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Cohesin complex-associated holoprosencephaly

Paul Kruszka,I Seth I. Berger,"* Valentina Casa,2 Mike R. Dekker',2 Jenna Gaesser,3
Karin Weiss,"i Ariel F. Martinez,' David R. Murdock,'"* Raymond ). Louie,4
Eloise J. Prijoles,* Angie W. Lichty,* Oebele F. Brouwer,” Evelien Zonneveld-Huijssoon,®
Mark ). Stephan,7 Jacob Hogue,8 Ping Hu,' Momoko Tanima-Nagai,I Joshua L. Everson,’"0
Chitra Prasad,'' Anna Cereda,'? Maria lascone,'® Allison Schreiber,'* Vickie Zurcher,'*
Nicole Corsten-Janssen,® Luis Escobar,'® Nancy J. Clegg,'® Mauricio R. Delgado,'®'’
Omkar Hajirnis,I8 Meena Balasubramanian,”’20 Hiilya Kayser'ili,2I Matthew Deardor'ff,n’23
Raymond A. Poot,? Kerstin S. Wendt,? Robert J. Lipinski®'® and Maximilian Muenke'

Marked by incomplete division of the embryonic forebrain, holoprosencephaly is one of the most common human developmental
disorders. Despite decades of phenotype-driven research, 80-90% of aneuploidy-negative holoprosencephaly individuals with a
probable genetic aetiology do not have a genetic diagnosis. Here we report holoprosencephaly associated with variants in the two
X-linked cohesin complex genes, STAG2 and SMC1A, with loss-of-function variants in 10 individuals and a missense variant in
one. Additionally, we report four individuals with variants in the cohesin complex genes that are not X-linked, SMC3 and RAD21.
Using whole mount #n situ hybridization, we show that STAG2 and SMC1A are expressed in the prosencephalic neural folds
during primary neurulation in the mouse, consistent with forebrain morphogenesis and holoprosencephaly pathogenesis. Finally,
we found that shRNA knockdown of STAG2 and SMC1A causes aberrant expression of HPE-associated genes ZIC2, GLI2,
SMAD3 and FGFR1 in human neural stem cells. These findings show the cohesin complex as an important regulator of median
forebrain development and X-linked inheritance patterns in holoprosencephaly.
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Introduction

Holoprosencephaly (HPE) is defined by incomplete division
of the embryonic forebrain. While occurring in approxi-
mately 1 in 10000 live births, HPE is estimated to occur
in 1 in 250 embryos, making it one of the most common
human developmental abnormalities (Matsunaga and
Shiota, 1977). The most common cause is trisomy 13,
which accounts for ~50% of all cases (Kruszka and
Muenke, 2018). Over the past two decades, four principal
genes have been associated with HPE: SHH at 7q36.3,
ZIC2 at 13q32.3, SIX3 at 2p21, and TGIF1 at
18p11.31. These four genes have been the mainstay for
genetic testing in individuals with HPE and normal karyo-
types (Pineda-Alvarez et al., 2010; Kruszka et al., 2018). At
least 10 other genetic loci have been associated with HPE,
but at a lower prevalence (Kruszka et al., 2018). SHH,
SIX3, ZIC2 and TGIF1 account for only a fraction of
the genetic aetiology in individuals with normal karyotypes.
In a recent next generation sequencing study of 257 indi-
viduals with HPE, deleterious variants in SHH were most
common in 5.8% of the HPE cohort, ZIC2 at 4.7%, SIX3
at 2.7% and no deleterious variants in TGIF1 (Dubourg
et al., 2016); collectively, these four genes accounted for
13.2% of the aetiology in these individuals. With the intro-
duction of whole exome sequencing (WES), driver muta-
tions in new genes including FGFR1 and CNOT1 are
being found (Simonis et al., 2013; De Franco et al.,
2019; Kruszka et al., 2019). To expand the genetic aeti-
ology of HPE and uncover novel regulators of forebrain
development, we have applied WES to 277 probands
with HPE and both their parents (trios), if available.

