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We present results of different approaches to model the evolution of the COVID-19 epidemic in Argentina, 

with a special focus on the megacity conformed by the city of Buenos Aires and its metropolitan area, 

including a total of 41 districts with over 13 million inhabitants. We first highlight the relevance of in- 

terpreting the early stage of the epidemic in light of incoming infectious travelers from abroad. Next, we 

critically evaluate certain proposed solutions to contain the epidemic based on instantaneous modifica- 

tions of the reproductive number. Finally, we build increasingly complex and realistic models, ranging 

from simple homogeneous models used to estimate local reproduction numbers, to fully coupled inho- 

mogeneous (deterministic or stochastic) models incorporating mobility estimates from cell phone loca- 

tion data. The models are capable of producing forecasts highly consistent with the official number of 

cases with minimal parameter fitting and fine-tuning. We discuss the strengths and limitations of the 

proposed models, focusing on the validity of different necessary first approximations, and caution future 

modeling effort s to exercise great care in the interpretation of long-term forecasts, and in the adoption 

of non-pharmaceutical interventions backed by numerical simulations. 
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. Introduction 

Since the sudden outbreak of the COVID-19 virus in Wuhan,

hina, in December 2019, the SARS-CoV-2 epidemic (i.e. the se-

ere acute respiratory syndrome caused by the virus) was declared

 pandemic by the World Health Organization on March 11th 2020

nd changed the way we live almost all over the world. As of May

020, around 4 million cases have been detected worldwide, with

ver 284,0 0 0 reported deaths. Great efforts are currently under-

ay towards the characterization of the virus and the treatment

f its disease. Without the possibility of a vaccine envisioned for

he near future, disease containment has focused mainly on non-

harmaceutical interventions (NPIs) aimed at restricting the circu-

ation of the population, as well as at reducing the risk of con-

agion in groups of vulnerable individuals. The choice of contain-

ent strategy is a key factor to forecast the local severity of the

pidemic, as evidenced by the outcome of divergent public health

olicies adapted by different countries. It is becoming increasingly

lear that the development of models to assess the outcome of al-

ernative NPIs will play an important role in the formulation of

ew public health policies. 
∗ Corresponding author. 
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.1. Determination of characteristic disease parameters 

Important first contributions were carried out by studying pop-

lations for which the disease spread autonomously, allowing to

etermine the characteristic parameters of the disease, such as

ef. [1] , which allowed the estimation of the effective contagion

ate and serial interval in Lombardy, Italy, or the estimation of the

nfection and case fatality ratios using data from passengers of the

iamond Princess cruise [2] . 

.2. Previously developed models for seasonal influenza 

SARS-CoV-2 presents multiple similarities and differences with

iseases caused by influenza virus that may result in respiratory

yndromes. It is then reasonable to build upon previous knowledge

hen attempting to forecast the evolution of the pandemic. Pre-

ious relevant work includes Refs. [3] and [4] , where data-driven

gent based models were developed for modeling the spread of

easonal influenza. In [5] the authors developed a structured meta-

opulation scheme integrating a stochastic model for disease dy-

amics, with high-resolution worldwide census data and human

obility patterns at the global scale. In [6] , the authors proposed

 theoretical framework for the study of spreading processes in

tructured meta-populations with heterogeneous agents, subject to

ifferent recurrent mobility patterns. All these examples highlight

https://doi.org/10.1016/j.chaos.2020.109923
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109923&domain=pdf
mailto:gabo@df.uba.ar
https://doi.org/10.1016/j.chaos.2020.109923
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the need for a data-driven approach capable of generating effective

descriptions of complex contact patterns [7] , and for the develop-

ment of methods allowing the reuse of empirical contact matrices

estimated from different demographics [8] . 

1.3. Some basic models adapted for COVID-19 

Models specific for the COVID-19 pandemic have been devel-

oped using well-known compartmental models as a starting point.

For instance, in [9] the author developed a model based on ordi-

nary differential equations (ODEs) for compartments of susceptible

( S ), exposed ( E ), infected ( I ) and recovered or removed ( R ) individ-

uals (i.e. SEIR model) with the objective of predicting the epidemic

peak in Japan. Using this method, the author found a basic repro-

duction number of R 0 ≈ 2.6 by adjusting the infection rate to re-

produce the accumulated number of cases reported during the first

40 days of the epidemic in Japan. As another example, in [10] the

authors developed a variant of the SEIR model without a compart-

ment for exposed individuals (a SIR model) to fit data obtained

from different regions of China, also estimating the local basic re-

production number. 

1.4. Regional models for the COVID-19 pandemic 

Several groups have pursued model-based analyses focused on

their own countries and regions. For instance, in [11] the authors

analyzed a multi-compartmental SEIR model to estimate the max-

imal intensive care unit (ICU) bed capacity required in the city of

Santiago, Chile, during the peak of the COVID-19 outbreak, while

taking different values of the basic reproduction number into ac-

count. In [12] the authors adapted a meta-population mobility

model to capture the spread of COVID-19 in Spain, incorporat-

ing empirical epidemiological parameters as well as mobility and

census data. The Ferguson group at Imperial College built upon

the previously mentioned models for the spread of influenza [3,4] ,

with the purpose of estimating the effect of different potential

public health measures, with a focus on Great Britain and the

United States of America (USA) [13] . 

1.5. Non-pharmaceutical Interventions (NPIs) 

One of the most controversial proposed NPI is the formulation

of periodic quarantines, which in Ferguson’s report are regulated

by the availability and saturation of ICU beds. This idea was taken

up in [14] , where the authors proposed a cyclic schedule of 4-

day work and 10-day lockdown, based on the predictions of a SEIR

model with an ad-hoc square function modulation of the time de-

pendent reproduction number R ( t ). 

Other models were developed to study the effect of NPIs on

smaller populations, as in the cases of studies performed using

data from the Boston residential area in the US. In [15] the authors

used a data-driven SEIR model (previously developed in [8] ) to test

six different social distancing strategies, namely (i) school closures,

(ii) self-distancing and teleworking, (iii) self-distancing, telework-

ing, and school closure, (iv) restaurants, nightlife, and closures of

cultural venues, (v) non-essential workplace closures, and (vi) to-

tal confinement. In [16] , authors integrated highly detailed mobil-

ity data from cell phone devices, together with census and demo-

graphic data, with the purpose of building a detailed agent-based

model to describe the transmission dynamics of SARS-CoV-2 in the

Boston metropolitan area. The model intended to explore strate-

gies based on lifting social distancing interventions in combination

with testing and isolation of confirmed new cases, contact tracing

and quarantining of exposed contacts. A similar study was carried

out in [17] , simulating the outbreak in Wuhan using a determinis-

tic age-structured SEIR model over a 1 year period. 
The effects of NPIs were also studied in deterministic models,

uch as those proposed in [18] , where the authors presented a new

ean-field epidemiological model for the COVID-19 epidemic in

taly that extended the classical SIR model, called the SIDARTHE

odel. The model contributed towards evaluating and predicting

he effects of implementing different guidelines and protocols (for

xample, more extensive screening for new cases, or stricter social-

istancing). 

.6. Estimations of the reproduction number 

The main goal of NPIs is to flatten the curve of total infected

ndividuals, delaying the peak while keeping the number of cases

ithin the capacity of the health system. Different countries have

chieved this objective with varying degrees of success, which can

t least be partially explained by their choice of NPIs. Thus, it be-

omes essential to measure the relative success of each case and

o incorporate this knowledge into models capable of assisting de-

ision makers in the formulation of new NPIs. As mentioned be-

ore, a key parameter that reflects the dynamics of the epidemics

s the reproduction number. However, in [19] authors found that

he classical concept of the basic reproduction number R 0 is unten-

ble in realistic populations, and provides very little understanding

f the evolution of the epidemic. This departure from the classical

heoretical picture is not due to behavioral factors and other ex-

genous epidemiological determinants. Rather, it can be simply ex-

lained by the (clustered) contact structure of the population. The

uthors also provided evidence that methodologies aimed at esti-

ating the instantaneous reproduction number R ( t ) can be used

perationally to characterize the correct dynamics of the epidemic

rom incidence data. 

