the epidemics spread and evolve towards the homogeneous solu-
tion. To this end we consider only one commune, and assume that
as a result of the lockdown this commune becomes isolated. More-
over, only a small fraction of the infected population gets in con-
tact with other individuals (i.e., their social network of contacts),
resulting in a small focus. Fig. 4 shows the evolution of the num-
ber of infectious individuals in an ensemble of 200 realizations of
the stochastic SEIR model with a focus restricted to 50 individ-
uals. The number of infectious individuals quickly drops to zero
in some realizations, while in others infectious cases persist for
longer times. The mean time for the extinction of the focus can
be estimated from such an ensemble. This is also shown in Fig. 4,

V\

1\
TN

0 20 40 60 80 100 120 140 160
Time [days]

2254

200 -

175

150

1251

Days to extinction

1001

751
102 103 104 10°
Focus size

Fig. 4. Top: Evolution of the number of infectious individuals in an ensemble of
realizations of a stochastic SEIR model with a population of 50 individuals. Bottom:
Time to extinction of the focus as a function of the size of the population involved,
assuming the focus is perfectly isolated.
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which presents this time as a function of the size of the popula-
tion in the focus. Note the exponential dependence between these
quantities: avoiding the growth of the foci becomes crucial for the
long-term evolution of the system.

Finally, the results in this section indicate that, to a certain ex-
tent, we can approximate the dynamics in the city of Buenos Aires
(and probably as well in the individual districts of its metropolitan
area) using homogeneous models (see Section 5), and then cou-
pling these districts assuming that the mix between them can be
inhomogeneous (see Sections 6 and 7).

5. Estimation of transmission rates from local fitting and first
evaluation of lockdowns

To study the evolution of the epidemics in highly populated re-
gions using locally homogeneous models, and later incorporating
coupling to reflect inhomogeneous mix between different regions,
we need reasonable estimations of infection rates. These estima-
tions serve the double purpose of avoiding over-fitting in com-
plex models, and evaluating the effect of lockdown measures. Oth-
erwise, conducting ensemble averages over multiple realizations
with different parameters would result again in the homogeneiza-
tion of the results. In this section we show how simple determin-
istic SEIR models (as the SEJIHR model in Section 2) can be used
to estimate these parameters from the data and to study the global
and local evolution of the epidemic, assuming weak coupling be-
tween regions as a consequence of the lockdown (as will be con-
firmed later in the analysis of cell phone data).

First of all, to avoid over-fitting we choose to fix as many pa-
rameters as possible based on the literature and available data.
We decided to fix all parameter values except for 8. We intro-
duce time dependence, B(t), to capture effective changes associ-
ated with the lockdown measures. As in previous sections, we
fix € =1/(5.1days) and y = 1/(14days). The other parameters in
Egs. (8)-(13) were chosen as p; =0.2, py=0.9, ¢ =0.7, and x =
0.8, which yielded a fraction of mild, moderate, and hospitalized
infectious individuals compatible with official reports [28].

Then, we fitted the ODEs to the first 25 days of data (i.e. up
to 8 days after the beginning of the lockdown) to estimate Sy =
B(t =0), and from the 10th day of the lockdown to the last day
with available official information to estimate the mean A(t) dur-
ing the lockdown. These two values were then interpolated with a
logistic function to obtain a smooth version of §(t) for the model
(as will be shown later from the analysis of cell phone data, this
is in agreement with observations that the mobility of individuals
decreases slowly in time, starting even before the lockdown is put
in place). To produce forecasts using the model, it is necessary to
calculate the errors that occur when estimating £(t) in this way.
We thus also fitted the model to the data using least squares with
a moving window of 10 days to estimate the dispersion o g in the
values of B(t). Results for the whole nation and for the most pop-
ulated province in the country are shown in Fig. 5.

