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ABSTRACT
This study aimed to examine the efficacy of semantic segmentation implemented by deep learning and to confirm
whether this method is more effective than a commercially dominant auto-segmentation tool with regards to
delineating normal lung excluding the trachea and main bronchi. A total of 232 non-small-cell lung cancer cases
were examined. The computed tomography (CT) images of these cases were converted from Digital Imaging and
Communications in Medicine (DICOM) Radiation Therapy (RT) formats to arrays of 32 × 128 × 128 voxels
and input into both 2D and 3D U-Net, which are deep learning networks for semantic segmentation. The number
of training, validation and test sets were 160, 40 and 32, respectively. Dice similarity coefficients (DSCs) of the
test set were evaluated employing Smart Segmentation� Knowledge Based Contouring (Smart segmentation is
an atlas-based segmentation tool), as well as the 2D and 3D U-Net. The mean DSCs of the test set were 0.964
[95% confidence interval (CI), 0.960–0.968], 0.990 (95% CI, 0.989–0.992) and 0.990 (95% CI, 0.989–0.991) with
Smart segmentation, 2D and 3D U-Net, respectively. Compared with Smart segmentation, both U-Nets presented
significantly higher DSCs by the Wilcoxon signed-rank test (P < 0.01). There was no difference in mean DSC between
the 2D and 3D U-Net systems. The newly-devised 2D and 3D U-Net approaches were found to be more effective than
a commercial auto-segmentation tool. Even the relatively shallow 2D U-Net which does not require high-performance
computational resources was effective enough for the lung segmentation. Semantic segmentation using deep learning
was useful in radiation treatment planning for lung cancers.
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INTRODUCTION
Lung cancer is the most common malignancy in both men and women.
In 2018, 1.8 million people died worldwide as a result of this disease,
which is the most frequent cause of cancer-related deaths globally
as well as in Japan [1, 2]. According to the National Comprehensive
Cancer Network (NCCN) guidelines, chemoradiation therapy is
recommended for unresectable stage II and III non-small cell lung
cancer (NSCLC), and stereotactic body radiotherapy for unresectable

early stage NSCLC [3]. In addition, consolidation therapy with
the anti-programmed death ligand 1 antibody durvalumab after
concurrent chemoradiation therapy in unresectable stage III NSCLC
was reported to significantly extend progression-free survival as
compared to a placebo [4]. Therefore, an increase in NSCLC patients
undergoing radiation therapy is anticipated. Radiation pneumonitis is a
common complication of radiation therapy in NSCLC patients. Thus,
exposure of the normal lung needs to be limited. In efforts to reduce
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the risk of radiation pneumonitis, V20 (the lung volume receiving
≥20 Gy) ≤30–35% and mean lung dose (MLD) ≤20–23 Gy have
been recommended [5].

In light of the above considerations, it is essential to determine the
extent of normal lung exposure in radiation treatment planning for
lung cancer patients. Therefore, we need to obtain accurate contour
delineations of the tumor and organs at risk (OARs) on computed
tomography (CT) images for radiotherapy planning. If the delineations
are incorrect, the dose calculation results would potentially be
unreliable, because the calculations are based on these delineations.
Manual delineations by radiation oncologists are generally time-
consuming [6], and inter- and intra-observer segmentation variability
occurs [7], highlighting the need for improvement in delineation
techniques. The auto-segmentation tool will reduce the time needed to
achieve accurate delineations and eliminate inter- and intra-observer
segmentation variability [8, 9]. Commercial tools with atlas-based
segmentation or model-based segmentation are currently available
[10]. However, these tools are not fully automated and do not consis-
tently provide the intended delineations. For example, according to the
RTOG 1106 guideline, the trachea and main bronchi are necessarily
excluded from normal lung delineation when planning lung cancer
radiation treatment [11]. However, a widely-available commercial
auto-segmentation tool, the Smart Segmentation� Knowledge Based
Contouring (Varian Medical Systems, Palo-Alto, CA, USA; hereinafter
referred to as Smart segmentation) system, includes the trachea or main
bronchi in normal lung delineation. Therefore, the obtained results
must subsequently be corrected manually. For this reason, there is an
urgent need for alternative auto-segmentation techniques producing
more accurate delineation of the normal lung.