We initially identified loss-of-function (LOF) variants in
cohesin complex genes in 5 of 277 (1.8%) individuals in
our holoprosencephaly cohort at the National Human
Genome Research Institute (NHGRI). Through our holo-
prosencephaly network, DECIPHER (Firth et al., 2009),
and GeneMatcher (Sobreira et al., 2015), we identified 10

other individuals with holoprosencephaly and variants in
cohesin complex genes. Collectively, these 15 individuals
with HPE have 13 LOF variants, one in-frame deletion,
and one pathogenic missense variant distributed across the
four cohesin complex genes SMCIA (MIM: 300040),
STAG2 (MIM: 300826), SMC3 (MIM: 606062) and
RAD21 (MIM: 606462). The majority of cases (11/15)
are females with variants in the X-linked genes SMCIA
and STAG2. Cohesin is a highly conserved multiprotein
complex with SMC1A, SMC3, RAD21 and STAG1/
STAG2 as its subunits in mammals (Brooker and
Berkowitz, 2014). This complex forms a ring structure
that is involved in sister chromatid cohesion during
DNA replications. Additional roles of this complex in-
clude transcription regulation and DNA repair (Mehta
et al., 2013). Mutations in the cohesin complex and its
regulators have been associated with four human genetic
syndromes: Cornelia de Lange syndrome (CdLS) caused
by variants in NIPBL (Krantz et al., 2004), SMCIA
(Musio et al., 2006), SMC3 (Deardorff et al., 2007),
RAD21 (Deardorff et al., 2012b), BRD4 (Olley et al.,
2018), HDACS8 (Deardorff et al., 2012a); Roberts SC
phocomelia syndrome caused by mutations in ESCO2
(Gordillo et al., 2008), CHOPS syndrome (Cognitive im-
pairment and coarse facies, Heart defects, Obesity,
Pulmonary involvement, and Short stature and skeletal
dysplasia) associated with AFF4 variants (Izumi et al.,
2015); and chronic atrial and intestinal dysrhythmia
caused by mutations in SGOL1 (Chetaille et al., 2014).
The cohesin complex genes that we associate with holo-
prosencephaly (STAG2, SMC1A, SMC3 and RAD21) are
intolerant of variation based on the Genome Aggregation
Database (gnomAD) constraint metric of observed/ex-
pected loss of function (o/e) values (Lek et al., 2016).
Values <0.35 (o/e) are considered under selection against
LOF (https://gnomad.broadinstitute.org) and the cohesin
complex genes were well below this threshold: STAG2
0.02 [90% confidence interval (CI), 0.1-0.09], SMC1A
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0.0 (90%CI, 0.0-0.06), SMC3 0.0 (90%CI, 0.0-0.04) and
RAD21 0.1 (90%CI, 0.04-0.26).

Materials and methods

Subjects and clinical phenotyping

The individuals and families with HPE in this study were re-
cruited from multiple international clinical genetics centres.
Within the participating institutions, the phenotype was eval-
uated by clinical exam by the authors of this study and brain
imaging (MRI or CT) or autopsy to confirm HPE. The study
was approved by National Human Genome Research Institute
Institutional Review Board (IRB) and the ethical committee of
the patient’s local institutions. The subjects’ consents were ob-
tained according to the Declaration of Helsinki.

DNA sequence analysis

Sanger sequencing

With the goal of new gene discovery, probands were pre-
screened for four common genes known to cause HPE: SHH
(MIM 600725) on 7q36, ZIC2 (MIM 603073) on 13q32,
SIX3 (MIM 603714) on 2p21, and TGIF1 (MIM 602630)
on 18p11.3 using Sanger sequencing (Supplementary material).
Novel variants found in this study by WES were also con-
firmed with Sanger sequencing.

Whole exome sequencing

WES was performed at the National Intramural Sequencing
Center (NISC) on the individuals from the NHGRI HPE
cohort (Supplementary material). The remaining individuals
were sequenced at seven other academic and commercial
laboratories (Supplementary Table 1). All WES results were
verified by Sanger sequencing. Stringent variant filtering of
the NHGRI cohort included: (i) de novo inheritance of vari-
ants in genes known to be intolerant of variation (Lek ef al.,
2016); (ii) absence in the ExAC data base (Lek et al., 2016);
and (iii) combined annotation-dependent depletion (CADD)
scores >20 (Kircher et al., 2014).

