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Abstract

Obesity is gaining increasing attention in modern society since it is associated with various health 

issues. The visceral adipose tissue (VAT) deposits around the abdominal organs and is considered 

an extremely important indicator of health risk. VAT can be assessed through magnetic resonance 

imaging (MRI) or computed tomography (CT) accurately, but the cost is prohibitive. Shape-based 

body composition prediction has become a promising topic thanks to the prevalence of commodity 

optical body scan systems, from which numerous anthropometries can be extracted automatically. 

In this paper, we propose an innovative shape-based hybrid VAT prediction model. The most 

appealing benefit of our method is to robustly handle the lack of knowledge about gender and 

demographics. First, we train a baseline VAT prediction model for each gender separately. Second, 

we train a classifier to predict the gender likelihood and a classifier to predict the shape likelihood 

of being overestimated in VAT baseline prediction. Third, we integrate the gender likelihood and 

shape likelihood into the baseline models to derive one hybrid VAT prediction model. We compare 

our prediction model with other state-of-the-art VAT prediction methods. The result shows that our 

method outperforms the comparison methods by 21.8% on average.

I. Introduction

The obesity rate is surging at an alarming rate worldwide. It is widely recognized that the 

obese suffer from a higher risk of developing serious metabolic or cardiovascular diseases 

such as insulin resistance, type 2 diabetes, dyslipidemia, and hypertension, and the excessive 

visceral fat has been considered an important cause. Whole-body body fat, as an advanced 

indicator of obesity, can be reliably measured by various civil or medical devices, such as 

Biomedical Impedance Analysis (BIA), Bod Pod®, and Dual-energy X-ray Absorptiometry 

(DXA) but they do not distinguish different types of adipose, i.e., subcutaneous fat and 

visceral fat. Unlike the Subcutaneous Adipose Tissue (SAT), which is typically located 

beneath the skin, the Visceral Adipose Tissue (VAT) deposits around the abdominal organs 

and is more likely to release free fatty acids into the circulation, leading to metabolic 
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disturbances[1]. The VAT can be measured accurately by magnetic resonance imaging 

(MRI) or computed tomography (CT). However, the prohibitive cost and low accessibility of 

these technologies limit its usage. Moreover, the CT exposes users to significant amounts of 

ionizing radiation. The CoreScan®[2] (GE Healthcare, Madison, WI), a DXA-based VAT 

assessment software has been developed to reduce the cost and radiation damages of the 

measurement. Although the CoreScan® evaluates VAT based on a statistical model, its 

accuracy has been validated by multiple studies with sufficient and well-distributed 

populations[3][4]. In spite of this new technology, the general public still has a low 

accessibility to VAT assessment.

The advance of optical 3D scan technologies has facilitated highly precise body shape 

information[5][6][7][8]. Laser-based body scan systems have been widely used in large-

scale body shape data collection[9][10]. However, this type of system is typically space-

consuming. Light-weight stereo vision based or RGB-D sensor based body scan systems[5]

[6][7] are more accessible and affordable for the public.

Early medical studies have found that the waist circumference and waist-to-hip ratio (WHR) 

are effective shape descriptors to assess abdominal fat. With the maturation of 3D scan 

technologies, body shape can be recorded and analyzed digitally, and thus, more 

comprehensive shape descriptors have been explored for the VAT prediction. Sun et al. [8] 

extensively investigated low-order shape descriptors extracted directly from 3D geometry 

and adopted stepwise regression to select the most effective descriptors for the prediction. 

Hanen et al. [11] proposed an innovative feature selection scheme for VAT prediction by 

considering the feature correlations to VAT and abdominal SAT simultaneously. However, 

the existing works are based on discretized primitive shape descriptors, which neglect the 

functional property of the 3D body shape data[12]. Under the functional hypothesis of the 

geometry data, functional shape descriptors can be extracted to learn the body shapes at an 

abstract level. The gender likelihood is one type of abstract information that can be learned 

from the functional shape descriptors. According to the large population cohort 

anthropometry study conducted by Löffler-Wirth et al. [10], there are gender specific and 

unspecific body types. Perceptual level shape information, such as lean or non-lean[13], is 

another example. In our work, we hypothesize our prediction model can benefit from this 

high-level information.