It should be noted that the correct estimation of R ( t ) also de-

ends on the accurate detection of infected individuals, along-

ide other secondary hypotheses. In [20] , the authors estimated

he contagiousness and proportion of undocumented infectious

ases in China during the weeks before and after the shutdown

f travel in and out of Wuhan. They combined data from Tencent

a large social media and technology company) with a networked

ynamic meta-population model with Bayesian inference to ana-

yze the early spread within China. Recently, in [13] the authors

sed a semi-mechanistic Bayesian hierarchical model to infer the

mpact of NPIs across 11 European countries. The authors studied

he course of the epidemic by back-calculating infections from ob-

erved deaths, and provided confidence intervals for the impact of

ifferent NPIs on the reproduction numbers. A similar analysis was

erformed in [21] . 

.7. Reproduction number and mobility 

It is important to note that even though NPIs can have a no-

iceable effect on the reproduction number R ( t ), their effects are

ot instantaneous; instead, they are modulated by the proper char-

cteristic times of the disease. Since R ( t ) is an emergent quan-

ity resulting from decreased social contact in large groups of in-

ividuals, proposals depending on the capacity to enforce sudden

hanges of the reproduction number (e.g. as in the modulation of

nfection rate by a periodic square function, as mentioned above)

ust be evaluated critically. One of the keys points for understand-

ng the spreading of the disease is the variability in the contagion

ate and its dependence on the density and movement of people

ithin or between cities and regions. In this context, in [22] the

uthors used cell phone data from approximately 11 million de-

ices to study how the flow of people through the city of Wuhan

ontributed to dispersing SARS-CoV-2 throughout China. The au-

hors confirmed the efficacy of lockdown measures for decreasing

obility, and showed that the distribution of population outflow
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rom Wuhan accurately predicted the relative frequency and geo-

raphic distribution of COVID-19 infections across China. 

.8. Modeling the spread of COVID-19 in Argentina 

Buenos Aires and its suburbs comprise a megacity offering a

nique opportunity to investigate how the virus spreads in large,

ighly-connected, and densely populated areas, and how real-time

obility information from cell phone devices can be used to as-

ist the prediction of new cases with regional specificity. We be-

ieve that the results we will present here can be useful for other

esearchers being challenged with the task of modeling the early

tages of the COVID-19 epidemic in very large cities or in similar

emographic contexts. 

With this motivation, we summarize our attempts to model the

arly COVID-19 outbreak and its subsequent evolution in Argentina

ith a special focus on Buenos Aires and its metropolitan area. We

aution the reader to adopt a critical stance towards simple epi-

emiological models. Even when these models are fed with popu-

ation census data and realistic mobility estimates, they are funda-

entally limited in what they can tell us about the mid- to long-

erm evolution of the epidemic. While the simplest epidemiolog-

cal models have several limitations of their own, building more

omplex models does not necessarily improve our understanding

f the epidemic, and can certainly obfuscate the basic limitations

hat are intrinsic to the very foundations of the models. Here,

odels are considered only as ways of exploring the possible fu-

ure courses of the epidemic, without claims of accuracy, let alone

f infallibility. Claims concerning the outcomes of public policies

ased solely on numerical simulations should be approached with

tmost care. The situation is both novel and challenging, full of un-

nowns that cannot be dispelled by comparison with previous epi-

emics, and several of the proposed NPIs (such as the enforcement

f periodic lockdowns, or the pursuit of massive herd immunity)

re unheard of in modern public health policy. The cost of imple-

enting such policies could be huge, and failures could be even

ostlier. When advising public policy makers, it is our position that

odels, no matter how detailed, only represent one among multi-

le sources of information, and should supplement the analysis of

ctual data, the epidemiological situation, and the advice of public

ealth experts. 

This report is structured as follows. First, we consider the prob-

em of interpreting the dynamics of the first cases, with special

ocus on infectious travelers from abroad ( Section 2 ). Next, we

onder on the dangers of solutions based on instantaneous ma-

ipulations of R ( t ) ( Section 3 ). We consider focal dynamics and

ow they may lead towards the homogenization of the epidemics

 Section 4 ). Then, after estimating relevant parameters from fit-

ing the models to local data in Section 5 , we consider coupled

odels ( Section 6 ) and the role of mobility as estimated from

ell phone data ( Section 7 ). We incorporate this data to deter-

inistic and stochastic models, discussing their comparative weak-

esses and advantages, and use them to forecast the number of

ew cases based on possible changes to the isolation policy. Fi-

ally, in Section 8 we summarize our conclusions. 

. The interpretation of the dynamics of the first cases: 

ravelers as inputs 

We start with very simple models, and discuss how to study

he beginning of the epidemic in the context of a virus known

o be spread between countries mostly by air travelers. Through-

ut this work we will consider models for the officially reported

umber of infected cases. While the number of actual cases could

e larger due to undetected cases, we will assume that as long as

esting procedures and protocols are not changed, the percentage
f detected cases (with respect to the total number of cases) re-

ains approximately constant. Thus, restricting our analysis to the

fficially reported number of cases will allow us to decrease the

umber of unknowns in the system. 

We will progressively move from models that assume homoge-

eous mixing of the population in the entire country or in large

rovinces, towards more complex models, including inhomoge-

eous coupled models. However, we will always assume homo-

eneous mixing at the level of each individual district. Moreover,

e will use cell phone data to reduce the number of unknowns

y estimating the coupling between these regions. In our experi-

nce, and as will be shown in the following sections, increasing

odel complexity without incorporating precise empirical infor-

ation results in models that are hard to validate and interpret,

apidly resulting in homogeneous mixing if ensemble averages are

erformed to compensate for the lack of detailed knowledge, and

hus providing very limited extra information when compared to

impler models. 

A brief explanation of Argentinian demographics and the mea-

urements taken by the Argentinian government in the context of

he COVID-19 pandemic is in order. Argentina has a total popu-

ation of nearly 45 millions, distributed between 23 federal states

provinces), plus an autonomous city (the city of Buenos Aires, or

ABA). Most of the population lives in this city (2.9 millions) plus

ts suburbs (the metropolitan area of Buenos Aires, Greater Buenos

ires or AMBA, plus nearby districts, totaling 40 districts with a

opulation over 13 millions). The next most populated regions are

he rest of the province of Buenos Aires (PBA), and the provinces of

órdoba and Santa Fe. The first officially confirmed case of SARS-

oV-2 was an infected traveler coming from abroad identified on

arch 3rd. On March 11th, all travellers from countries with con-

rmed COVID-19 cases were requested to stay in isolation for 14

ays. Schools and universities were closed on March 16th, and a

omplete lockdown was enforced on March 19th. Almost imme-

iately afterwards, borders were closed except for flights bringing

tranded Argentinians back from abroad, and vice-versa for for-

igners. As a result of these measures, the number of infectious

ravelers slowly increased until reaching a maximum, and then de-

reased monotonously with time (see Fig. 1 ). The nationwide lock-

own was maintained until April 26th, when provinces with zero

r very few cases were allowed to relax lockdown rules. In con-

rast, densely populated areas (over 50 0,0 0 0 inhabitants) or with

 large number of confirmed cases were maintained in strict lock-

own for at least two more weeks, with the possibility of further

xtensions to the lockdown. 

As mentioned in the introduction, some of the most frequently

mployed epidemiological models are compartmental; for instance,

he SEIR model includes compartments for susceptible ( S ), exposed

 E ), infectious ( I ), and recovered or removed ( R ) individuals. How-

ver, since the COVID-19 epidemic started with travelers coming

rom other countries, modeling the increase of infected individu-

ls solely as an interaction with the compartment of exposed in-

ividuals will fail to reproduce the early dynamics of the disease.

s discussed next, considering the contribution of these individu-

ls results in more reasonable estimates of the disease transmis-

ion rate, which are in better agreement with those obtained in

ther countries by other methods [2,9,10,18] . We thus briefly sum-

arize how to include incoming infectious individuals in the sim-

lest models, and then adopt the same mechanism when develop-

ng more complicated models in the following sections. 