Mouse embryo in situ hybridization

Genes that contribute to median forebrain morphogenesis and
HPE pathogenesis are expressed in the prosencephalic neural
folds that give rise to the forebrain during primary neurulation
(Roessler et al., 2018). We therefore examined expression of
Stag2 and Smcla by in situ hybridization on mouse embryos
at GD8.25 (Supplementary material), a stage representing early
neurulation and within the critical period for HPE genesis
(Heyne et al., 2015a). In situ hybridization was conducted as
previously described and analysis was limited to the prosence-
phalic regions of the neural fold from which the forebrain will
develop (Everson et al., 2017). This study was conducted in
strict accordance with the recommendations in the ‘Guide for
the Care and Use of Laboratory Animals’ of the National
Institutes of Health. The protocol was approved by the
University of Wisconsin-Madison School of Veterinary
Medicine Institutional Animal Care and Use Committee
(protocol number 13-081.0). CD-1 mice (Mus musculus)
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were purchased from Charles River and C57BL/6] mice from
The Jackson Laboratory. Timed pregnancies were established
as described previously (Heyne ez al., 2015b). Embryos were
dissected at gestational Day 8.25 and fixed overnight in 4%
paraformaldehyde. In situ hybridization was carried out on
whole C57BL/6] embryos or 50-um sections cut from CD-1
embryos with a vibrating microtome in the transverse plane
along the anterior-posterior axis. Iz situ hybridization was
carried out as described previously (Everson et al., 2017).

Gene expression studies in human
neural stem cells

To test the hypothesis that variation in cohesin genes, specif-
ically STAG2 and SMC1A, perturb known forebrain develop-
mental pathways, we measured selected gene expression
associated with these pathways. First, knockdown of STAG2
and SMC1A with shRNA was performed on H9-derived
human neural stem cells (ThermoFisher/Invitrogen, #N7800-
100) (Supplementary material and Supplementary Fig. 1).
Known HPE pathways were analysed at the gene expression
level with RT-qPCR of SHH, SIX3, FGFR1, GLI2, ZIC2,
GLI2, SMAD3 and DISP1 genes.

Data availability

The raw data that support the findings of this manuscript are
available upon request to the corresponding author.

Results

Patients: phenotype and genotype

We assembled 277 individuals with HPE in our NHGRI
cohort (135 trios and 142 singletons); the cohort charac-
teristics are shown in Supplementary Table 2. In the four
classic HPE genes, pathogenic variants were found in 33
(11.9%) individuals: ZIC2 was most common with 15
(5.4%) variants, followed by SHH nine (3.2%), SIX3
eight (2.9%), and TGIF1 one (0.4%). For these four
genes, Supplementary Table 3 lists each variant, HPE sub-
type and inheritance pattern. In our HPE cohort of 277
individuals at NHGRI, four females had truncating variants
(four nonsense and one splice site) in the cohesin complex
genes STAG2 and SMC1A on the X chromosome, and one
proband had a nonsense variant in RAD21 on chromo-
some 8. Another four LOF variants in STAG2 in females,
two LOF variants and one missense variant in SMCIA all
in females, two LOF variants in RAD21, and an in-frame
deletion in SMC3 were found through our group’s HPE
network, DECIPHER (Firth et al, 2009) and
GeneMatcher (Sobreira et al., 2015) (genotypes: Table 1;
phenotypes: Tables 2-5).