When forecasting the possible future outcomes of the epidemic,
it is necessary to carry out a series of simulations with different
parameter choices. Integration of the system with B(t) + 1.960g
allowed us to compute solutions within 95% confidence levels. Re-
sults are shown in Fig. 6. While the best fit to the data indicates a
decrease in the effective value of B(t) as a result of the lockdown
when computed for the entire country (with a slight increase at
later times), in the province of Buenos Aires (PBA) the decrease in
the value of B(t) is smaller and presents larger fluctuations (re-
sulting in a different increase in the number of cases in Fig. 6).
This indicates the need of factoring individual mobility in the anal-
ysis, which will be shown next to correlate with the observed be-
havior of B(t). Also, note that the uncertainty of solutions within
95% confidence intervals increases very rapidly, thus forbidding re-

Nation wide
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—— Parameterization
0.25 A Data estimation
—— Lock-down
0.20
50.157
0.10 1 Q
0.05
0.00 +— T T T .
0 20 40 60 80
Time [days]
PBA
0.30
—— Parameterization
0.25 A Data estimation
—— Lock-down
0.20
50.157
0.10
0.05
0.00 +— T T T .
0 20 40 60 80
Time [days]

Fig. 5. Estimated transmission rate §(t) for the whole nation (Nation wide) and
for the province of Buenos Aires (PBA). The dashed line corresponds to the values
obtained from a least square fit with the deterministic model using a moving win-
dow of 10 days. The blue line corresponds to the smooth estimation at early and
late times, while the blue shading indicates a window of confidence of 95% for S(t)
during the lockdown.

liable long-term forecasts of the number of cases. This behavior is
to be expected in systems with solutions that grow exponentially
at early times, and provides a warning message for all attempts at
long-term forecasting of the pandemic.

Finally, when considering separate districts within PBA, the
same qualitative behavior (but with different values of A(t)) is
observed. We conclude that inhomogeneous models with coupled
districts are required, at least at this level of description.

6. Coupled models and the role of mobility

As previously done in Section 4, both stochastic and determinis-
tic models can be modified to include several interacting geograph-
ical regions, each with its own transmission rate §;, and number
of susceptible (S;), exposed (E;), infectious (I;), and recovered (R;)
individuals. We first describe in detail a coupled stochastic model
obtained from adapting Eqs. (1)-(3) to include empirical mobility
data. Second, we introduce a coupled deterministic model. Mobility
data will be introduced by quantifying a daily mixing of individuals
given by M; J~1. The i, j entry of this matrix contains the number of
individuals from the ith region who visit region jth during the day,
so that }°;M; ; = N; is the total population of the ith region, and

T Note that this matrix represents total numbers of individuals and not propor-
tions, as was the case for m;; in Section 4
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Fig. 6. Accumulated cases in the entire country (Nation wide) and in the province
of Buenos Aires (PBA, right), obtained from the SEJIHR model using S(t), with 95%
confidence intervals (blue shading) and compared with the official data.

> iMj j = Ni is the number individuals found in the jth region dur-
ing the day. Coupling is done using the methods described in [29].
In this section and the following, unlike Section 4, regions will cor-
respond to the entire city of Buenos Aires, and to each district in
its metropolitan area.

As done before, in the stochastic model we divide each day into
two halves of duration %. During the first half of the day individ-
uals interact according to a mixing matrix M;;, reflecting a typical
work and school day (if schools are open). In this case, the ex-
ponential probability function for exposure to infected individuals
depends on the geographical region and is computed as P ;(t) =
1 —exp(—Bi $1#(t)/N;) where [¥(t) = Y; M; jI;/N; is the number of
infected individuals found in the ith region during the first half of
the day. In the same way, we introduce S;(t) = >_; M; ;S;/N; as the
number of susceptible individuals in the ith region during the first
half of the day. The probability functions P;(t) and Pg(t) do not de-
pend on the region since they only contain parameters intrinsic to
the disease.

The number of individuals in each compartment per region is
then updated as follows,

si<r+ ﬁ) =50~ Bi() (22)
A
E,-(t-‘rz) = E;(t) + B;i(t) — G(¢t) (23)

I; <t + g) =1(t) + G(t) — Di(t) (24)

with  Ry=N;—S;—E —1I,  Bj(t) =Bin(S;(t), Pg;(1)),
Bin(E;(t), P (t)) and D;(t) = Bin(J;(t), Pr(¢)).

The update rule for the second half of the day can be obtained
from the same equations with M;; = N; and O otherwise, and by
adding a forcing term Fi(t) to Eq. (24), reflecting the number of
incoming infectious travelers for that region. Note that the trans-
mission rate during the second half of the day, §;, is also region-
specific. Also, note that both 8; and M;; may depend on time, re-
flecting the changes in local and inter-regional mobility imposed
by quarantine and isolation policies.

