
Diabetic retinopathy is the leading cause of blindness 
in working age adults. Although a large number of thera-
peutics have been tested in animal models, none has led to 
a successful treatment for non-proliferative diabetic reti-
nopathy. Anti-VEGF is effective for some cases of prolifera-
tive diabetic retinopathy and macular edema [1,2]. Reactive 
oxygen species, increased inflammatory factors, imbalanced 
growth factors, dyslipidemia, and dysfunctional insulin signal 
transduction have all been suggested to be involved in the 
pathogenesis of diabetic retinopathy [3-7]. In addition, altered 
cAMP signaling can regulate many of these same pathways, 
leading to retinal damage.

Cyclic adenosine 3′, 5′-monophosphate (cAMP) is a 
G-protein mediated signaling pathway that can regulate 
several downstream pathways, including those related to 
gluconeogenesis, muscle contraction, a large number of 
transcription factors, as well as many others [8]. Once 
activated, cAMP can lead to activation of protein kinase A 
(PKA), exchange protein activated by cAMP (Epac), and 
popeye domain containing proteins (Popdc) [9-11], as well 
as ion channels. Although cAMP can regulate a plethora of 
signaling cascades, its role in diabetic retinopathy has been 
less well studied. In diabetic retinopathy, changes in perme-
ability, neurons, and vasculature, and inflammatory proteins 
have been recorded in animal models of non-proliferative 
diabetic retinopathy (Figure 1) [12-14].

cAMP signaling in permeability changes in the diabetic 
retina: Original studies from bovine retinal cells showed 
that beta-adrenergic receptors increase cAMP, leading to 
decreased permeability [15]. More recent studies on bovine 
retinal endothelial cells found cAMP was key in the main-
tenance of the retinal barrier, and that TNFα decreased 

intracellular cAMP levels [16]. We developed a novel beta-
adrenergic receptor agonist, Compound 49b, and reported 
that Compound 49b regulated key barrier proteins, occludin 
and zonula occludens 1 (ZO-1), in retinal endothelial cells 
grown in high glucose [17]. In that study, we used Epac1 
siRNA to demonstrate that Compound 49b required Epac1 
to maintain the barrier [17]. To further investigate the role of 
Epac1 in retinal permeability in diabetes, we made diabetic 
Epac1 floxed and cdh5Cre-Epac1 mice to eliminate Epac1 in 
endothelial cells and used fluorescein angiography and Evan’s 
blue studies to demonstrate that Epac1 is key to reduced 
retinal permeability in the diabetic retina [18]. Similarly, 
work by Ramos et al. demonstrated that Epac1 activation of 
Rap1 reverses cytokine-induced increases in permeability in 
bovine retinal endothelial cells [19]. The work with Epac1 
mice and bovine retinal endothelial cells agrees with a review 
article by Wilson and Ye, suggesting that Epac1 and Rap1 
regulate retinal permeability [20]. Less has been done to 
focus on PKA in retinal permeability in diabetes. However, 
studies in healthy mice showed that PKA can phosphorylate 
connexin 36 to reduce retinal permeability in amacrine cells 
[21]. There remains a need to further understand the specific 
mechanisms by which Epac1 and PKA can regulate perme-
ability in the diabetic retina. Taken together, data suggest that 
cAMP signaling is key to barrier maintenance.

Role of cAMP signaling in vascular damage in diabetic 
retinopathy: Few groups have explored the role of cAMP 
signaling in the diabetic retinal vasculature. We showed that 
Compound 49b, which likely increased Epac1 and PKA, 
protects against the formation of degenerate capillaries in 
the diabetic retina [22]. We also recently reported that Epac1 
endothelial cell knockout (KO) mice have increased numbers 
of degenerate capillaries when exposed to diabetes [18] and 
ischemia/reperfusion (I/R) at 10 days post-ischemia [23]. An 
additional study of retinal pericytes in culture confirmed that 
PKA is key to retinal pericyte contractility [24]. In contrast 
to work in the diabetic mouse models, a recent study showed 
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that Epac1 inhibition reduces retinal angiogenesis in the 
oxygen-induced retinopathy model [25]. Other studies in 
cancer models also showed that Epac1 promotes angiogen-
esis through various signaling cascades [26,27], suggesting 
that Epac1 may have different actions on the vasculature 
depending on the cellular milieu. Thus, more studies on the 
role of Epac1 in the diabetic retinal vasculature are needed.

cAMP signaling actions on neuronal changes in the diabetic 
retina: Retinal ischemia can produce neuronal changes 
similar to diabetes [28], including reduced retinal thickness 
and loss of cell numbers in the ganglion cell layer. Using 
the I/R model with measurements at 2 days post-ischemia, 
studies have shown that increasing cAMP signaling can 
increase retinal ganglion cell (RGC) regeneration following 
damage [29]. Similarly, we found that Epac1 prevents the loss 
of retinal thickness and cell numbers in diabetic mice [18] 
and in the I/R model using endothelial cell–specific Epac1 
KO mice [23]. These findings agree with those of a study 
that used the I/R model showing that Epac2 protects against 
neuronal damage in the retina [30]. In contrast, another 
group using whole animal Epac1 KO mice found that Epac1 
promotes retinal neurodegeneration [31]. These authors 
performed their measurements at 24 h post-ischemia and 
measured apoptosis, not retinal thickness. Few studies have 
investigated PKA actions on neuronal changes in the diabetic 
retina. Therefore, additional work is needed to clarify cAMP 
actions on retinal neuronal changes in response to diabetes.

Actions of cAMP signaling in inflammatory markers in the 
diabetic retina: Work in healthy rodents showed that norepi-
nephrine and cAMP are key to regulation of a large number of 

night and day genes, including a large number of inflamma-
tory genes [32]. Work in Epac2 knockout mice exposed to I/R 
showed increased glial fibrillary acidic protein (GFAP) in the 
retina [30]. Increased GFAP signaling is often associated with 
increased inflammatory mediators in the retina [33]. Linking 
cAMP signaling to diabetic retinopathy, one group showed 
that Epac1 regulates O-GlyNAcylation in mice on a high-fat 
diet [34]. These changes included reduced Mas signaling and 
measurements of mitochondrial superoxide dismutase [35]. 
In previous work, we showed that Compound 49b reduces 
TNFα levels in retinal endothelial cells exposed to high 
glucose, which is associated with decreased retinal damage 
in response to diabetes [22]. Recently, we reported that Epac1 
decreases inflammatory mediators in human primary retinal 
endothelial cells exposed to high glucose and in the diabetic 
retina [18,36]. We also showed that PKA directly regulates 
inflammatory mediators, in the absence of Epac1 in human 
retinal endothelial cells grown in high glucose [37]. Taken 
together, the data strongly suggest that cAMP signaling can 
reduce inflammatory mediators in multiple retinal cell types, 
which protects the retina against stressors.

Conclusions: Despite knowledge of the actions of the cAMP 
pathway on a large number of signaling cascades, much less 
work has been conducted to investigate actions of cAMP and 
its downstream mediators, PKA and Epac, on the diabetic 
retina. Most studies have shown that cAMP signaling is 
protective to the diabetic retina, reducing neuronal, vascular, 
permeability, and inflammatory changes; however, other 
studies showed detrimental effects. Additional work is needed 
to determine the cellular mechanisms by which cAMP can act 

Figure 1. Schematic of cAMP 
signaling.

http://www.molvis.org/molvis/v26/355


Molecular Vision 2020; 26:355-358 <http://www.molvis.org/molvis/v26/355> © 2020 Molecular Vision 

357

on the retina, as well as optimizing cAMP-based therapies 
for systemic delivery.
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