STAG2

The phenotypes of four of six patients with STAG2 patho-
genic variants in the present study included the most severe
forms of HPE: alobar HPE with cyclopia, alobar without
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Table | Individuals with HPE and variants in cohesin complex genes

HPE type

Age

CADD

Inheritance

hgl9/GRCh37 human
reference genome

Gene Variant

Patient
ID

BRAIN 2019: 142; 2631-2643

score

Alobar

Newborn
2 years

53

De novo
De novo

chrX-123217380-C-T
chrX-123164892-C-T
chrX-123176469-C-T
chrX-123205174-G-A

.3034C > T p.(R1012%)
€205C>T p.(Arg69*)

c436C>T p.(R146%)
€2533+I1G>A

STAG2

Semi-lobar

Alobar

27
38
34
34
36

STAG2

32-week gestation

Singleton

STAG2

Semi-lobar
Microform

Newborn/deceased

12 months
9.5 years

Maternal
De novo
De novo

STAG2

chrX- 123215352—-123215353

chrX-123181311-C-T

p.(Glu968Serfs*15)

c.775C>T p.(Arg259*)

¢.2898_2899del
c.3285+1G>C

STAG2

Septo-optic dysplasia

MIHV

STAG2

15 months

25.1
39

De novo

chrX-53409426-C-G

Microform

16.5 months

6 years
3 years

Singleton
De novo

chrX-53436043-G-A

.1495C>T p.(Argd99%)

Semi-lobar/lobar

28.5

chrX-53423417-G-C
chrX-53430524
chrX-53423175

c.2683C>G (p. Arg895Gly)

Semi-lobar
Semi-lobar
Septo-optic dysplasia

MIHV
HPE
Semi-lobar

Termination after 21 weeks

20 months

7 years
14 years
2 years

35
35
35
38
35
21.9

Paternally inherited

De novo
De novo
Unknown
Unknown
De novo

chr10-112343987-GG. . .AG (15 bp)

chr8—117869605-G-A

chr8-117862929
chr8-117864885

p-(Lys406Argfs*4)
p-(Gly380_GIn384del)

c.1138_1152del

c.1548delinsTC p.Glu518Argfs*19

€.2394delA; p.(Lys798Asnfs*31)
€.2834delG; p.(Gly945Alafs*19)
.589C>T p.(GIn197*)

c.1217_1224del

SMC
SMcC
RAD2I
RAD21
RAD21
SMC3

= middle interhemispheric variant type holoprosencephaly.

CADD = combined annotation-dependent depletion; MIHV
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cyclopia, and semilobar HPE (Patients 1-4; Tables 1 and
2). The other two patients with STAG2 variants had milder
forms of HPE (Patients 5-6; Table 1): Patient 5 had micro-
form HPE, which is characterized by midline clefting, hypo-
telorism and depressed nasal bridge without brain
anomalies (Fig. 1B), and Patient 6 is classified with septo-
optic dysplasia type of HPE (Hahn et al., 2010) based on
ophthalmology exam showing optic nerve hypoplasia and
MRI findings of a mildly dysmorphic neurohypophysis. In
Table 2, we compare the genotypes and phenotypes of the
six cases in the present study with six cases with LOF vari-
ants from the medical literature (Mullegama et al., 2017,
Aoi et al., 2019; Yuan et al., 2019). Overlapping clinical
features of the six individuals in the present study and the
six individuals in the medical literature include two of the
six cases from the medical literature with HPE: Patient 1
from Aot et al. (2019) has a structural brain malformation
consistent with HPE, and Patient 3 from Yuan et al. (2019)
has the microform HPE subtype. Additionally, three of the
four cases in the medical literature have midline brain mal-
formations including HPE as noted above, agenesis of the
corpus callosum, and dysgenesis of the corpus callosum.
Most of the present study and the cases in the medical
literature have vertebral anomalies: six of seven that re-
ported spine anomalies. Vertebral anomalies are not part
of the clinical features associated with classic CdLS, but are
commonly found in individuals with variants in SMC3 and
RAD21 (Kline et al., 2018). Also, seven of nine total had
congenital heart disease. All LOF STAG2 variants in the
medical literature are de novo; interestingly, in the present
study, Patient 4, (1/5) is inherited maternally which may be
explained by skewed X-inactivation (not tested) or incom-
plete penetrance. Additionally, there is a LOF variant in the
gnomAD database of presumptively healthy individuals
(allele count 1/178 804), which raises the possibility of
the rare case of incomplete penetrance (https:/gnomad.
broadinstitute.org accessed 1 May 2019). Collectively
from the 12 cases in the present study and medical litera-
ture with LOF variants in STAG2, only one individual was
male and he was reported to have HPE (Aoi et al., 2019);
the most likely conclusion is that LOF variants in STAG2
are lethal or result in the most severe phenotype (HPE).
Coincidentally, Mullegama et al. (2017) reported a patient
with a STAG2 with an identical variant as in Patient 2
(Fig. 1), ¢.205C>T; p.Arg69*. The patient in the
Mullegama et al. (2017) report had dysgenesis of the sple-
nium of the corpus callosum and the patient in this study
had semilobar HPE, showing that STAG2 LOF variants are
responsible for a spectrum of midline brain anomalies.