The application of artificial intelligence, such as auto-segmentation
techniques, has been drawing increasing attention for both clinical
applications and research. Convolutional neural networks (CNN),
especially, have reportedly been applied to contour delineations of
OARs [12], potentially solving many of the problems encountered in
achieving optimal delineation. CNN recognizes objects from medical
images by combining the convolutional and pooling layers, such that
semantic segmentations can be implemented. Among the available
CNN, U-Net [13], which has a U-shaped encoder–decoder structure,
down-samples and up-samples the original images, thereby extracting a
feature map of the same size as the original image, and can thus segment
images. Since U-Net is characterized by integrating both local features
and general location information of the object, it is expected to be
effective in the delineations required for radiation treatment planning.
It can be implemented in either a 2D or a 3D format, and each has
both advantages and disadvantages. With 2D U-Net, the 3D direction
of information is decreased since each image is handled independently.
However, this system can learn a large number of samples. With 3D U-
Net, the number of samples is smaller, which means that the amount
of information per sample is increased, while the 3D direction of
information is enriched.

Several studies have focused on semantic segmentation of lung
tissues on CT images using 2D or 3D U-Net [14–17]. However, to our
knowledge, there are no reports on the differences between U-Net and
existing auto-segmentation tools using the same dataset. Furthermore,
the 2D and 3D U-Net approaches, applied under similar conditions
using the same dataset, have not been compared.

We therefore attempted semantic segmentation of lung CT images
using both 2D and 3D U-Net, then examined their efficacies in compar-
ison with that of the existing Smart segmentation. We also compared
the utilities of the 2D and 3D U-Net with each other.

MATERIALS AND METHODS
Datasets

The Cancer Imaging Archive (TCIA) is an open access database
of medical images for cancer research. We examined 232 NSCLC
cases, from LUNG 1–001 to LUNG 1–232 comprising the NSCLC-
Radiomics [18], a CT dataset of NSCLC cases published by the TCIA.
This dataset consists of 3 mm thick slices and includes the entire chest.
Of the total 232 cases, 200 were assigned to a training and validation
set, while the remaining 32 cases were randomly chosen as a test set to
evaluate the accuracy of predicting results for unknown data.

The Radiation Therapy Oncology Group (RTOG) 1106 contour-
ing atlas guideline recommends that gross tumor volume, the hilar
portions of the lungs and the trachea/main bronchi not be included in
the lung. A ground truth value for the lungs is obtained by contouring,
according to the RTOG1106, as the whole lung excluding the trachea
and main bronchi, although exclusion of secondary bronchi and small
vessels near the hila cannot be guaranteed. In all 232 cases the ground
truth values were determined manually by one radiologist and one
medical physician using Eclipse version 13.6 (Varian Medical Systems,
Palo-Alto, CA, USA). In addition, 32 cases were contoured employing
Smart segmentation version 13.6 summarizing the contour structures
of the right and left lungs into one whole-lung structure as the control
group for the test set, allowing comparison between U-Net and an
established auto-segmentation tool, Smart segmentation.

The CT images and contour data were exported as Digital Imaging
and Communications in Medicine (DICOM) data and converted to
PNG images. Masked images in which the lungs are white and the non-
lung areas are black were created from the contour data. Sample images
of an original CT and a ground truth image are presented in Fig. 1. All
images were resized from 512 × 512 to 128 × 128 pixels and each case
was fixed at 32 images.

Cross-validation is a model validation technique used to evaluate
machine learning models in order to make such models more gener-
alizable. A 5-fold cross-validation was performed, in which 200 cases
were randomly partitioned into five equal size subsamples, such that
40 cases and learnings were repeated five times, with interchange of the
40 cases assigned as the validation set and the 160 cases assigned as the
training set.