In stochastic models, the number of infectious travelers can be

dded directly to the infectious compartment. Consider a simple

tochastic SEIR model [23] : 

(t + �) = S(t) − B (t) , (1) 

(t + �) = E(t) + B (t) − C(t) , (2) 
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Fig. 1. Top: Evolution of the number of reported infectious travelers arriving to Ar- 

gentina since the first official case. Dots and crosses correspond to the accumulated 

(minus recoveries) and new per-day cases, respectively, and the solid and dashed 

lines represent the best fits to the data. Bottom: Number of accumulated cases in 

the first 25 days, and the best fit obtained using a forced deterministic SEIR model. 
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I(t + �) = I(t) + C(t) − D (t) + F (t) , (3)

where R is obtained from fixing the total population N (plus

the incoming infectious travelers). Here B (t) = Bin ( S(t ) , P E (t ) ) ,

(t) = Bin ( E(t ) , P I (t ) ) , and D (t) = Bin ( I(t ) , P R (t ) ) are binomial

distributions with exponential probability distribution functions

P E (t) = 1 − exp (−β�I(t ) /N) , P I (t ) = 1 − exp (−ε�) , and P R (t) =
1 − exp (−γ�) , and where β is the mean transmission rate, ε is

the onset rate (the inverse of the average duration of incubation

in days), and γ the removal or recovery rate (the inverse of the

average duration of the infection). The stochastic variable F ( t ) rep-

resents the number of incoming infectious travelers per day (when

� = 1 day), and can be obtained from official data. 

In deterministic models it is better to fit the data with a smooth

function to satisfy mean field approximations. The simplest deter-

ministic and homogeneous SEIR model can be written as 

˙ S = −βSI, (4)

˙ E = βSI − εE, (5)

˙ I = −γ I + εE + F , (6)

˙ R = γ I. (7)

Note that variables in deterministic models are normalized to 1,

and individuals are obtained later by multiplying them by N. Note

also that a forcing term F has been also added to I , representing
he rate of change in the number of cases from the travelers (i.e.,

he derivative of I resulting from incoming infectious travelers). We

lso consider a more complex SEIR model with additional compart-

ents that will be used many times in the rest of this work (see,

.g., [10,11,24] ), 

˙ 
 = −βS[ J + (1 − ρI ) I + (1 − ρH ) H] , (8)

˙ 
 = βS[ J + (1 − ρI ) I + (1 − ρH ) H] − εE, (9)

˙ 
 = −γ J + ε(1 − φ) E, (10)

˙ 
 = −γ I + εφE + F , (11)

˙ 
 = −γ H + γ (1 − χ) I, (12)

˙ 
 = γ (J + χ I + H) , (13)

ere J is the number of mild infectious individuals, I are moder-

tely infectious individuals, and H are hospitalized individuals. F ,

s before, represents the rate of change in I because of infectious

ravelers (we assume all detected infectious travelers are moder-

te, and may be hospitalized later or not). The new coefficients are

I (the fraction of moderate infectious individuals that are prop-

rly isolated), ρH (the fraction of hospitalized infectious individ-

als that are isolated), φ (the fraction of exposed individuals with

oderate to severe symptoms) and χ (the fraction of moderate in-

ectious individuals that do not require hospitalization). 

As mentioned before, F should be represented by a smooth

unction in these ODEs. The product of two logistic functions was

ound to give a good approximation to the data of accumulated

nfectious travelers (minus discharged cases, see Fig. 1 ), and its

erivative caped to only positive values (as the passage from infec-

ious to recovered compartments is already included in the mod-

ls) provides a smooth approximation to the daily cases (associated

o F ). Similar results were obtained for each province or district

ith cases of incoming infectious travelers. 

With the simplest SEIR model given by Eqs. (4) - (7) , we ad-

ust all the data available for Argentina as a homogeneous group

ith a single local propagation mechanism, but treating sepa-

ately infectious individuals from abroad. To this end, we fix ε =
 / (5 . 1 days ) and γ = 1 / (14 days ) [10,13,18] , and we apply a least

quare approximation to obtain β using the method described in

9] . Fig. 1 illustrates the result of adjusting the model to the num-

er of accumulated cases in Argentina during the first 25 days. The

east square approximation yields β ≈ 0.22 (or, equivalently, a ba-

ic reproduction number R 0 = β/γ ≈ 3 ), a value that will be used

n the following sections. As the system evolves in time and the

pidemic spreads, the role of local infectious cases becomes more

elevant, and the forcing due to infectious travelers begins to play

 smaller role. 

Equipped with this simple model and a first approximation to

he relevant parameters, we now consider some NPIs and other

roposed solutions based on numerical simulations that have been

uggested in the literature. 

. A caution note on time dependent lockdowns 

It has been suggested that a way to simultaneously address the

eed to bound the spread of the pandemic while keeping some

ignificant level of economic activity is the application of time de-

endent lockdowns. These policies consist in the alternation be-

ween periods during which individuals are allowed to move, trade

nd travel, with others during which social interactions are min-

mized. Numerical simulations with time dependent parameters

ave been carried out to model the effect of these policies and in-

eed, some of these simulations show the suppression of the epi-

emic [14] . 
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Fig. 2. Simulation of a deterministic SIR model for a population of 10 6 individuals. 

The infection rate parameter is periodically modulated (β0 = 0 . 3 × 10 −6 , A = 0 . 2 ×
10 −6 ) , with γ = 0 . 12 and ω = 2 π/ 10 . This corresponds to variations of the basic 

reproduction number R 0 ∈ [0.8, 4.16] with a period of 10 days. 
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Yet, it is important to address the viability of these policies by

nalyzing the general conditions under which suppression could

e achieved. Since time dependent lockdowns introduce two time

cales (a slow scale characteristic of the epidemic, and a faster

cale characteristic of the time dependent policies) we will ana-

yze the problem under the light of the averaging theorem [25] .

his theorem states that for a (slow) dynamical system, periodi-

ally forced at a (high) forcing frequency, 

dx 

dt 
= ε f (x, t, ε) , (14) 

ith x ∈ R n , 0 ≤ ε � 1, f : R n × R × R + → R n is C r , and f (x, t, ε) =
f (x, t + T , ε) , there is an associated autonomous dynamical system

its averaged system), defined as: 

dy 

dt 
= ε

1 

T 

∫ T 

0 

f (y, t : 0) dt 
. = ε f (y ) , (15) 

uch that there is a change of coordinates mapping the solutions

f the original system into those of its associated averaged au-

onomous system. In other words, up to first order in ε, we have

hat | x (t) − y (t) | ∼ ε (if | x (0) − y (0) | ∼ ε), on a time scale t ~ 1/ ε. 

The application of this theorem to the problem is pertinent.

uppose several periodic interventions are expected during the

volution of the epidemic. Let us model these with an even simpler

ynamical model for an epidemic, the deterministic SIR model: 

˙ 
 = −[ β0 + A cos (ωt)] SI, (16) 

˙ 
 = [ β0 + A cos (ωt)] SI − γ I (17) 

˙ 
 = γ I. (18) 

In these equations, the policy is translated into the periodic

odulation of β . 

In Fig. 2 we compare the simulation of the periodically mod-

lated problem with the solution of its associated averaged ver-

ion. In this simulation, we studied an epidemic event lasting 100

ays, with a time dependent policy of social distancing with a 10

ay period. Note that the averaged system constitutes a good ap-

roximation of the original problem. The parameters in our simu-

ation correspond to R ( t ) ∈ [0.8, 4.16], with and average of R = 2 . 5 .

t is for this reason that in this example there is an epidemic peak.

uppression can indeed be achieved, but only if the average of the

odulation leads to R < 1. In the case of Argentina, which imple-

ented a long lockdown at an early stage of the epidemic, R ( t )

eached a value of ≈ 0.9 as the most optimisic estimate (other
ountries reported similar values, see, e.g., [18,26] ). It is therefore

ery difficult (or simply unrealistic) to implement an alternating

olicy that translates into average parameters leading to suppres-

ion. Moreover, as will be shown next, the periods without lock-

own may lead to rapid homogeneization of the infected cases in

he real system, leading to even longer times for the extinction of

he epidemic. 