Finally, we also consider a coupled version of the homogeneous
SEJIHR model introduced in Eqs. (8)-(13). Coupling is introduced
by writing equations for S;, E;, J;, I, H;, and R;, and coupling sus-
ceptible and (mild and moderate) infectious individuals in differ-
ent districts S;l; and Syj; (with i # j) in the equations for S; and E;.
Thus, the equations for the evolution of S; and E; result

Si = —Billi + (1 - ppk]
- Z,Boci,j[]j + (1 - ppljl, (25)

J#

G(t) =

E = Billi+ (1 - ppl]

+ ) BoGijlli + (1 = p)Ij] - €E;, (26)
j#

where Cj; is a normalized and symmetrized version of the mixing
M; i+M;; N;
;\}fIij’l Wf (the last factor N;/N; results from
taking into account the different populations in each district, and
the fact that deterministic models are invariant to the size of the
total population so the SEJIHR variables are normalized to 1). We
also force each region with their incoming infectious travelers, and

thus the equation for I; is

li=—yli+€gE +F, (27)

where F; is a smooth time-dependent function obtained from the
data of each district as explained in Section 2. As in the case of the
stochastic model, both 8; and C;; potentially depend on time, and
€, Y, P Py, ¢, and x are time- and region-independent constants
chosen as in the previous sections.

matrix given by G ; =

7. Mobility estimation from cell phone location data

In this section we describe the use of cell phone location
data to estimate the mixing and contact matrices introduced in
Section 6, as well as the effective local infection rates, focusing on
the advantages and limitations intrinsic to this type of data.

We obtained geolocated data from anonymized mobile phones
spanning the whole country between March 1st and April 12th
( ~ 3 x 10° unique phones). For each phone we obtained a se-
quence of latitude/longitude pairs with an associated timestamp,
each corresponding to the use of a certain (also anonymized) app
(resulting in 100 to 200 events per cell phone per day). Each se-
quence of latitude/longitude pairs was converted to a sequence of
labels indicating the location among the 529 departments in the
country, as defined by the National Geographical Institute of Ar-
gentina (IGN, https://www.ign.gob.ar/). As in the previous sections,
we restrict our analysis to a subset of 41 departments (or districts)
spanning Buenos Aires and the Greater Buenos Aires metropolitan
area, comprising approximately 50% of the phones in the dataset.

A major limitation of this type of data is uneven spatial and
temporal sampling. Even within the most densely sampled area
(Buenos Aires and its metropolitan area) we observed large differ-
ences in the number of cell phones relative to the total population.
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Fig. 7. Left: Normalized inter-regional mobility computed during the 2nd of March. Regions are ordered according to their community membership detected with the Louvain
algorithm. The three white diagonal squares indicate major communities corresponding to the southern, centre-northern and western part of the metropolitan area. Right:
Topological representation of the major communities using the Yifan Hu Multilevel layout algorithm as implemented in Gephi.
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Fig. 8. Left: Average local mobility from the 1st of March to the 12th of April. Right: Average inter-regional mobility (computed as the average of all rows in Cj;) from the
1st of March to the 12th of April. In both panels the grey vertical line indicates the start of the lockdown (19th March).

Since for all purposes the temporal sampling of the trajectory must
be considered as random, we determined the regional membership
of each phone as its most visited region during the day (i.e., the
mode of the IGN department labels).

We computed two metrics per day from this dataset. First, we
estimated the mixing matrix M;; by counting the number of cell
phones belonging to the ith region found throughout the day in
the jth region, and then rescaling rows so that }°; M; ; = N;. We
note that, since a single cell phone can be found in several regions
throughout a day, this mixing matrix represents a coarse temporal
average across a time step of % in the stochastic coupled model.
Better approximations could be eventually obtained dividing each
day into shorter intervals. We also computed the normalized and
symmetrized contact matrix C;; as described in the previous sec-
tion. Fig. 7 (left panel) presents a typical contact matrix (com-
puted for the 2nd of March), with regions ordered according to
their community membership detected with the Louvain algorithm
(resolution parameter y = 1) [30]. Fig. 7 (right panel) presents a
topological representation of the mixing matrix and its major com-
munities using the Yifan Hu Multilevel layout algorithm [31] as im-

plemented in Gephi (https://gephi.org/). The three white diagonal
squares indicate major communities corresponding to the south-
ern, centre-northern and western part of the metropolitan area,
corresponding to purple, green and light blue communities in the
right panel, respectively. Next, we estimated M;, the local mobility
of region i, as the average of all geodesic distances between suc-
cessive latitude/longitude pairs within that region. As described in
the following sections, we use M; to construct an effective time-
dependent and region-specific transmission rate.