SMCIA

The other five individuals with X-linked HPE were all fe-
males (Patients 7-11) (Table 3 and Fig. 1D-F) with four
truncating variants and one with a missense variant in
SMC1A, a cohesin complex gene known to be associated
with CdLS (Deardorff et al., 2007). Variants in SMCIA
account for 4-6% of individuals with CdLS (Patients
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Figure | Patient images. (A) Patient 3 with alobar HPE and a c¢.436C > T p.(Argl46*) variant in STAG2; (B) Patient 5 with microform HPE and
a ¢.2898_2899del p.(Glu968Serfs*15) in STAG2; (C) Patient 2 with semi-lobar HPE and a ¢.205C>T p.(Argé9*) variant in STAG2; (D) Patient 9
with semi-lobar HPE and a ¢.2683C > G p.( Arg895Gly) variant in SMCIA; (E) Patient 7 with middle interhemispheric variant HPE and a
¢.3285+1G > C variant in SMCIA; (F) Patient 8 with microform HPE and a c.1495C>T p.(Arg499*) variant in SMCIA; (G) Patient 15 with semi-
lobar HPE and an SMC3 variant c.| 138_1152del p.(Gly380_GIn384del). See Table | for further details.
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Table 5 Phenotype details of individuals with LOF variants in SMC3

Present study

Gil-Rodriguez et al., 2015
n=16

Patient 15
Variant c.1138_1152del p.(Gly380_GIn384del)
Inheritance De novo
Sex Male
Age Foetus
Brain imaging Semilobar HPE
Developmental delay NA
Craniofacial anomalies Median cleft lip
Microcephaly NR

Ear anomalies and hearing NR
Vertebral anomalies NR
Congenital heart disease Tetralogy of Fallot
Growth delay NA
Limb anomalies

Other Hypospadias; anal atresia

Hand/feet cutaneous syndactyly; ulnar deviation of second
digit of hands bilaterally; proximally set thumbs

Missense (9/16); in-frame deletions/duplications (6/16); non-
sense (1/16)

De novo (10/10)

Female 7/16

NR

Corpus callosum dysgenesis (2/11); porencephalic cyst (1/11)

Intellectual disability (13/13)

Cleft palate 1/14; synophrys (11/15); thick eyebrows (9/13);
anteverted nostrils (8/14); thin upper lip vermilion (13/16)

6/12

Low-set ears (6/11); hearing loss 7/13

Butterfly vertebrae (1/12); scoliosis (1/12)

9/16

Height Z-score < —3.0 (6/16); weight Z-score < —3.0 (5/16)

Small hands (I 1/14); small feet (11/13); proximally set thumbs

(12/16)
Seizures (3/12)

NA = non-applicable; NR = not reported.

12-14) (Ansari et al., 2014; Boyle et al., 2015; Yuan et al.,
2015) and are most commonly missense and in-frame de-
letions (Huisman et al., 2013). Four of five individuals in
the present study had LOF variants; therefore, we used 16
cases with LOF variants in SMC1A from the medical lit-
erature with phenotype information for comparison in
Table 3 (Hoppman-Chaney et al., 2012; Goldstein et al.,
2015; Lebrun et al., 2015; Jansen et al., 2016; Symonds
et al., 2017). The most severe phenotype in the LOF vari-
ants in the medical literature was HPE found in 2 of 16
individuals (Hoppman-Chaney et al., 2012; Symonds et al.,
2017). In both the present study and in the medical litera-
ture, when parents were available, all LOF variants were de
novo and all individuals were females. In addition to mid-
line brain defects, the most striking phenotype is seizure
disorders. In the present study, four of five individuals
had seizures and 15 of 16 in the medical literature. In the
largest study of 10 individuals with truncating variants in
SMCI1A, nine of nine reporting seizures had severe drug-
resistant epilepsy (Symonds et al., 2017). All 16 cases in the
present study and medical literature had developmental
delay. Two individuals in the present study have facial
characteristics consistent with mild CdLS, Patients 9 and
10 both had synophrys and small hands. In the largest
study of LOF variants in SMC1A (Table 3), the authors
report few phenotype characteristics consistent with CdLS
(Symonds et al., 2017).

