Skip to main content
. Author manuscript; available in PMC: 2021 May 1.
Published in final edited form as: Ann Epidemiol. 2020 Apr 3;45:24–31.e3. doi: 10.1016/j.annepidem.2020.03.013

Table 3.

Regressions of factors associated with PrEP Prevalence in the United States, 2018

County County, State County, State, Region
Effect RR 95% CI LB 95% CI UB RR 95% CI LB 95% CI UB RR 95% CI LB 95% CI UB
Black Concentration 5% 1.04 1.03 1.05 1.04 1.03 1.05 1.04 1.03 1.05
Latinx/Hispanic Concentration 5% 1.02 1.01 1.03 1.02 1.01 1.03 1.02 1.01 1.03
Percent Poverty 5% 1.00 0.98 1.02 1.00 0.98 1.02 1.00 0.98 1.02
Percent Bachelor degree or higher 5% 1.08 1.07 1.09 1.08 1.07 1.08 1.08 1.07 1.08
Percent Uninsured 5% 1.04 1.01 1.08 1.05 1.02 1.08 1.05 1.02 1.08
Urbanicity 0.91 0.90 0.92 0.91 0.90 0.92 0.91 0.90 0.92
PrEP-DAP OR Medicaid Expansion vs. None 1.27 1.09 1.47 1.25 1.09 1.45
PrEP-DAP AND Medicaid Expansion vs None 1.99 1.60 2.48 1.99 1.60 2.48
Census Region: Northeast vs Midwest 1.19 0.97 1.46
Census Region: South vs Midwest 1.02 0.86 1.20
Census Region West vs Midwest 0.87 0.72 1.04

Note: Generalized linear mixed effects model with a poisson distribution, log link, random intercepts for county and state, variance components covariance structure. Model outcome is PrEP use, with an offset of population size. RR - rate ratio; 95% CI - 95% confidence interval; LB - Lower Bound; UB - Upper bound.

Change in the rate ratio given each 5% higher proportion of the covariate, e.g. 5% higher uninsured