Finally, we observed a strong modulation of the local mobil-
ity and the inter-regional traffic as a consequence of the lockdown
starting on the 19th of March (Fig. 8). Both curves show a gradual
decline during the days prior to the beginning of the lockdown,
and a very slow recovery of the circulation during the first days of
April.

7.1. Coupled deterministic models

For the sake of simplicity, we first consider the determinis-
tic model coupled using cell phone data, and leave the stochas-
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Fig. 9. Number of accumulated cases in five districts of the Buenos Aires metropolitan region, and in the city of Buenos Aires (CABA). Infectious travelers were reported in
the early stages of the outbreak for all these districts. Red dots indicate the official number of cases, while the blue curves indicate results from the deterministic coupled

model.

Fig. 10. Number of accumulated cases in four districts of the Buenos Aires metropolitan region that reported no infectious travelers arriving from countries with reported
COVID-19 cases. Red dots indicate the official number of cases, while the blue solid lines indicate results from the deterministic coupled model.
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tic model (which requires ensemble averages) for the next section.
To integrate the model, B is fixed at the value initially obtained
from the best fit to all cases in the country, Sy = 0.22. The tempo-
ral evolution of the B; coefficients is approximated as

Bi(t) = BoMi(t). (28)

where M;(t) is a temporally smooth approximation to the local
mobility M;(t) obtained from the cell phones data, and normalized
such that (M;(t)) = 1, where the brackets denote the time average
across the first 14 days (i.e., before the lockdown measures were in
place). The coupling between districts C;;(t) was computed directly
from the time-dependent cell phone mobility matrix M;; using the
definition in Section 6. Note that in this way, there are no free pa-
rameters left to adjust, resulting in a system whose dynamics can
either match the official number of cases or deviate strongly from
it, depending on the validity of the parameters, empirical sources
of data, and assumptions of the model.

We integrated this coupled model for the city of Buenos Aires
(CABA) and the 40 districts in the Buenos Aires metropolitan area.
This resulted in simulations for 41 districts with very different
populations and number of infected individuals. Some districts had
less than 10 reported cases at the time when this report was writ-
ten, while others had several hundreds. Also, some districts had
cases of infectious travelers coming from abroad during the first
days of the outbreak, while others reported no infectious travelers.
Moreover, the first cases in each district were reported at different
days.

We integrated the model for all districts with zero cases as ini-
tial condition, and let the incoming travelers drive the increase in
the number of infected individuals. We note that in absence of
coupling, districts with no incoming infectious travelers would re-
main at zero cases during the integration time.

Fig. 9 shows the result of integrating the model for all the 41
districts. Results are shown for five districts in the metropolitan
area of the city of Buenos Aires, plus the city, corresponding in
all cases to districts that reported cases of infected travelers com-
ing from countries with confirmed COVID-19 infections at the early
stages of the outbreak. Note that the model correctly captures the
beginning of the outbreak in each district, as well as the overall
evolution of the epidemic, even when districts differ in the num-
ber of cases by up to two orders of magnitude (the population
does not differ that much between districts, however). Also, note
that no attempt has been made to adjust parameters in the model
to fit the observed data, besides using the value of S, obtained for
the entire country.

The model also captures the time of the outbreak and the order
of magnitude of the cases in districts that reported no incoming in-
fectious travelers from countries with COVID-19. Fig. 10 shows the
evolution for four of such districts. Overall, this indicates that mod-
ulating transmission and coupling rates using mobility data from
cell phones gives a good approximation to the dynamics of the epi-
demics.