RAD21

Four variants were found in the two cohesin complex genes
that are not X-linked, three were in the gene RAD21. The
three RAD21 variants (Patients 12 and 13) (Table 4) were
LOF; interestingly, Patient 12 with the c¢.1548delinsTC

p.(Glu518Argfs*19) variant in RAD21 is a paternally in-
herited variant with the father having synophrys and a
submucous cleft palate. In Table 4, the three LOF variants
in the present study are compared to LOF and deletions
involving RAD21 in the medical literature (Wuyts et al.,
2002; McBrien et al., 2008; Deardorff et al., 2012b; Minor
et al., 2014; Boyle et al., 2017). A much higher fraction of
LOF variants are inherited compared to STAG2 and
SMCI1A: present study one (1/1) and in the medical litera-
ture, 2 of 5 (when parents where available). Both the pre-
sent study and the medical literature presented individuals
with cardinal features of CdLS (Kline et al., 2018), includ-
ing: synophrys or thick eyebrows in 8/10, short or up-
5110, long philtrum 5/10, and
microcephaly in 6/10.

turned nose in

SMC3

The fourth non-X-linked gene is SMC3 and the SMC3 vari-
ant (Patient 15; Table 5) was a de novo in-frame deletion
that is likely pathogenic (Richards et al., 2015). In Table 3,
we compare to the largest and most comprehensive series of
individuals with variants in SMC3 (n = 16) (Gil-Rodriguez
et al., 2015). The present study found an in-frame deletion
in SMC3 in a foetus with semilobar HPE, median cleft lip,
tetralogy of Fallot, hypospadias, anal atresia and limb
anomalies. Gil-Rodriguez et al. (2015) found two of their
study participants to have midline brain malformations:
corpus callosum dysgenesis (2/11) and no cases of holopro-
sencephaly. Based on reviewing the present study’s case and
the cohort presented by Gil-Rodriguez et al., intellectual
disability (13/13) and congenital heart disease (10/17)
were prevalent. The facial features are difficult to charac-
terize because of the early gestation in the present study
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Smc1a

Figure 2 Gestational day (GD) 8.25 mouse embryos were stained by in situ hybridization to determine gene expression
patterns. A ventral view is shown for whole mounts. Transverse sections through the prosencephalic neural folds (at the level of the dashed line
in schematic) were stained to visualize gene expression in specific cellular compartments. eem = extra-embryonic membranes; h = heart;

hm = head mesenchyme; ne = neuroectoderm; nf = neural folds. Scale bar = 100 um.

(Fig. 1G); however, Gil-Rodriguez et al. found a majority
of cases to have facial features consistent with CdLS (Table
5).

Mouse in situ hybridization

As a control, we first examined the expression of Shh
(Fig. 2), a gene with a well-characterized expression
domain and role in forebrain patterning and HPE
(Chiang et al., 1996; Solomon et al., 2012; Hong et al.,
2016). Expression of Shh is restricted to the ventromedial
neuro-ectoderm (Fig. 2) as described previously (Echelard
et al., 1993). Both Smcla and Stag2 are also strongly de-
tected in the anterior neural folds with expression observed
in both the neuro-ectoderm and adjacent mesenchyme
(Fig. 2). The specificity of the observed expression domains
for these genes is supported by the absence of staining in
extra-embryonic membrane tissue lateral to the neural

folds.