In this paper, we present a highly innovative shape-based hybrid VAT prediction model, 

which integrates high-level shape-related information from different aspects. The main 

contribution of this paper is threefold. First, to the best of our knowledge, this is the first 

total shape-based VAT prediction model. Our hybrid model robustly handles the lack of 

gender and other demographic information (e.g., weight, age), which makes our model more 

general. Second, our method improves the prediction accuracy by taking genderrelated shape 

ambiguity into account. Third, our model works robustly with data derived from commodity 

level sensor based body scan systems. Thus, our prediction model has the potential to be 

used by the general public for routinely monitoring health.
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II. Methods

A. Baseline VAT Prediction Model

We collect the 3D body shape data (Fig. 1-a) using a commodity level optical body 

scanner[7], from which the shape descriptors are extracted. The level circumference is noted 

as an effective shape descriptor[13][9], which preserves the functional property of the 

original geometry data[12]. We extract the level circumferences from the 3D geometry from 

the neck to ankle with a sample rate of 128 (see Fig. 1-a), and the functional representation 

of the feature XLC(t) is illustrated in Fig. 1-b. The training response for the baseline model is 

the VAT volume assessed by the CoreScan®.

The domain of the level circumference functional feature is [0, 1]. However, due to the 

locality of the visceral fat distribution, the feature on the sub-interval of the domain works 

better for the prediction. The previous works tend to build different prediction models for 

males and females respectively[9][11]. The effective regions of the level circumference 

significantly differ between genders. In Fig. 1-b, the effective region for males is highlighted 

in blue, corresponding to the sub-interval [0.156, 0.313], and that of females is highlighted 

in red, corresponding to the sub-interval [0.289, 0.469]. We extract the functional features, 

Xmale(t) and Xfemale(t), corresponding to the two sub-intervals as predictors in our baseline 

model. We transform the functional features using the eigenfunctions obtained from 

functional principal component analysis (FPCA)[12]. The top Cn principal components 

(PCs) are considered sufficient for the training model, which explain at least η = 0.95 

proportion of the predictor variance.

Cn = arg min
k ⩽ N

∑
i = 1

k
λi ∕ ∑

i = 1

N
λi ⩾ η (1)

We adopt a Gaussian Process Regression (GPR)[14] with Matern kernel to train a baseline 

VAT prediction model for males and females respectively as in Eq. (2), where hmale, hfemale 

are predicted VAT.

ℎmale = Φgpr(FPCA (Xmale(t)))
ℎfemale = Φgpr (FPCA (Xfemale(t)))

(2)

B. Gender Likelihood Model

The previous works[9][11] predict the VAT by training prediction models for males and 

females separately, in which they take prior knowledge about the gender for granted. In this 

paper, we present a more general VAT prediction model without this prior knowledge. 

According to the work of Löffler-Wirth et al. [10], there are gender specific and unspecific 

body types based on analyzing anthropometries of a large population cohort. Motivated by 

this study, we propose a gender likelihood model to estimate the probability of a given body 

shape belonging to each gender. The benefit of this model is two-fold. First, we robustly 

handle the lack of gender information for the input body shapes, which makes our prediction 
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model more general. Second, our model evaluates the degree of the gender ambiguity of the 

input shape. This information is important to improve the VAT prediction accuracy.

We adopt the linear support vector machine (SVM) classifier[15] to train a classification 

model as well as a sigmoid function to obtain the conditional probability of gender given 

shape. The calculation process is shown in Eq. (3). The functional feature Xboth(t) is 

extracted from the union of the red and blue regions in Fig. 1-b, corresponding to the sub-

interval [0.156, 0.469]. The training parameters ω, b, ξ and φ can be determined during the 

learning process.