Fig. 11 shows the evolution of the number of official and fore-
cast cases for the 41 districts in a map, for days 5, 20, 40, and
60 since the first officially reported case in the country. The ra-
dius of the semi-transparent circles indicates the number of cases
in each district, both for the official data as for the model output.
As a result, circles with a border of a different color indicate a dis-
parity between the model and the data: when the border is blue,
the model predicts a smaller number of cases than the official re-
ports. When the border is light violet, the model predicts an excess
of cases compared with the empirical data. Note that all differ-
ences are small. Also, note that while in the first 5 days most cases
were concentrated in the city of Buenos Aires, the cases spread
north, west and south in time, first to closer districts in the sub-
urbs (having more traffic and mobility to the main city), and then
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Fig. 12. Number of accumulated cases in four districts of the metropolitan region and Buenos Aires city (CABA), with forecasts for an increase in mobility recovering 30%,
60%, and 100% of the values before the lockdown, starting on the last day with available data.

from these districts to others further apart. After 60 days, all dis-
tricts neighbour to Buenos Aires city had a large number of cases
and displayed a more or less homogeneous behavior.

Moreover, as cell phone mobility data is available daily, this
type of models can be used to forecast different scenarios by in-
creasing mobility indices to recover pre-lockdown mobility values.
In this way we can analyze possible outcomes to changes in lock-
down measurements. As an illustrative example, Fig. 12 shows the

evolution of the system in the districts in Figs. 9 and 10, assuming
that after the last day with available cell phone data the mobility is
kept constant (i.e., the lockdown is maintained), or mobility (inside
each district as well as between districts) is raised to 30%, 60%, or
100% of its value before the lockdown. The more evident limita-
tions of this model are associated with the difficulty of performing
uncertainty analysis, and with the dynamics of districts with very
low number of infectious individuals, where fluctuations can play
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The thick blue line indicates the average across all realizations.

a significant role. To overcome these potential limitations, we now
consider the stochastic coupled model.

7.2. Coupled stochastic models

We now describe the results obtained from combining the
stochastic model described in Eqs. (22)-(24) with the mobility es-
timates based on the cell phone data. As in the deterministic case,
we fix the initial By value and introduce a smooth temporal evo-
lution of the regional B; coefficients, informed by the initial and
final local mobility values. We use the empirical mixing matrix M;;
to determine the interaction between the exposed individuals from
all pairs of regions. We report 100 simulations per region, as well
as the average across all realizations of the stochastic model. As in
the case of the homogeneous deterministic model described in the
previous section, we note that the coupled stochastic model does
not require parameter optimization and is fully determined by de-
mographics, constants characteristic of the disease, information on
infectious individuals traveling from abroad, and the mobility data.

We observe that the stochastic model can reproduce the num-
ber of cases with variable accuracy, with results that are in general
compatible with the official number of cases, but occasionally with
severe underestimations. Fig. 13 shows the results for five rep-
resentative districts which participated in the early stages of the

outbreak. We observe that the stochastic model either provides a
reasonably accurate estimate of the cumulative number of cases
(e.g., for Lujn, Vicente Lpez, and CABA), or underestimates the of-
ficial data. An opposite result was observed for some of the dis-
tricts modeled with the coupled deterministic model (i.e., Vicente
Lpez). This difference could stem from the fact that, as opposed to
the ODEs, the stochastic model can reproduce regional extinctions
in the progression of the daily number of cases (unless driven by
other region through the mixing matrix). It is also worth noting
that, in all cases, the official data lies between different realiza-
tions of the stochastic model.

Again, note that the stochastic model captured the time of
the outbreak, and the order of magnitude of the cases in dis-
tricts that reported no incoming infectious travelers from coun-
tries with COVID-19 cases (Fig. 14). Note that the stochastic model
applied to this situation presents the strength of factoring in the
non-negligible possibility of focus extinction, and thus can result
in forecasts following more closely the empirical number of cases
compared to the homogeneous model.

Both the stochastic and homogeneous models are driven by em-
pirical mobility data; however, the compulsory lockdown (start-
ing on March 19th) resulted in a drastic drop of both local and
inter-regional mobility. We asked whether such overall change in
mobility sufficed to explain the goodness of fit of our models, or
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indicates the average across all realizations.