. Homogeneous or stochastic? Dynamics of foci, ensembles, 

nd homogeneization 

The stochastic modeling of epidemics as in Eqs. (1) - (3) is im-

ortant when the number of infectious individuals is small, since

n those situations fluctuations can lead to the extinction of the

pidemic, even for a highly contagious disease (this can happen,

or instance, if the first few infectious individuals had very limited

ontact with the susceptible population). Typically, an epidemic

utbreak starts with few infectious cases that are spatially scat-

ered. If the mobility of those cases is small, the epidemic will first

evelop in scattered foci and then slowly spread until all the inter-

onnected susceptible subjects interact with the infectious popu-

ation, reaching what is known as the homogeneous situation, de-

cribed, e.g., by the system of Eqs. (4) - (7) . Typically, the deter-

inistic model used to describe the homogeneous case is there-

ore thought as the appropriate way to address the evolution of an

pidemic outbreak involving a large number of individuals. How-

ver, it can also serve as an estimation of the result obtained by

nalyzing an ensemble of stochastic simulations. To this end, in

his section we consider inhomogeneous distributions of infectious

ases as obtained by coupling stochastic epidemic models as those

n Eqs. (1) - (3) . 

To explore the process of homogenization of the epidemic out-

reak, we performed an ensemble of stochastic simulations of this

ystem, with a small number of infectious subjects seeded into a

usceptible population. We assumed that the population could be

rouped into 15 regions (where the number was chosen to repro-

uce the internal division of the city of Buenos Aires into so-called

communes”, note these are smaller and different from the dis-

ricts in the suburbs considered later). The number of inhabitants

n each commune was obtained from census data. In our numerical

xperiments, each subject spends half of the day in its commune

nd a second half either in the same or a different one (the full

athematical details of the coupled stochastic model are described

ater in Section 6 ). In the first half of the day, the probability of

ontagion in the j th commune is given by: 

 E j (t) = 1 − exp 

(
−β

�

2 

I j (t) /N j 

)
, (19) 

iving rise to a number of new exposed individuals E j (t + 

�
2 ) =

in 

(
S j (t) , P E j (t) 

)
. In the second part of the day, we use a mobility

atrix [27] to estimate m i,j , the proportion of residents from the

 th commune that travel to work in the j th commune. In this way,

he number of people that will be found in the j th commune dur-

ng the second part of the day is N j (t + 

�
2 ) = 

∑ 15 
k =1 m k, j , leading to

 15 
k =1 m k, j I k (t + 

�
2 ) /N k infectious people. Therefore, in this part of

he day, the probability of contagion is: 

 E j (t) = 1 − exp 

[
−β

�

2 

∑ 15 
k =1 m k, j I k (t + 

�
2 
) ∑ 15 

k =1 m k, j 

]
. (20) 

e can now compute the number I j,i of infectious individuals in

he j th commune which are residents of the i th commune as I j,i =
in 

(
m i, j S i (t + 

�
2 ) , P E j (t + 

�
2 ) 

)
. Adding all the communes, we ob-
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Fig. 3. Fifty simulations of the stochastic SEIR model for a set of communes inside the city of Buenos Aires (CABA). The top panels display the simulations for the entire 

city, and for one of the 15 communes. The solutions of the continuous model are displayed, in both cases, with dashed lines. A detail of the simulation at early times is 

shown in the bottom panels, also for the whole city (left) and for one of the communes (right). The average of the simulations (thick dark lines) is shown together with the 

solution of a homogeneous deterministic model (dashed lines). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Top: Evolution of the number of infectious individuals in an ensemble of 

realizations of a stochastic SEIR model with a population of 50 individuals. Bottom: 

Time to extinction of the focus as a function of the size of the population involved, 

assuming the focus is perfectly isolated. 
tain, 

E j (t + 1) = 

∑ 

k 

Bin 

(
m j,k S j (t + 

�

2 

) /N j , P E k (t + 

�

2 

) 

)
(21)

This method of updating stochastic models every half day will be

found useful in the following sections, when we use cell phone

data to estimate actual mobility between larger districts. 

We display 50 simulations in Fig. 3 , starting with three cases in

one commune, with parameters that correspond to R 0 = 3 . 92 and

mobility extracted from Sarraute et al. [27] . The dashed line shows

the results obtained from integrating the homogeneous model us-

ing the parameters that correspond to the whole city. Not surpris-

ingly, the homogeneous continuous model is a good approxima-

tion for the large population of Buenos Aires city. Yet, notice how

rapidly the dynamics of the city become similar to the dynamics of

the first commune. Note again the remarkable similarity between

the average of the simulations and the solution of the continuous

model in the two bottom panels representing the first days of the

stochastic simulations, their average, and the solution of the ho-

mogeneous continuous model. 

With these results in mind, we now consider the cost of letting

the epidemics spread and evolve towards the homogeneous solu-

tion. To this end we consider only one commune, and assume that

as a result of the lockdown this commune becomes isolated. More-

over, only a small fraction of the infected population gets in con-

tact with other individuals (i.e., their social network of contacts),

resulting in a small focus. Fig. 4 shows the evolution of the num-

ber of infectious individuals in an ensemble of 200 realizations of

the stochastic SEIR model with a focus restricted to 50 individ-

uals. The number of infectious individuals quickly drops to zero

in some realizations, while in others infectious cases persist for

longer times. The mean time for the extinction of the focus can

be estimated from such an ensemble. This is also shown in Fig. 4 ,
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Fig. 5. Estimated transmission rate β( t ) for the whole nation (Nation wide) and 

for the province of Buenos Aires (PBA). The dashed line corresponds to the values 

obtained from a least square fit with the deterministic model using a moving win- 

dow of 10 days. The blue line corresponds to the smooth estimation at early and 

late times, while the blue shading indicates a window of confidence of 95% for β( t ) 

during the lockdown. 
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1 Note that this matrix represents total numbers of individuals and not propor- 

tions, as was the case for m i,j in Section 4 
hich presents this time as a function of the size of the popula-

ion in the focus. Note the exponential dependence between these

uantities: avoiding the growth of the foci becomes crucial for the

ong-term evolution of the system. 

Finally, the results in this section indicate that, to a certain ex-

ent, we can approximate the dynamics in the city of Buenos Aires

and probably as well in the individual districts of its metropolitan

rea) using homogeneous models (see Section 5 ), and then cou-

ling these districts assuming that the mix between them can be

nhomogeneous (see Sections 6 and 7 ). 

. Estimation of transmission rates from local fitting and first 

valuation of lockdowns 

To study the evolution of the epidemics in highly populated re-

ions using locally homogeneous models, and later incorporating

oupling to reflect inhomogeneous mix between different regions,

e need reasonable estimations of infection rates. These estima-

ions serve the double purpose of avoiding over-fitting in com-

lex models, and evaluating the effect of lockdown measures. Oth-

rwise, conducting ensemble averages over multiple realizations

ith different parameters would result again in the homogeneiza-

ion of the results. In this section we show how simple determin-

stic SEIR models (as the SEJIHR model in Section 2 ) can be used

o estimate these parameters from the data and to study the global

nd local evolution of the epidemic, assuming weak coupling be-

ween regions as a consequence of the lockdown (as will be con-

rmed later in the analysis of cell phone data). 

First of all, to avoid over-fitting we choose to fix as many pa-

ameters as possible based on the literature and available data.

e decided to fix all parameter values except for β . We intro-

uce time dependence, β( t ), to capture effective changes associ-

ted with the lockdown measures. As in previous sections, we

x ε = 1 / (5 . 1 days ) and γ = 1 / (14 days ) . The other parameters in

qs. (8) - (13) were chosen as ρI = 0 . 2 , ρH = 0 . 9 , φ = 0 . 7 , and χ =
 . 8 , which yielded a fraction of mild, moderate, and hospitalized

nfectious individuals compatible with official reports [28] . 