Pfeamle, male = 1
1 + eξf(x) + φ

sigmoid
f(x) = ω′ϕ (x) + b

svm

, x = FPCA (Xbotℎ(t)) (3)

Then, we integrate the gender likelihood information into the baseline VAT prediction model 

to derive the gender model. The probability P virtually determines which candidate model in 

Eq. (1) is appropriate. We hypothesize that a large discrepancy between the Pmale and Pfemale 

indicates a gender specific body type, whereas the small discrepancy indicates a gender 

unspecific body type. We aim to improve the VAT prediction performance of the baseline 

model by integrating this information. We take the probability Pmale and Pfemale as weighted 

coefficients to balance the female and male VAT prediction model. We, therefore, get a more 

accurate and general VAT result h′ as Eq. (4).

ℎ′ = Pmale ⋅ ℎmale + Pfemale ⋅ ℎfemale (4)

The gender model omits the gender labels, which makes the VAT prediction behave more 

robust and general. The weighting processing in Eq. (4) improves the VAT prediction 

accuracy.

C. Shape Likelihood Model

Previous literature has suggested that the body shape (i.e., lean or non-lean) influences the 

prediction result and usually leads to overestimating the VAT and whole-body body fat of 

the lean[16][17][13]. Likewise, we find the same trend in our baseline model. Thus, we are 

motivated to develop a shape likelihood model to discriminate the lean body shape which is 

likely to be overestimated in VAT prediction.

We divide all subjects into lean and non-lean and label them as in Eq. (5), where h is the 

VAT value. According to VAT distributions of the two genders, we set threshold τ as 4 for 

males and 2.5 for females.

L = 1, ℎ ⩽ τ
0, ℎ > τ (5)
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Since the level circumferences are low-order features, they are not effective in classifying 

the body shapes[13]. Hence, we extract a higher order feature, i.e., surface curvature, from 

the 3D body surface, or explicitly the red region in Fig. 1-a. For the convenience of data 

processing, the 3D body shape is registered into a cylinder, on which the curvature 

information is projected. The 2D curvature map (Fig. 1-c) is generated by unfolding the 

cylinder wall.

We propose an accurate classifier to evaluate the likelihood of the lean body shape. The 

curvature feature cannot be directly used to construct the model. We adopt the Haar-like 

basis functions to extract useful patterns to discriminate the lean and non-lean body shapes. 

The Haar-like features are highly redundant, and thus we use agglomerative hierarchical 

clustering to merge the redundant feature space. We choose the top five merging features and 

apply them to build the shape likelihood model. We choose the SVM classifier with 

Gaussian Kernel to classify the body shape, as in Eq. (6).

L = svm (x) , x THaarlike (Xk (s, t)) (6)

We then use the body shape classification results to compensate the VAT prediction of Eq. 

(4). The compensation function θ(L) in Eq. (7) is a step function.

ℎ″ = ℎ′ + θ (L), L = 0, 1 (7)

The θ(L) = θ ⋅ ( − 1)L can be determined by minimizing the objective function f (θ) in Eq. 

(8).

f(θ) = ‖ℎ − ℎ′ − θ(L)‖2 (8)

We estimate the compensation coefficients θ(L) by the Least Square Method (LSM).

D. Hybrid Model

The hybrid model architecture is shown in Fig. 2. The baseline model and the gender 

likelihood model are developed based on the level circumference features. The shape 

likelihood model is developed based on the surface curvature feature. The three models are 

combined to construct the final hybrid model. The hybrid model is highly general and robust 

since it does not require any additional information other than the 3D body shape. The 

accuracy of the hybrid model will be evaluated in the next section.