whether the finer structure of the mixing matrix and the local mo-
bility estimates also played a significant role. For this purpose, we
compared the results against a null model obtained from repeat-
ing the above presented simulations across 1000 independent re-
alizations, randomly scrambling the ordering of the regions in the
mixing matrix M;; and in the infection rate vector ;. Note that
both variables were scrambled only once per simulation, i.e., not
once per time step. Finally, we derived a p-value by counting the
number of times the goodness of fit (computed as the inverse of
the mean squared error [MSE]) of the model with shuffled M;; and
B; was better than the one obtained from the unshuffled data. We
conclude that the structure of the empirical mixing matrix plays
a significant role in the goodness of fit of our predictions, since
the average MSE is higher for the shuffled than for the unshuf-
fled mixing matrix (p < 0.001, and p < .05 for 17 of the regions).
Conversely, we did not find a significant effect of the local mobil-
ity. This is consistent with cursory observations that suggest higher
heterogeneity in the inter-regional mobility compared to the local
circulation.

8. Conclusions

In this work we presented results of different approaches to
model the evolution of the COVID-19 epidemic in Argentina, with
a special focus on the megacity comprised by the city of Buenos
Aires and its large metropolitan area. We progressively moved from
models that assume homogeneous mixing of the population, to-
wards more complex models that allow for inhomogeneities be-
tween individual districts. To inform these models, we incorpo-
rated the number of infectious individuals arriving from other
countries with confirmed COVID-19 cases to our models, as well as
cell phone data to estimate mobility within and between districts.

First, the effects of some proposed NPI policies and the conse-
quences of rapid homogeneization of the epidemics were consid-
ered. We conclude that it is unrealistic to implement certain poli-

cies, e.g., alternating between lockdowns and periods of mobility.
We also note that without empirical mobility estimates, perform-
ing ensemble averages varying unknown parameters over multiple
realizations of coupled models results in an evolution compatible
with that of homogeneous deterministic models, thus providing
very little extra information.

It is thus apparent that in highly populated regions, the evo-
lution of the epidemics can be modelled to a certain degree by
locally homogeneous models, and by the coupling of these mod-
els between regions that display inhomogeneous mixing between
themselves. We showed that mixing and contact matrices esti-
mated from cell phone data could be used to obtain reasonable
estimations of the infection rates, both for stochastic and for de-
terministic models. The predictions of both types of models com-
pared favourably to the official data during the first 60 days of the
outbreak. Crucially, this performance depended on the structure of
the mixing matrix and not only on its post-lockdown modulation,
as shown by the application of permutation tests.

Direct data analysis, as well as comparisons with the results
from the models, indicate that while in the first 5 days most cases
were concentrated in the city of Buenos Aires, the disease spread
north, west and south as a function of time. The spread occurred
first to closer districts in the suburbs, and from these districts to
other further apart in the region. The models captured this spatio-
temporal evolution, including the time of the first cases in each
district, and the order of magnitude of the number of cases in a
situation where the number of infectious individuals varied signif-
icantly from district to district.

As in the introduction section, we conclude this work with a
word of caution. We remind the reader again that simple epidemi-
ological models, even when fed with data stemming from popula-
tion census and detailed cell phone mobility estimates, are limited
in what they can tell us. These limitations arise both from ineffi-
ciencies at the core of these models, as well as from shortcomings
of the available data. Making these models more complex does not
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necessarily improve their forecasting capabilities, specially in a sit-
uation in which solutions (and small differences) grow, in some
cases, exponentially in time. As a result, these models should only
be considered as ways of exploring possible solutions of the sys-
tem, and extreme caution should be exercised whenever these
models are used to generate advice in the process of public pol-
icy decision making.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

E.T, PB, G.B.M.,, and PD.M. wish to acknowledge enlightening
discussions with colleagues with whom they had the pleasure to
share a month of work in a first response modeling committee,
while learning these lessons from being challenged by COVID-19:
Hernan Solari, Marcelo Kuperman, Gustavo Sibona, Zulma Ortiz,
Gabriel Fabricius, Juan Aparicio, Veronica Simoy, and Ignacio Simoy
(who also provided invaluable help in the processing of the data).
The authors also acknowledge Sebastian Pinto, Facundo Fainstein,
Sebastian Geli, MartiAn Coll, Federico Albanese, Franco Castellacci,
and Sofia del Pozo for providing support in data analysis and visu-
alization. E.T. acknowledges the support of the Toyoko 2020 Cloud
Credits for Science program, and thanks Sebastidn Bassi and Vir-
ginia Gonzalez for their continuous support.