Then, we fitted the ODEs to the first 25 days of data (i.e. up

o 8 days after the beginning of the lockdown) to estimate β0 =
(t = 0) , and from the 10th day of the lockdown to the last day

ith available official information to estimate the mean β( t ) dur-

ng the lockdown. These two values were then interpolated with a

ogistic function to obtain a smooth version of β( t ) for the model

as will be shown later from the analysis of cell phone data, this

s in agreement with observations that the mobility of individuals

ecreases slowly in time, starting even before the lockdown is put

n place). To produce forecasts using the model, it is necessary to

alculate the errors that occur when estimating β( t ) in this way.

e thus also fitted the model to the data using least squares with

 moving window of 10 days to estimate the dispersion σβ in the

alues of β( t ). Results for the whole nation and for the most pop-

lated province in the country are shown in Fig. 5 . 

When forecasting the possible future outcomes of the epidemic,

t is necessary to carry out a series of simulations with different

arameter choices. Integration of the system with β( t ) ± 1.96 σβ

llowed us to compute solutions within 95% confidence levels. Re-

ults are shown in Fig. 6 . While the best fit to the data indicates a

ecrease in the effective value of β( t ) as a result of the lockdown

hen computed for the entire country (with a slight increase at

ater times), in the province of Buenos Aires (PBA) the decrease in

he value of β( t ) is smaller and presents larger fluctuations (re-

ulting in a different increase in the number of cases in Fig. 6 ).

his indicates the need of factoring individual mobility in the anal-

sis, which will be shown next to correlate with the observed be-

avior of β( t ). Also, note that the uncertainty of solutions within

5% confidence intervals increases very rapidly, thus forbidding re-
iable long-term forecasts of the number of cases. This behavior is

o be expected in systems with solutions that grow exponentially

t early times, and provides a warning message for all attempts at

ong-term forecasting of the pandemic. 

Finally, when considering separate districts within PBA, the

ame qualitative behavior (but with different values of β( t )) is

bserved. We conclude that inhomogeneous models with coupled

istricts are required, at least at this level of description. 

. Coupled models and the role of mobility 

As previously done in Section 4 , both stochastic and determinis-

ic models can be modified to include several interacting geograph-

cal regions, each with its own transmission rate β i , and number

f susceptible ( S i ), exposed ( E i ), infectious ( I i ), and recovered ( R i )

ndividuals. We first describe in detail a coupled stochastic model

btained from adapting Eqs. (1) - (3) to include empirical mobility

ata. Second, we introduce a coupled deterministic model. Mobility

ata will be introduced by quantifying a daily mixing of individuals

iven by M i,j 
1 . The i, j entry of this matrix contains the number of

ndividuals from the i th region who visit region j th during the day,

o that 
∑ 

j M i, j = N i is the total population of the i th region, and
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Fig. 6. Accumulated cases in the entire country (Nation wide) and in the province 

of Buenos Aires (PBA, r ight), obtained from the SEJIHR model using β( t ), with 95% 

confidence intervals (blue shading) and compared with the official data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I  

w  

B

 

f  

a  

i  

m  

s  

fl  

b

 

S  

b  

c  

e  

T

S

 

E

 

w  

m  

t  

t  

t  

a  

t

I  

w  

d  

s  

ε  

c

7

 

d  

S  

t

 

s  

(  

q  

e  

(  

q  

l  

c  

g  

w  

s  

a

 

t  

(  
∑ 

i M i, j = N 

∗
j 

is the number individuals found in the j th region dur-

ing the day. Coupling is done using the methods described in [29] .

In this section and the following, unlike Section 4 , regions will cor-

respond to the entire city of Buenos Aires, and to each district in

its metropolitan area. 

As done before, in the stochastic model we divide each day into

two halves of duration 

�
2 . During the first half of the day individ-

uals interact according to a mixing matrix M i,j , reflecting a typical

work and school day (if schools are open). In this case, the ex-

ponential probability function for exposure to infected individuals

depends on the geographical region and is computed as P E,i (t) =
1 − exp (−βi 

�
2 I 

∗
i 
(t) /N 

∗
i 
) where I ∗

i 
(t) = 

∑ 

i M i, j I j /N j is the number of

infected individuals found in the i th region during the first half of

the day. In the same way, we introduce S ∗
i 
(t) = 

∑ 

i M i, j S j /N j as the

number of susceptible individuals in the i th region during the first

half of the day. The probability functions P I ( t ) and P R ( t ) do not de-

pend on the region since they only contain parameters intrinsic to

the disease. 

The number of individuals in each compartment per region is

then updated as follows, 

S i 

(
t + 

�

2 

)
= S i (t) − B i (t) (22)

E i 

(
t + 

�

2 

)
= E i (t) + B i (t) − C i (t) (23)
e  
 i 

(
t + 

�

2 

)
= I i (t) + C i (t) − D i (t) (24)

ith R i = N i − S i − E i − I i , B i (t) = Bin 

(
S ∗

i 
(t ) , P E,i (t ) 

)
, C i (t) =

in ( E i (t) , P I (t) ) and D i (t) = Bin ( I i (t) , P R (t) ) . 

The update rule for the second half of the day can be obtained

rom the same equations with M i,i = N i and 0 otherwise, and by

dding a forcing term F i ( t ) to Eq. (24) , reflecting the number of

ncoming infectious travelers for that region. Note that the trans-

ission rate during the second half of the day, β i , is also region-

pecific. Also, note that both β i and M i,j may depend on time, re-

ecting the changes in local and inter-regional mobility imposed

y quarantine and isolation policies. 

Finally, we also consider a coupled version of the homogeneous

EJIHR model introduced in Eqs. (8) - (13) . Coupling is introduced

y writing equations for S i , E i , J i , I i , H i , and R i , and coupling sus-

eptible and (mild and moderate) infectious individuals in differ-

nt districts S i I j and S i J j (with i 	 = j ) in the equations for ˙ S i and 

˙ E i .

hus, the equations for the evolution of S i and E i result 

˙ 
 i = −βi [ J i + (1 − ρI ) I i ] 

−
∑ 

j 	 = i 
β0 C i, j [ J j + (1 − ρI ) I j ] , (25)

˙ 
 i = βi [ J i + (1 − ρI ) I i ] 

+ 

∑ 

j 	 = i 
β0 C i, j [ J j + (1 − ρI ) I j ] − εE i , (26)

here C i,j is a normalized and symmetrized version of the mixing

atrix given by C i, j = 

M i, j + M j,i 

N i + N j 
N j 
N i 

(the last factor N j / N i results from

aking into account the different populations in each district, and

he fact that deterministic models are invariant to the size of the

otal population so the SEJIHR variables are normalized to 1). We

lso force each region with their incoming infectious travelers, and

hus the equation for I i is 

˙ 
 i = −γ I i + εφE i + F i , (27)

here F i is a smooth time-dependent function obtained from the

ata of each district as explained in Section 2 . As in the case of the

tochastic model, both β i and C i,j potentially depend on time, and

, γ , ρ I , ρH , φ, and χ are time- and region-independent constants

hosen as in the previous sections. 

. Mobility estimation from cell phone location data 

In this section we describe the use of cell phone location

ata to estimate the mixing and contact matrices introduced in

ection 6 , as well as the effective local infection rates, focusing on

he advantages and limitations intrinsic to this type of data. 

We obtained geolocated data from anonymized mobile phones

panning the whole country between March 1st and April 12th

 ≈ 3 × 10 6 unique phones). For each phone we obtained a se-

uence of latitude/longitude pairs with an associated timestamp,

ach corresponding to the use of a certain (also anonymized) app

resulting in 100 to 200 events per cell phone per day). Each se-

uence of latitude/longitude pairs was converted to a sequence of

abels indicating the location among the 529 departments in the

ountry, as defined by the National Geographical Institute of Ar-

entina (IGN, https://www.ign.gob.ar/ ). As in the previous sections,

e restrict our analysis to a subset of 41 departments (or districts)

panning Buenos Aires and the Greater Buenos Aires metropolitan

rea, comprising approximately 50% of the phones in the dataset. 

A major limitation of this type of data is uneven spatial and

emporal sampling. Even within the most densely sampled area

Buenos Aires and its metropolitan area) we observed large differ-

nces in the number of cell phones relative to the total population.

https://www.ign.gob.ar/
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Fig. 7. Left: Normalized inter-regional mobility computed during the 2nd of March. Regions are ordered according to their community membership detected with the Louvain 

algorithm. The three white diagonal squares indicate major communities corresponding to the southern, centre-northern and western part of the metropolitan area. Right: 

Topological representation of the major communities using the Yifan Hu Multilevel layout algorithm as implemented in Gephi. 