Gene expression studies in human
neural stem cells

As noted in the ‘Materials and methods’ section, we ana-
lysed the expression level of genes known to be involved in
HPE pathways with RT-qPCR, which include SHH, SIX3,
FGFR1, GLI2, ZIC2, GLI2, SMAD3 and DISP1. SHH,
SIX3, ZIC2 and FGFR1 were chosen as variants in these
genes known to cause HPE (Kruszka et al., 2018; Kruszka
and Muenke, 2018). DISP1 is part of the sonic hedgehog
pathway and has been associated with HPE (Roessler et al.,
2009; Dubourg et al., 2016); also part of the sonic hedge-
hog pathway, GLI2 is an often HPE tested gene that is
associated with HPE spectrum anomalies including pituit-
ary insufficiency, midface hypoplasia, hypotelorism, and
cleft lip/palate (Kruszka et al., 2018). Although not
known to contain driver mutations associated with HPE,
SMAD3 physically interacts with ZIC2 and controls

transcription in a NODAL-dependent manner and variant
forms of ZIC2 associated with HPE in humans and the
mouse have difficulty with SMAD-dependent transcription,
making SMAD3 of interest (Houtmeyers et al., 2016).
Compared to controls, SMCIA knockdown in human
neural stems cells resulted in significantly increased expres-
sion in GLI2 (P < 0.01), ZIC2 (P < 0.05), and SMAD3
(P < 0.05) (Supplementary Fig. 2). For STAG2 knockdown
(Supplementary Fig. 3), significantly increased expression
was seen in ZIC2 (P < 0.0001) and FGFR1 (P < 0.01).
Thus, there was overexpression in ZIC2 from knockdown
of both SMC1A and STAG2. Similar to a previous experi-
ment (Cotney et al., 2015), SHH and SIX3 expression was
undetectable in human neural stem cells.

Discussion

HPE research and clinical care has focused on sonic hedge-
hog pathway and the genes SHH, ZIC2,and SIX3 for the
last two decades (Roessler and Muenke, 2010; Roessler
et al., 2018). This study introduces new genes in the cohe-
sin complex as important components of early forebrain
division and the holoprosencephaly spectrum. Evaluating
the holoprosencephaly study at NHGRI with WES, five
of 277 probands were identified with variants in cohesin
complex genes. Ten additional individuals with HPE were
identified from other institutions. Eleven of the 15 individ-
uals had variants in the X-linked genes STAG2 and
SMC1A. STAG2 has only recently been associated with
human disease (Mullegama et al., 2017, 2019; Soardi
et al., 2017; Aoi et al., 2019; Yuan et al., 2019). A small
number of cases with cohesin complex HPE have been re-
ported in the medical literature in the past: two HPE cases
with LOF variants in STAG2 (Aoi et al., 2019; Yuan et al.,
2019), two cases associated with SMCIA (Hoppman-
Chaney et al., 2012; Symonds et al., 2017), and no HPE
cases have been reported that we are aware of in RAD21
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and SMC3. Knowing that all individuals with CdLS have
not had brain imaging, the incidence of HPE associated
with cohesinopathy genes may be more common than pre-
viously reported.

Interestingly, the 11 individuals in this study with STAG2
and SMC1A variants were females, thus we propose that
LOF variants in the X-linked cohesin genes are usually
lethal in males; certainly, there are possible exceptions in
males including mosaicism, 47,XXY, and gene duplica-
tions. Notably, STAG2 undergoes complete X-inactivation
and SMC1A undergoes partial X-inactivation (Cotton
et al., 2013). For Patient 2 with a STAG2 nonsense variant
(c.205C>T p.(Arg69*), X-inactivation studies were con-
sistent with random X-inactivation, implying that haploin-
sufficiency is required for the HPE phenotype in STAG2.
The one exception to LOF in STAG2 and SMCIA is
Patient 9, who had a missense variant (Table 1) located
in the conserved second coiled-coil domain and is likely
pathogenic (Richards et al., 2015). Based on the LOF vari-
ants in SMC1A in the other four individuals in this report,
we hypothesize that the SMC1A variant (c.2683C>G (p.
Arg895Gly)) has a LOF variant or a dominant negative
effect. To evaluate X-linked inheritance from our HPE
registry, we performed a binomial distribution on 700 in-
dividuals with HPE. Of these 700 individuals, 409 were
female (P =0.000005). If we subtract individuals with
known pathogenic variants in SHH, SIX, and ZIC2,
there are 645 individuals, of whom, 378 were female
(P =0.000015). Although STAG2 and SMCI1A variation
most likely does not explain this significant trend towards
female sex in our registry, X-linked dominant inheritance
likely plays an important role.