References

[1] Cereda D, Tirani M, Rovida F, Demicheli V, Ajelli M, Poletti P, Trentini F,
Guzzetta G, Marziano V, Barone A, Magoni M, Deandrea S, Diurno G,
Lombardo M, Faccini M, Pan A, Bruno R, Pariani E, Grasselli G, Piatti A,
Gramegna M, Baldanti F, Melegaro A, Merler S. The early phase of the
COVID-19 outbreak in Lombardy, Italy; 2020.

Russell TW, Hellewell ], Jarvis CI, van Zandvoort K, Abbott S, Ratnayake R,
et al. Estimating the infection and case fatality ratio for coronavirus dis-
ease (COVID-19) using age-adjusted data from the outbreak on the diamond
princess cruise ship, february 2020. Euro Surveill. 2020;25(12):2000256.
Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS. Strate-
gies for mitigating an influenza pandemic. Nature 2006;442:448-52. doi:10.
1038/nature04795.

Halloran ME, Ferguson NM, Eubank S, Longini IM, Cummings DAT, Lewis B,
et al. Modeling targeted layered containment of an influenza pandemic in
the United States. Proc Natl Acad Sci 2008;105(12):4639-44. doi:10.1073/pnas.
0706849105.

Balcan D, Gonalves B, Hu H, Ramasco JJ, Colizza V, Vespignani A. Modeling
the spatial spread of infectious diseases: the GLobal epidemic and mobility
computational model. ] Comput Sci 2010;1(3):132-45. doi:10.1016/j.jocs.2010.
07.002.

Soriano-Pafios D, Lotero L, Arenas A, Gémez-Gardefies ]. Spreading processes in
multiplex metapopulations containing different mobility networks. Phys Rev X
2018;8:31039. doi:10.1103/PhysRevX.8.031039.

D. Mistry, M. Litvinova, A. Pastore y Piontti, M. Chinazzi, L. Fumanelli, M.E.C.
Gomes, S.A. Haque, Q.-H. Liu, K. Mu, X. Xiong, M.E. Halloran, .M. Longini Jr., S.
Merler, M. Ajelli, A. Vespignani, Inferring high-resolution human mixing pat-
terns for disease modeling, 2020,

Arregui S, Aleta A, Sanz ], Moreno Y. Projecting social contact matrices to
different demographic structures. PLoS Comput Biol 2018;14(12):1-18. doi:10.
1371/journal.pcbi.1006638.

2

3

[4

(5

[6

[7

(8

[9] Kuniya T. Prediction of the epidemic peak of coronavirus disease in Japan,
2020. ] Clin Med 2020;9(3):789. doi:10.3390/jcm9030789.

[10] Maier BF, Brockmann D. Effective containment explains subexponential growth
in recent confirmed COVID-19 cases in China. Science 2020. doi:10.1126/
science.abb4557.

[11] Cancin A, Castillo C, Gajardo P, Lecaros R, Muoz C, Naranjo C, Ortega ],
Ramirez H. Report 2: estimation of maximal ICU beds demand for COVID-19
Outbreak In Santiago, Chile. Technical Report; 2020.

[12] Arenas A, Cota W, Gomez-Gardenes ], Gémez S, Granell C, Matamalas ]T,
Soriano-Panos D, Steinegger B. A mathematical model for the spatiotempo-
ral epidemic spreading of COVID19. medRxiv 2020. doi:10.1101/2020.03.21.
20040022.

[13] Ferguson NM, Laydon D, Nedjati-Gilani G, et al. Report 9: Impact of non-
pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and health-
care demand. Technical Report; 2020. doi:10.25561/77482.

[14] Karin O, Bar-On YM, Milo T, Katzir I, Mayo A, Korem Y, Dudovich B, Yashiv E,
Zehavi AJ, Davidovich N, Milo R, Alon U. Adaptive cyclic exit strategies from
lockdown to suppress COVID-19 and allow economic activity. medRxiv 2020.
doi:10.1101/2020.04.04.20053579.

[15] Martin-Calvo D, Aleta A, Pentland A, Moreno Y, Moro E. Effectiveness of so-
cial distancing strategies for protecting a community from a pandemic with
a data-driven contact network based on census and real-world mobility data.
Technical Report; 2020.