Fig. 8. Left: Average local mobility from the 1st of March to the 12th of April. Right: Average inter-regional mobility (computed as the average of all rows in C i,j ) from the 

1st of March to the 12th of April. In both panels the grey vertical line indicates the start of the lockdown (19th March). 
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ince for all purposes the temporal sampling of the trajectory must

e considered as random, we determined the regional membership

f each phone as its most visited region during the day (i.e., the

ode of the IGN department labels). 

We computed two metrics per day from this dataset. First, we

stimated the mixing matrix M i,j by counting the number of cell

hones belonging to the i th region found throughout the day in

he j th region, and then rescaling rows so that 
∑ 

j M i, j = N i . We

ote that, since a single cell phone can be found in several regions

hroughout a day, this mixing matrix represents a coarse temporal

verage across a time step of �
2 in the stochastic coupled model.

etter approximations could be eventually obtained dividing each

ay into shorter intervals. We also computed the normalized and

ymmetrized contact matrix C i,j as described in the previous sec-

ion. Fig. 7 (left panel) presents a typical contact matrix (com-

uted for the 2nd of March), with regions ordered according to

heir community membership detected with the Louvain algorithm

resolution parameter γ = 1) [30] . Fig. 7 (right panel) presents a

opological representation of the mixing matrix and its major com-

unities using the Yifan Hu Multilevel layout algorithm [31] as im-
 t  
lemented in Gephi ( https://gephi.org/ ). The three white diagonal

quares indicate major communities corresponding to the south-

rn, centre-northern and western part of the metropolitan area,

orresponding to purple, green and light blue communities in the

ight panel, respectively. Next, we estimated M i , the local mobility

f region i , as the average of all geodesic distances between suc-

essive latitude/longitude pairs within that region. As described in

he following sections, we use M i to construct an effective time-

ependent and region-specific transmission rate. 

Finally, we observed a strong modulation of the local mobil-

ty and the inter-regional traffic as a consequence of the lockdown

tarting on the 19th of March ( Fig. 8 ). Both curves show a gradual

ecline during the days prior to the beginning of the lockdown,

nd a very slow recovery of the circulation during the first days of

pril. 

.1. Coupled deterministic models 

For the sake of simplicity, we first consider the determinis-

ic model coupled using cell phone data, and leave the stochas-

https://gephi.org/
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Fig. 9. Number of accumulated cases in five districts of the Buenos Aires metropolitan region, and in the city of Buenos Aires (CABA). Infectious travelers were reported in 

the early stages of the outbreak for all these districts. Red dots indicate the official number of cases, while the blue curves indicate results from the deterministic coupled 

model. 

Fig. 10. Number of accumulated cases in four districts of the Buenos Aires metropolitan region that reported no infectious travelers arriving from countries with reported 

COVID-19 cases. Red dots indicate the official number of cases, while the blue solid lines indicate results from the deterministic coupled model. 
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Fig. 11. Number of cases in the city of Buenos Aires (center, enclosed by black lines) 

and the 40 districts of the metropolitan area (in different shades). The white region 

corresponds to a river. From top to bottom, days 5, 20, 40, and 60 since the first 

reported case. The size of blue circles indicates the number of official cases, while 

the size of violet circles indicates the number of cases according to the determinis- 

tic coupled model. 
ic model (which requires ensemble averages) for the next section.

o integrate the model, β0 is fixed at the value initially obtained

rom the best fit to all cases in the country, β0 = 0 . 22 . The tempo-

al evolution of the β i coefficients is approximated as 

i (t) = β0 
ˆ M i (t) , (28) 

here ˆ M i (t) is a temporally smooth approximation to the local

obility M i ( t ) obtained from the cell phones data, and normalized

uch that 〈 ˆ M i (t) 〉 = 1 , where the brackets denote the time average

cross the first 14 days (i.e., before the lockdown measures were in

lace). The coupling between districts C i,j ( t ) was computed directly

rom the time-dependent cell phone mobility matrix M i,j using the

efinition in Section 6 . Note that in this way, there are no free pa-

ameters left to adjust, resulting in a system whose dynamics can

ither match the official number of cases or deviate strongly from

t, depending on the validity of the parameters, empirical sources

f data, and assumptions of the model. 

We integrated this coupled model for the city of Buenos Aires

CABA) and the 40 districts in the Buenos Aires metropolitan area.

his resulted in simulations for 41 districts with very different

opulations and number of infected individuals. Some districts had

ess than 10 reported cases at the time when this report was writ-

en, while others had several hundreds. Also, some districts had

ases of infectious travelers coming from abroad during the first

ays of the outbreak, while others reported no infectious travelers.

oreover, the first cases in each district were reported at different

ays. 

We integrated the model for all districts with zero cases as ini-

ial condition, and let the incoming travelers drive the increase in

he number of infected individuals. We note that in absence of

oupling, districts with no incoming infectious travelers would re-

ain at zero cases during the integration time. 

Fig. 9 shows the result of integrating the model for all the 41

istricts. Results are shown for five districts in the metropolitan

rea of the city of Buenos Aires, plus the city, corresponding in

ll cases to districts that reported cases of infected travelers com-

ng from countries with confirmed COVID-19 infections at the early

tages of the outbreak. Note that the model correctly captures the

eginning of the outbreak in each district, as well as the overall

volution of the epidemic, even when districts differ in the num-

er of cases by up to two orders of magnitude (the population

oes not differ that much between districts, however). Also, note

hat no attempt has been made to adjust parameters in the model

o fit the observed data, besides using the value of β0 obtained for

he entire country. 

The model also captures the time of the outbreak and the order

f magnitude of the cases in districts that reported no incoming in-

ectious travelers from countries with COVID-19. Fig. 10 shows the

volution for four of such districts. Overall, this indicates that mod-

lating transmission and coupling rates using mobility data from

ell phones gives a good approximation to the dynamics of the epi-

emics. 

Fig. 11 shows the evolution of the number of official and fore-

ast cases for the 41 districts in a map, for days 5, 20, 40, and

0 since the first officially reported case in the country. The ra-

ius of the semi-transparent circles indicates the number of cases

n each district, both for the official data as for the model output.

s a result, circles with a border of a different color indicate a dis-

arity between the model and the data: when the border is blue,

he model predicts a smaller number of cases than the official re-

orts. When the border is light violet, the model predicts an excess

f cases compared with the empirical data. Note that all differ-

nces are small. Also, note that while in the first 5 days most cases

ere concentrated in the city of Buenos Aires, the cases spread

orth, west and south in time, first to closer districts in the sub-

rbs (having more traffic and mobility to the main city), and then
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Fig. 12. Number of accumulated cases in four districts of the metropolitan region and Buenos Aires city (CABA), with forecasts for an increase in mobility recovering 30%, 

60%, and 100% of the values before the lockdown, starting on the last day with available data. 
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from these districts to others further apart. After 60 days, all dis-

tricts neighbour to Buenos Aires city had a large number of cases

and displayed a more or less homogeneous behavior. 

Moreover, as cell phone mobility data is available daily, this

type of models can be used to forecast different scenarios by in-

creasing mobility indices to recover pre-lockdown mobility values.

In this way we can analyze possible outcomes to changes in lock-

down measurements. As an illustrative example, Fig. 12 shows the
volution of the system in the districts in Figs. 9 and 10 , assuming

hat after the last day with available cell phone data the mobility is

ept constant (i.e., the lockdown is maintained), or mobility (inside

ach district as well as between districts) is raised to 30%, 60%, or

00% of its value before the lockdown. The more evident limita-

ions of this model are associated with the difficulty of performing

ncertainty analysis, and with the dynamics of districts with very

ow number of infectious individuals, where fluctuations can play
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Fig. 13. Number of accumulated cases in five districts of the Buenos Aires metropolitan region, plus the city of Buenos Aires (CABA). Infectious travelers were reported in the 

early stages of the outbreak for all these districts. Red dots indicate the official number of cases, while blue curves indicate individual realizations of the stochastic model. 