A previous study has shown that antagonizing the hedge-
hog signalling pathway between gestational days 7.0 and
8.25 of mouse development (approximately corresponding
to the 15th to 22nd days of human gestation) results in
HPE (Heyne et al., 2015a). As forebrain patterning genes
are expected to be expressed in the prosencephalic neural
folds during primary neurulation (Geng and Oliver, 2009),
we assessed expression of cohesin complex genes during
this critical period for HPE in the mouse. The finding
that both Smcla and Stag2 are expressed in the prosence-
phalic neural folds complements the human genetic evi-
dence in this study and supports the role of cohesion
complex genes in forebrain morphogenesis. Being expressed
in both the neuro-ectoderm and adjacent mesenchyme sug-
gests that the cohesion complex may interact with other
critical regulators of forebrain patterning and HPE
pathogenesis.

To elucidate the relationship between forebrain division
in early embryogenesis and the cohesin complex further, we
knocked down cohesin complex gene expression in human
progenitor cells and measured canonical HPE gene expres-
sion. Upregulation in gene expression was seen in GLI2,
ZIC2 and SMAD3 for SMCI1A  knockdown
(Supplementary Fig. 2), and ZIC2 and FGFR1 for
STAG2 knockdown (Supplementary Fig. 3). LOF in ZIC2
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has been associated with HPE in the past and the mechan-
ism of increased ZIC2 expression in SMC1A and STAG2
knockdown human neural stem cells is not completely
clear. In the mouse model, LOF of Zic2 results in the fail-
ure to activate specific genes in the mid-gastrula node
including Foxa2, which is required to activate Shh in the
prechordal plate (Warr et al., 2008). There is evidence in
the Xenopus that overexpression of zic2 may contribute
depletion of foxa2 in the Spemann organizer (Houtmeyers
et al., 2016). Overexpression by injection of zic2 mRNA
into Xenopus embryos at the four- to eight-cell stage re-
sulted in reduced foxa2 expression (Houtmeyers et al.,
2016). SMAD3 is upregulated in SMCIA knockdown,
which is of interest as SMAD3 and ZIC2 physically interact
with each other in cell culture (A549 cells) to occupy a
binding site in the promoter region of FOXA2
(Houtmeyers et al., 2016). FGFR1 expression increased in
STAG2 knockdown neural progenitor cells. FGFR1 vari-
ants are associated with Hartsfield syndrome, which has
HPE and split hands and feet as phenotype elements. It is
unclear how overexpression of FGFR1 is related to HPE as
the mechanism of FGFR1 in HPE is a dominant negative
effect (Hong e al., 2016). GLI2 is overexpressed in the
SMC1A knockdown neural progenitor cells. GLI2 is both
a transcriptional activator and repressor in the sonic hedge-
hog pathway (Sasaki et al., 1999) and although it does not
cause HPE, LOF variants in GLI2 are associated with
Culler-Jones syndrome, which presents with hypopituitar-
ism, polydactyly and facial features often found in HPE
(Kruszka et al., 2018).

In conclusion, we present 15 patients with HPE spectrum
malformations who have variants in cohesin complex genes
STAG2, SMC1A, SMC3 and RAD21. Although the precise
mechanism of abnormal forebrain development is unknown
in LOF variants in cohesin complex genes, Stag2 and
Smcla are expressed in neural fold at the critical time of
forebrain division in the mouse model. Additionally, we
show that knockdown of STAG2 and SMC1A in human
neural stem cells perturbs known HPE genes. Currently,
there are no cohesin complex or X-linked genes that are
commonly tested for in individuals with HPE (Kruszka
et al., 2018). This report of X-linked and cohesin complex
HPE has broad implications for future genetic testing, gen-
etic counselling and HPE research.
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