[16] Aleta A, Martin-Corral D, Pastore y Piontti A, Ajelli M, Litvinova M, Dean NE,
Halloran ME, Longini IM, Merler S, Pentland A, Vespignani A, Moro E,
Moreno Y. Modeling the impact of social distancing, testing, contact tracing
and household quarantine on second-wave scenarios of the COVID-19 epi-
demic. Technical Report; 2020.

[17] Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The
effect of control strategies to reduce social mixing on outcomes of the
COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health
2020;5(5):e261-70. doi:10.1016/S2468-2667(20)30073-6.

[18] Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di Matteo A, et al.
Modelling the COVID-19 epidemic and implementation of population-wide in-
terventions in italy. Nat Med 2020. doi:10.1038/s41591-020-0883-7.

[19] Liu Q-H, Ajelli M, Aleta A, Merler S, Moreno Y, Vespignani A. Measurability of
the epidemic reproduction number in data-driven contact networks. Proc Natl
Acad Sci 2018;115(50):12680-5. doi:10.1073/pnas.1811115115.

[20] Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman ]. Substantial un-
documented infection facilitates the rapid dissemination of novel coronavirus
(SARS-CoV-2). Science 2020;368(6490):489-93. doi:10.1126/science.abb3221.

[21] Zhang ], Litvinova M, Wang W, Wang Y, Deng X, Chen X, et al. Evolving epi-
demiology and transmission dynamics of coronavirus disease 2019 outside
Hubei province, China: a descriptive and modelling study. Lancet Infect Dis
2020. doi:10.1016/S1473-3099(20)30230-9.

[22] Jia JS, Lu X, Yuan Y, Xu G, Jia ], Christakis NA. Population flow drives
spatio-temporal distribution of COVID-19 in China. Nature 2020. doi:10.1038/
541586-020-2284-y.

[23] Lekone PE, F BF. Statistical inference in a stochastic epidemic SEIR model with
control intervention: Ebola as a case study. Biometrics 2006;62:1170—1177.

[24] Feng Z. Final and peak epidemic sizes for SEIR models with quarantine and
isolation. Math Biosci Eng 2007;4:675.

[25] Guckenheimer ], Holmes P. Nonlinear oscillations, dynamical systems, and bi-
furcations of vector fields. Springer-Verlag; 1983.

[26] Flaxman S, Mishra S, Gandy A, et al. Estimating the number of infections and
the impact of non-pharmaceutical interventions on COVID-19 in 11 European
countries. Technical Report; 2020. doi:10.25561/77731.

[27] Sarraute C, Ponieman N, Lang C, Anapolsky S. The city pulse of buenos aires.
In: NetMob 2015 (Fourth conference on the scientific analysis of mobile Phone
Datasets), MIT Media Lab, Cambridge, USA, 8-10 April 2015; 2015. p. 54-6.

[28] Ministerio de Salud de la Nacién de la Repiblica Argentina, Official data for
COVID-19 cases in Argentina, May 2020, (https://www.argentina.gob.ar/salud/
coronavirus- COVID-19/sala-situacion).

[29] Lloyd AL, May RM. Spatial heterogeneity in epidemic models. ] Theor Biol
1996;179:1-11.

[30] Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of commu-
nities in large networks. ] Stat Mech 2008;2008(10):P10008.

[31] Hu Y. Efficient, high-quality force-directed graph drawing. Math ]
2005;10(1):37-71.


http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
https://doi.org/10.1038/nature04795
https://doi.org/10.1073/pnas.0706849105
https://doi.org/10.1016/j.jocs.2010.07.002
https://doi.org/10.1103/PhysRevX.8.031039
https://doi.org/10.1371/journal.pcbi.1006638
https://doi.org/10.3390/jcm9030789
https://doi.org/10.1126/science.abb4557
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
https://doi.org/10.1101/2020.03.21.20040022
https://doi.org/10.25561/77482
https://doi.org/10.1101/2020.04.04.20053579
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
https://doi.org/10.1016/S2468-2667(20)30073-6
https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1073/pnas.1811115115
https://doi.org/10.1126/science.abb3221
https://doi.org/10.1016/S1473-3099(20)30230-9
https://doi.org/10.1038/s41586-020-2284-y
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0024
https://doi.org/10.25561/77731
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0026
https://www.argentina.gob.ar/salud/coronavirus-COVID-19/sala-situacion
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0029
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0029