U-Net models
The U-Net models devised are presented in Figs 2 and 3. The words
in these figures describe the methods of Keras. Fig. 2 shows the 2D U-
Net model. The input layer contained 128 × 128 pixels with 1 channel.
We performed 2D convolution (Conv2D) by applying a 2 × 2 filter
to the input, in which zero padding filled the perimeter of the input
with 0 compensating for the size reduction produced by the filter. Max
pooling employing MaxPooling2D, by which the maximum value is
selected from each region and then compressed, was performed 2-
dimensionally to reduce pixel size. Conv2DTranspose is an operation
which is the opposite of that used for Conv2D, whereby pixel size is
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Fig. 1. The left image is an original CT scan and the right image is a masked ground truth image showing the lungs as white and
other areas as black.

increased using a 2 × 2 pixels filter. Batch Normalization (BatchNor-
malization) is a process by which biased output distribution, obtained
from the previous layer, is corrected. Dropout is a process by which a
portion of the units are randomly deactivated. Random deactivation
was achieved in 50% of the units in this study. Concatenation is a
process applied in order to connect the input arrays.

Fig. 3 shows the 3D U-Net model. The input layer contained
32 × 128 × 128 voxels with 1 channel. We performed 3D convolution
(Conv3D) by applying a 1 × 3 × 3, 2 × 3 × 3, 1 × 1 × 1 filter to
the input with the appropriate zero padding, the same conditions
as those applied for the 2D contouring. MaxPooling3D is a max
pooling technique performed 3-dimensionally. The 3D up-sampling
(UpSampling3D) doubled the voxel size along all dimensions.

For both 2D and 3D U-Nets, rectified linear unit (ReLU) was used
for the input and hidden layers, and sigmoid function for the output
layer as the activation function. Data augmentation is a method for
increasing the number of data points, thereby contributing to both the
prevention of over-fitting and enhanced performance. In this study, a
left-to-right inversion and a white-to-black inversion were produced to
achieve data augmentation producing a 4-fold increase in the original
data volume. An adaptive moment estimation (Adam) was applied as
an optimizer. The optimum rate of learning was selected by changing
the learning rates along a broad range of values, including 0.3, 0.1, 0.03,
0.01, 0.003, 0.001, 0.003 and 0.001. A loss function is calculated as the
difference between the ground truth and the predicted output, which
requires to be minimized for optimization. It was calculated employing
the following equations:

Loss function = 2 − {IOU (A, B) + DSC (A, B)} (1)

IOU (A, B) = |A ∩ B|
|A ∪ B| (2)

DSC (A, B) = 2 |A ∩ B|
|A| + |B| (3)

where, A is a true value and B is an estimated value. The Jaccard
coefficient is expressed as intersection over union (IoU) and the dice

similarity coefficient as DSC. The Jaccard coefficient and the Dice
coefficient are both indicators for assessing the degree of similarity
between classes.

The accuracy of contour delineation was assessed using DSC.
The DSC for U-Net was obtained based on the ensemble learning
for five inference results obtained from a 5-fold cross validation.
Ensemble learning is illustrated by the following example: when a CT
pixel value is 1 for three inferences and 0 for two inferences, 1 is chosen
as the value representing the majority.

Calculation processes were implemented on the operating system
consisting of the following components: Windows10 Pro, CPU: Intel�

Xeon� CPU E5–2667 v3 (Intel Corp., CA, USA), memory: 64.0 GB,
graphics processing unit (GPU): Quadro M5000 8.0 GB 1 piece +
Quadro P5000 16.0 GB 1 piece (NVIDIA Corp., CA, USA). Masked
images were created by Python 3.5.6, NumPy 1.6.1, OpenCV 3.1.0
and Pillow 5.2.0. U-Nets were constructed employing Python 3.5.6,
NumPy 1.6.1 and Keras 2.2.4 with TensorFlow-GPU 1.12.0 as the
backend on Compute Unified Device Architecture (CUDA) 9.0.176
and the NVIDIA CUDA� Deep Neural Network library (cuDNN)
7.3.1.

To evaluate the dice similarity coefficient (DSC) of Smart seg-
mentation, and those of the 2D and 3D U-Net systems for the test
set consisting of 32 cases, we applied the Wilcoxon signed-rank test.
A P-value <0.05 was considered to indicate a statistically significant
difference. All statistical analyses were performed with EZR 1.40 [19]
(Saitama Medical Center, Jichi Medical University, Saitama, Japan),
which is a graphical user interface for R (The R Foundation for Sta-
tistical Computing, Vienna, Austria).