III. Results

In this section, we evaluate the performance of the proposed method. The experiment dataset 

includes 87 female subjects and 60 male subjects. The data collection and study presented in 

this paper involved human subjects, which were approved by the Institutional Review Board 

(IRB) of the George Washington University. For the data collection details see Lu et al.[7].
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To evaluate the proposed method, the experiment adopts Leave-One-Out Cross Validation 

(LOOCV). We compare our method with the cutting-edge methods in [1][11][9], all of 

which are based on linear regression. Both Root-Mean-Square-Error (RMSE) and R-

Squared are computed for all methods. Fig. 3 visualizes the VAT prediction results for 

different methods and the corresponding values are listed in Table I. It is worth noting that 

both Hanen et al. [11] and Sun et al. [9] involve gender and other shape-unrelated 

information such as age. Therefore, our hybrid model is more robust and general compared 

to these state-of-the-art methods. We also compare with the BMI, waist, and waist-to-hip 

ratio based VAT prediction model because they have been widely used as the VAT indicators 

in medical domain[1].

Both Table I and Fig. 3 demonstrate that the hybrid model, which integrates the gender and 

shape information into the baseline VAT prediction, achieves the best prediction results in 

terms of both RMSE (1.252, the smallest) and R-Squared (0.77, the largest). The hybrid 

model outperforms the comparison methods by 21.8%, on average in the RMSE.

The gender model (Fig. 2-Gender Model) integrates the gender probability into the baseline 

prediction to balance the gender disparity in the VAT baseline prediction. Table I shows the 

gender model outperforms the baseline model by 2.81% in RMSE. The gender classification 

achieves a very high classification accuracy (> 95%, see Fig. 3-g). We find the baseline 

model (Fig. 3-f) and the gender model (Fig. 3-g) indeed overestimate the VAT of the lean, 

and our hybrid model (Fig. 3-h) with a body shape compensation improves the baseline 

model by 10.1% and improves the gender model by 7.4%.

From the results, we conclude that the hybrid model not only can robustly handle the 

missing information about gender and other demographics (e.g., age, weight), but also 

enhances the prediction accuracy by introducing the gender likelihood and shape likelihood 

analyses.

IV. Conclusions

In this paper, we propose a novel VAT prediction approach using shape descriptors derived 

only from the 3D geometry. The proposed approach comprehensively considers the 

disparities of gender and body shapes. A shape-based gender likelihood model is developed 

to predict the probability of the 3D body shape belonging to different genders and integrates 

this information to enhance the VAT prediction robustness and accuracy. A shape likelihood 

model is presented to compensate the VAT prediction overestimation for the lean. We 

compare our proposed models with the other state-of-the-art methods. The result illuminates 

the novel effectiveness of our proposed approach. Moreover, our method is totally shape-

based without the knowledge of the subjects’ demographics. Besides, the 3D body shapes 

are derived from the commodity level sensor based body scan system [6]. These merits 

indicate that our approach has the potential to provide easy access by the general public to 

routinely monitor their VAT variation.
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Fig. 1. 
Functional features extracted from the 3D body shape. (a) The 3D body shape geometry, 

where the level circumference feature is extracted from the black region and the curvature 

feature is extracted from the red region. (b) The level circumference functional feature. (c) 

The curvature functional feature.
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Fig. 2. 
Illustration of our proposed method. The whole method can be divided into four sub-

modules: baseline model, gender likelihood model, shape likelihood model and hybrid 

model. The combination of the baseline and gender likelihood models derives the gender 

model.
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Fig. 3. 
The VAT prediction result for different methods. (a) BMI. (b) Waist. (c) Waist-to-hip ratio. 

(d) Hanen et al. [11]. (e) Sun et al. [9]. (f) Baseline model. (g) Gender model (i.e., Baseline 

+ Gender Likelihood) (h) Hybrid model (i.e., Baseline + Gender Likelihood + Shape 

Likelihood). The blue markers denote the male. The red markers denote the female. The X 

axis denotes the actual VAT. The Y axis denotes the predicted VAT. The asterisk corresponds 

to gender misclassified cases.
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TABLE I

Experiment results comparison

Methods Index RMSE R-Squared

BMI (a) 1.71 0.60

Waist (b) 1.45 0.70

Waist-to-hip-ratio (c) 1.95 0.48

Hanen et al. (d) 1.45 0.70

Sun et al. (e) 1.54 0.68

Baseline model (f) 1.39 0.73

Gender model (g) 1.35 0.74

Hybrid model (h) 1.25 0.77
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