The thick blue line indicates the average across all realizations. 
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 significant role. To overcome these potential limitations, we now

onsider the stochastic coupled model. 

.2. Coupled stochastic models 

We now describe the results obtained from combining the

tochastic model described in Eqs. (22) - (24) with the mobility es-

imates based on the cell phone data. As in the deterministic case,

e fix the initial β0 value and introduce a smooth temporal evo-

ution of the regional β i coefficients, informed by the initial and

nal local mobility values. We use the empirical mixing matrix M i,j 

o determine the interaction between the exposed individuals from

ll pairs of regions. We report 100 simulations per region, as well

s the average across all realizations of the stochastic model. As in

he case of the homogeneous deterministic model described in the

revious section, we note that the coupled stochastic model does

ot require parameter optimization and is fully determined by de-

ographics, constants characteristic of the disease, information on

nfectious individuals traveling from abroad, and the mobility data.

We observe that the stochastic model can reproduce the num-

er of cases with variable accuracy, with results that are in general

ompatible with the official number of cases, but occasionally with

evere underestimations. Fig. 13 shows the results for five rep-

esentative districts which participated in the early stages of the
utbreak. We observe that the stochastic model either provides a

easonably accurate estimate of the cumulative number of cases

e.g., for Lujn, Vicente Lpez, and CABA), or underestimates the of-

cial data. An opposite result was observed for some of the dis-

ricts modeled with the coupled deterministic model (i.e., Vicente

pez). This difference could stem from the fact that, as opposed to

he ODEs, the stochastic model can reproduce regional extinctions

n the progression of the daily number of cases (unless driven by

ther region through the mixing matrix). It is also worth noting

hat, in all cases, the official data lies between different realiza-

ions of the stochastic model. 

Again, note that the stochastic model captured the time of

he outbreak, and the order of magnitude of the cases in dis-

ricts that reported no incoming infectious travelers from coun-

ries with COVID-19 cases ( Fig. 14 ). Note that the stochastic model

pplied to this situation presents the strength of factoring in the

on-negligible possibility of focus extinction, and thus can result

n forecasts following more closely the empirical number of cases

ompared to the homogeneous model. 

Both the stochastic and homogeneous models are driven by em-

irical mobility data; however, the compulsory lockdown (start-

ng on March 19th) resulted in a drastic drop of both local and

nter-regional mobility. We asked whether such overall change in

obility sufficed to explain the goodness of fit of our models, or
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Fig. 14. Number of accumulated cases in four districts of the Buenos Aires metropolitan region, for districts that reported no infectious travelers arriving from countries 

with reported COVID-19 cases. Red dots indicate the official number of cases, while blue curves indicate individual realizations of the stochastic model. The thick blue line 

indicates the average across all realizations. 
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whether the finer structure of the mixing matrix and the local mo-

bility estimates also played a significant role. For this purpose, we

compared the results against a null model obtained from repeat-

ing the above presented simulations across 10 0 0 independent re-

alizations, randomly scrambling the ordering of the regions in the

mixing matrix M i,j and in the infection rate vector β i . Note that

both variables were scrambled only once per simulation, i.e., not

once per time step. Finally, we derived a p-value by counting the

number of times the goodness of fit (computed as the inverse of

the mean squared error [MSE]) of the model with shuffled M i,j and

β i was better than the one obtained from the unshuffled data. We

conclude that the structure of the empirical mixing matrix plays

a significant role in the goodness of fit of our predictions, since

the average MSE is higher for the shuffled than for the unshuf-

fled mixing matrix ( p < 0.001, and p < . 05 for 17 of the regions).

Conversely, we did not find a significant effect of the local mobil-

ity. This is consistent with cursory observations that suggest higher

heterogeneity in the inter-regional mobility compared to the local

circulation. 

8. Conclusions 

In this work we presented results of different approaches to

model the evolution of the COVID-19 epidemic in Argentina, with

a special focus on the megacity comprised by the city of Buenos

Aires and its large metropolitan area. We progressively moved from

models that assume homogeneous mixing of the population, to-

wards more complex models that allow for inhomogeneities be-

tween individual districts. To inform these models, we incorpo-

rated the number of infectious individuals arriving from other

countries with confirmed COVID-19 cases to our models, as well as

cell phone data to estimate mobility within and between districts. 

First, the effects of some proposed NPI policies and the conse-

quences of rapid homogeneization of the epidemics were consid-

ered. We conclude that it is unrealistic to implement certain poli-
ies, e.g., alternating between lockdowns and periods of mobility.

e also note that without empirical mobility estimates, perform-

ng ensemble averages varying unknown parameters over multiple

ealizations of coupled models results in an evolution compatible

ith that of homogeneous deterministic models, thus providing

ery little extra information. 

It is thus apparent that in highly populated regions, the evo-

ution of the epidemics can be modelled to a certain degree by

ocally homogeneous models, and by the coupling of these mod-

ls between regions that display inhomogeneous mixing between

hemselves. We showed that mixing and contact matrices esti-

ated from cell phone data could be used to obtain reasonable

stimations of the infection rates, both for stochastic and for de-

erministic models. The predictions of both types of models com-

ared favourably to the official data during the first 60 days of the

utbreak. Crucially, this performance depended on the structure of

he mixing matrix and not only on its post-lockdown modulation,

s shown by the application of permutation tests. 

Direct data analysis, as well as comparisons with the results

rom the models, indicate that while in the first 5 days most cases

ere concentrated in the city of Buenos Aires, the disease spread

orth, west and south as a function of time. The spread occurred

rst to closer districts in the suburbs, and from these districts to

ther further apart in the region. The models captured this spatio-

emporal evolution, including the time of the first cases in each

istrict, and the order of magnitude of the number of cases in a

ituation where the number of infectious individuals varied signif-

cantly from district to district. 

As in the introduction section, we conclude this work with a

ord of caution. We remind the reader again that simple epidemi-

logical models, even when fed with data stemming from popula-

ion census and detailed cell phone mobility estimates, are limited

n what they can tell us. These limitations arise both from ineffi-

iencies at the core of these models, as well as from shortcomings

f the available data. Making these models more complex does not
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ecessarily improve their forecasting capabilities, specially in a sit-

ation in which solutions (and small differences) grow, in some

ases, exponentially in time. As a result, these models should only

e considered as ways of exploring possible solutions of the sys-

em, and extreme caution should be exercised whenever these

odels are used to generate advice in the process of public pol-

cy decision making. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

cknowledgements 

E.T, P.B, G.B.M., and P.D.M. wish to acknowledge enlightening

iscussions with colleagues with whom they had the pleasure to

hare a month of work in a first response modeling committee,

hile learning these lessons from being challenged by COVID-19:

ernán Solari, Marcelo Kuperman, Gustavo Sibona, Zulma Ortiz,

abriel Fabricius, Juan Aparicio, Veronica Simoy, and Ignacio Simoy

who also provided invaluable help in the processing of the data).

he authors also acknowledge Sebastián Pinto, Facundo Fainstein,

ebastian Geli, MartíÃn Coll, Federico Albanese, Franco Castellacci,

nd Sofía del Pozo for providing support in data analysis and visu-

lization. E.T. acknowledges the support of the Toyoko 2020 Cloud

redits for Science program, and thanks Sebastián Bassi and Vir-

inia González for their continuous support. 

eferences 

[1] Cereda D , Tirani M , Rovida F , Demicheli V , Ajelli M , Poletti P , Trentini F ,
Guzzetta G , Marziano V , Barone A , Magoni M , Deandrea S , Diurno G ,

Lombardo M , Faccini M , Pan A , Bruno R , Pariani E , Grasselli G , Piatti A ,

Gramegna M , Baldanti F , Melegaro A , Merler S . The early phase of the
COVID-19 outbreak in Lombardy, Italy; 2020 . 

[2] Russell TW , Hellewell J , Jarvis CI , van Zandvoort K , Abbott S , Ratnayake R ,
et al. Estimating the infection and case fatality ratio for coronavirus dis-

ease (COVID-19) using age-adjusted data from the outbreak on the diamond
princess cruise ship, february 2020. Euro Surveill. 2020;25(12):20 0 0256 . 