RESULTS
The optimum learning rate was found to be 0.001 for 2D U-Net and
0.0001 for 3D U-Net. It takes ∼13 h for every learning rate to learn 2D
U-Net of 300 epochs, and ∼11 h for every learning rate to learn 3D
U-Net of 50 epochs.

Table 1 shows the mean DSC with the standard deviation, 95%
confidence interval (CI), maximum, median and minimum of DSC for
each technique. These values were calculated for the test set of 32 cases.
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Fig. 2. Schemaic diagram of 2D U-Net: a CT image of 128 × 128 pixels was input, down-sampled to 16 × 16, and then up-sampled.

Smart segmentation yielded a mean DSC of 0.964, while 2D and 3D
U-Net both had a mean DSC of 0.990. Thus, the 2D and 3D U-Net
had a mean DSC ∼2.7% higher than that of Smart segmentation. Fur-
thermore, Table 1 presents comparisons among the P-values for Smart
segmentation, 2D and 3D U-Net. Both U-Nets differed significantly
from Smart segmentation, at P < 0.01.

Fig. 4 shows the main bronchi present in a slice selected arbitrarily
from the test set of 32 cases. Compared with the ground truth image,
Smart segmentation depicted the main bronchi and other structures
incorrectly, while 2D and 3D U-Net showed all but the main bronchi
correctly.

DISCUSSION
Minimizing normal lung dose represented with V20 or MLD is impor-
tant for preventing radiation pneumonitis when treating NSCLC. To
achieve accurate dose evaluation of normal pulmonary tissue, it is nec-
essary to precisely delineate the normal lung parenchyma excluding the
trachea and main bronchi. In this study, we devised U-Net models of
the lung to assess their efficacy in performing contour delineations. We
also endeavored to confirm whether this method is more effective than
a widely-used atlas-based segmentation tool (Smart segmentation) for
delineating the lung. The CT images of 232 NSCLC cases were input
into both 2D and 3D U-Net systems, which are deep learning networks
designed for semantic segmentation. Training, validation and test sets
were employed to allow thorough assessment of the results. DSCs of

the test set were obtained employing Smart segmentation and both the
2D and the 3D U-Net systems.

Both U-Nets yielded significantly higher DSCs than the commer-
cially available semantic segmentation tool ( P< 0.01). We thus con-
clude that the newly-devised 2D and 3D U-Net systems are both more
effective for delineating pulmonary structures than the commercial
auto-segmentation tool. Semantic segmentation using deep learning
has the potential to be very useful when planning radiation treatments
for lung cancer patients. Improving the accuracy of lung delineation is
anticipated to enhance delivery of radiation to malignant sites, while
limiting exposure of the normal lung tissue to radiation and thereby
reducing the incidence of radiation pneumonitis and other complica-
tions. The clinical potential, as the well as the likely cost savings, of
these approaches merit further study.

Furthermore, there was no difference in mean DSC between
the 2D and 3D U-Net systems, indicating similar accuracy in
contour delineation. Although semantic segmentation using a deep
learning 2D network lacks craniocaudal information, this apparent
deficiency is speculated to have no effect on contour delineation of
the lung. There are several human organs with longitudinally-oriented
structures, like the lung. Therefore, our 2D U-Net system that allows
the contour delineation is considered to provide useful practical
knowledge.

Park et al. performed semantic segmentation with 3D U-Net in
individual pulmonary lobes, reporting a DSC of 0.9680 ± 0.018 [16].
In their study, the convolution filter size of the 3D U-Net was 3 × 3 × 3,
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Fig. 3. Schemtic diagram of 3D U-Net: a 3D CT image of 32 × 128 × 128 voxels was input, down-sampled to 8 × 8 × 8, and then
up-sampled.

applied in a uniform manner, and the maximum number of channels
was set at 576. On the other hand, in our present study, the filter
sizes of the 3D U-Net were variable (i.e., 1 × 3 × 3, 2 × 3 × 3
and 1 × 1 × 1) and the maximum number of channels was 772.