[3] Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS. Strate-

gies for mitigating an influenza pandemic. Nature 2006;4 42:4 48–52. doi: 10.
1038/nature04795 . 

[4] Halloran ME, Ferguson NM, Eubank S, Longini IM, Cummings DAT, Lewis B,
et al. Modeling targeted layered containment of an influenza pandemic in

the United States. Proc Natl Acad Sci 2008;105(12):4639–44. doi: 10.1073/pnas.
0706 84 9105 . 

[5] Balcan D, Gonalves B, Hu H, Ramasco JJ, Colizza V, Vespignani A. Modeling

the spatial spread of infectious diseases: the GLobal epidemic and mobility
computational model. J Comput Sci 2010;1(3):132–45. doi: 10.1016/j.jocs.2010.

07.002 . 
[6] Soriano-Paños D, Lotero L, Arenas A, Gómez-Gardeñes J. Spreading processes in

multiplex metapopulations containing different mobility networks. Phys Rev X
2018;8:31039. doi: 10.1103/PhysRevX.8.031039 . 

[7] D. Mistry, M. Litvinova, A. Pastore y Piontti, M. Chinazzi, L. Fumanelli, M.F.C.

Gomes, S.A. Haque, Q.-H. Liu, K. Mu, X. Xiong, M.E. Halloran, I.M. Longini Jr., S.
Merler, M. Ajelli, A. Vespignani, Inferring high-resolution human mixing pat-

terns for disease modeling, 2020, 
[8] Arregui S, Aleta A, Sanz J, Moreno Y. Projecting social contact matrices to

different demographic structures. PLoS Comput Biol 2018;14(12):1–18. doi: 10.
1371/journal.pcbi.1006638 . 
[9] Kuniya T. Prediction of the epidemic peak of coronavirus disease in Japan,
2020. J Clin Med 2020;9(3):789. doi: 10.3390/jcm9030789 . 

[10] Maier BF, Brockmann D. Effective containment explains subexponential growth
in recent confirmed COVID-19 cases in China. Science 2020. doi: 10.1126/

science.abb4557 . 
[11] Cancin A , Castillo C , Gajardo P , Lecaros R , Muoz C , Naranjo C , Ortega J ,

Ramirez H . Report 2: estimation of maximal ICU beds demand for COVID-19
Outbreak In Santiago, Chile. Technical Report; 2020 . 

[12] Arenas A, Cota W, Gomez-Gardenes J, Gómez S, Granell C, Matamalas JT,

Soriano-Panos D, Steinegger B. A mathematical model for the spatiotempo-
ral epidemic spreading of COVID19. medRxiv 2020. doi: 10.1101/2020.03.21.

20 040 022 . 
[13] Ferguson NM, Laydon D, Nedjati-Gilani G, et al. Report 9: Impact of non-

pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and health-
care demand. Technical Report; 2020. doi: 10.25561/77482 . 

[14] Karin O, Bar-On YM, Milo T, Katzir I, Mayo A, Korem Y, Dudovich B, Yashiv E,

Zehavi AJ, Davidovich N, Milo R, Alon U. Adaptive cyclic exit strategies from
lockdown to suppress COVID-19 and allow economic activity. medRxiv 2020.

doi: 10.1101/2020.04.04.20053579 . 
[15] Martin-Calvo D , Aleta A , Pentland A , Moreno Y , Moro E . Effectiveness of so-

cial distancing strategies for protecting a community from a pandemic with
a data-driven contact network based on census and real-world mobility data.

Technical Report; 2020 . 

[16] Aleta A , Martin-Corral D , Pastore y Piontti A , Ajelli M , Litvinova M , Dean NE ,
Halloran ME , Longini IM , Merler S , Pentland A , Vespignani A , Moro E ,

Moreno Y . Modeling the impact of social distancing, testing, contact tracing
and household quarantine on second-wave scenarios of the COVID-19 epi-

demic. Technical Report; 2020 . 
[17] Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The

effect of control strategies to reduce social mixing on outcomes of the

COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health
2020;5(5):e261–70. doi: 10.1016/S2468- 2667(20)30073- 6 . 

[18] Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di Matteo A, et al.
Modelling the COVID-19 epidemic and implementation of population-wide in-

terventions in italy. Nat Med 2020. doi: 10.1038/s41591- 020- 0883- 7 . 
[19] Liu Q-H, Ajelli M, Aleta A, Merler S, Moreno Y, Vespignani A. Measurability of

the epidemic reproduction number in data-driven contact networks. Proc Natl

Acad Sci 2018;115(50):12680–5. doi: 10.1073/pnas.1811115115 . 
20] Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J. Substantial un-

documented infection facilitates the rapid dissemination of novel coronavirus
(SARS-CoV-2). Science 2020;36 8(64 90):4 89–93. doi: 10.1126/science.abb3221 . 

[21] Zhang J, Litvinova M, Wang W, Wang Y, Deng X, Chen X, et al. Evolving epi-
demiology and transmission dynamics of coronavirus disease 2019 outside

Hubei province, China: a descriptive and modelling study. Lancet Infect Dis

2020. doi: 10.1016/S1473- 3099(20)30230- 9 . 
22] Jia JS, Lu X, Yuan Y, Xu G, Jia J, Christakis NA. Population flow drives

spatio-temporal distribution of COVID-19 in China. Nature 2020. doi: 10.1038/
s41586- 020- 2284- y . 

23] Lekone PE , F BF . Statistical inference in a stochastic epidemic SEIR model with
control intervention: Ebola as a case study. Biometrics 2006;62:1170—1177 . 

24] Feng Z . Final and peak epidemic sizes for SEIR models with quarantine and
isolation. Math Biosci Eng 2007;4:675 . 

25] Guckenheimer J , Holmes P . Nonlinear oscillations, dynamical systems, and bi-

furcations of vector fields. Springer-Verlag; 1983 . 
26] Flaxman S, Mishra S, Gandy A, et al. Estimating the number of infections and

the impact of non-pharmaceutical interventions on COVID-19 in 11 European
countries. Technical Report; 2020. doi: 10.25561/77731 . 

[27] Sarraute C , Ponieman N , Lang C , Anapolsky S . The city pulse of buenos aires.
In: NetMob 2015 (Fourth conference on the scientific analysis of mobile Phone

Datasets), MIT Media Lab, Cambridge, USA, 8–10 April 2015; 2015. p. 54–6 . 

28] Ministerio de Salud de la Nación de la República Argentina, Official data for
COVID-19 cases in Argentina, May 2020, ( https://www.argentina.gob.ar/salud/

coronavirus- COVID- 19/sala- situacion ). 
29] Lloyd AL , May RM . Spatial heterogeneity in epidemic models. J Theor Biol

1996;179:1–11 . 
30] Blondel VD , Guillaume J-L , Lambiotte R , Lefebvre E . Fast unfolding of commu-

nities in large networks. J Stat Mech 20 08;20 08(10):P10 0 08 . 

[31] Hu Y . Efficient, high-quality force-directed graph drawing. Math J
2005;10(1):37–71 . 

http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0002
https://doi.org/10.1038/nature04795
https://doi.org/10.1073/pnas.0706849105
https://doi.org/10.1016/j.jocs.2010.07.002
https://doi.org/10.1103/PhysRevX.8.031039
https://doi.org/10.1371/journal.pcbi.1006638
https://doi.org/10.3390/jcm9030789
https://doi.org/10.1126/science.abb4557
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0010
https://doi.org/10.1101/2020.03.21.20040022
https://doi.org/10.25561/77482
https://doi.org/10.1101/2020.04.04.20053579
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0015
https://doi.org/10.1016/S2468-2667(20)30073-6
https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1073/pnas.1811115115
https://doi.org/10.1126/science.abb3221
https://doi.org/10.1016/S1473-3099(20)30230-9
https://doi.org/10.1038/s41586-020-2284-y
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0022
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0023
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0024
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0024
https://doi.org/10.25561/77731
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0026
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0026
https://www.argentina.gob.ar/salud/coronavirus-COVID-19/sala-situacion
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0027
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0028
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0029
http://refhub.elsevier.com/S0960-0779(20)30318-0/sbref0029