Characteristic maps to be visualized increase as the number of channels
rises. Therefore, the 3D U-Net devised for this study might be able to
yield high DSC. Furthermore, the DSC in this study was higher even
with the 2D U-Net than that obtained from the 3D U-Net used by Park
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Fig. 4. Lung regions are indicated in orange in the same CT images, obtained at the level of the main bronchi. (A) Ground truth
image, drawn manually, (B) an image generated by Smart segmentation, (C) and (D) predictions based on 2D and 3D U-Net.

et al. In this study, the 2D U-Net system considered the information
at the image margin, since zero padding had been applied for learning,
and suppressed over-fitting due to drop-out, which in turn increased
DSC.

3D U-Net requires enormous computational resources and a
longer calculation time, as compared to 2D U-Net. When a high-
performance computational resource is required, calculation on a
cloud server is generally performed. However on-line processing
via the public network for medical application may raise ethical or
security concerns. Therefore, the calculation device should be installed
on-premises within the hospital. Medical applications requiring
immediate processing need a smaller calculation amount. Reducing
computation quantity without lowering precision enables edge
equipment and embedded systems in medicine. Therefore, this study is
of value because 2D U-Net was found to yield results similar to those of
3D U-Net.

We found that both 2D and 3D U-Nets allow accurate contour
delineation of the lung excluding the main bronchi, while Smart seg-
mentation does not delineate the main bronchi accurately. Dong et al.
predicted lung morphology in accordance with RTOG 1106 for OARs,
based on atlases, using the U-Net-generative adversarial network (U-

Net-GAN) [17, 20]. U-Net-GAN incorporates U-Net into discrimi-
nators of GAN, such that DSC was 0.97 ± 0.01 for the left lung and
0.97 ± 0.01 for the right lung in their study [17]. Our U-Net, developed
for this study, yielded higher DSC than that obtained by Dong et al.
Based on the RTOG 1106 atlases, contour delineation of the lung
excluding the trachea and main bronchi was achieved in this study.
We performed data augmentation prior to processing by producing a
left-to-right inversion or a white-to-black inversion. The efficacy of U-
Net implementation was validated under various conditions including
the layer structure, batch normalization and drop-out. In general, the
U-Net-GAN used by Dong et al. allows complex learning and high
accuracy can be anticipated. However, our present study revealed that
U-Net alone, when applied appropriately, even without using GAN
achieves accurate prediction. Furthermore, our 2D U-Net which down-
sampled three times was shallower than the U-Net devised by Ron-
neberger et al. which down-sampled four times [13]. This means that
even the relatively shallow 2D U-Net was effective enough for the lung
segmentation.

It is reported that existing auto-segmentation tools reduce delin-
eation time and eliminate inter- and intra-observer segmentation vari-
ability [8, 9]. U-Net segmentation tools will be more effective regarding
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Table 1. Performance and comparison of each technique calculated for test set in DSC.

Technique Mean DSC 95%CI of DSC Maximum DSC Median DSC Minimum DSC vs Smart
segmention
P-value

Smart segmention 0.964 ± 0.011 0.960–0.968 0.978 0.967 0.924 not applicable
2D U-Net 0.990 ± 0.004 0.989–0.992 0.994 0.991 0.976 <0.01
3D U-Net 0.990 ± 0.002 0.989–0.991 0.993 0.991 0.982 <0.01

these things in clinical practice, while we have to keep a more watchful
eye on their performance and quality.

Another study addressed the reduction of radiation doses in highly
functional lung regions by evaluating lung function with functional pul-
monary imaging [21]. Future research focusing on the achievement of
segmentation that predicts lung function would be extremely beneficial
for preventing radiation-induced lung injury.

In conclusion, we validated the efficacy of semantic segmentation of
the lung excluding the trachea and main bronchi using 2D and 3D Net
systems. The results revealed that both U-Net systems yielded higher
accuracy than the conventional method and had the same mean DSC
(0.990). Our newly devised approach was useful for increasing the
accuracy of lung contour delineation.

2D and 3D U-Nets did not differ in terms of the accuracy of contour
delineation of the lung. Considering that several human organs have
longitudinally-oriented structures, like the lung, even relatively shal-
low 2D delineation may provide useful information allowing the lung
contour to be delineated with accuracy sufficient for clinical purposes.
Thus, we believe that our novel 2D U-Net system has practical medical
applications.
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