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Abstract

Background: The development of cerebrospinal fluid and blood-based biomarkers for 

Alzheimer’s Disease (AD) and related disorders is rapidly progressing. Such biomarkers may be 

used clinically for screening the population, for enhancing diagnosis, or to help determine 

prognosis. Although the use of precision medicine methods have contributed to enhanced 

understanding of the AD pathophysiological changes and development of assays, one aspect not 

commonly considered is sex differences.

Content: There are several ways in which sex can affect the measurement or interpretation of 

biofluid biomarkers. For some markers, concentrations will vary by sex. For others, the 

concentrations might not vary by sex, but the impact or interpretation may vary be sex depending 

on the context of use (e.g., diagnostic vs prognostic). Finally, for others, there will be no sex 

differences in concentrations or their interpretation. This review will first provide a basis for sex 

differences, including differences in brain structure and function, and the means by which these 

differences could contribute to sex differences in biofluid concentrations. Next, the current state of 

sex differences in AD-related biofluid markers (i.e., amyloid-beta, phosphorylated tau, total tau, 

neurofilament light chain, and neurogranin) will be reviewed. Lastly, factors that can lead to the 

misinterpretation of observed sex differences in biomarkers (either providing evidence for or 

against) will be considered.

Summary: This review is intended to provide an impetus to consider sex differences in the 

measurement and interpretation of AD-related biofluid-based biomarkers.
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Alzheimer’s disease (AD) dementia is the most common form of dementia, comprising 60 to 

70% of all cases. It is a progressive neurodegenerative disease that causes memory loss, 

cognitive deficits, and behavioral changes. With the aging of the population, the burden of 

AD dementia is growing to epidemic proportions. Currently more than 6 million Americans 

are affected and it is estimated that this number will grow to 15 million by 2050 unless new 

treatments or interventions to prevent or delay the onset of AD are identified (1). The 

hallmark pathophysiological characteristics of AD include the presence of extracellular 

plaques comprised of amyloid-beta (Aβ), intracellular neurofibrillary tangles comprised of 

abnormal phosphorylated tau protein, and neurodegeneration (2). Other molecular pathways 

contributing to, or potentially causing AD pathology may include inflammation, 

neurovascular dysfunction, senescence and accelerated aging, synaptic dysfunction, 

cholinergic changes, and alterations in lipid metabolism. Considering these and other 

pathways, there is substantial heterogeneity in the development and progression of AD 

dementia. Although the use of precision medicine methods have contributed to enhanced 

understanding of the pathophysiological changes, one aspect not commonly integrated in 

these approaches is sex differences.

About two thirds of persons with a clinical diagnosis of AD dementia are women because 

age is the greatest risk factor for AD dementia and the life expectancy for women is longer 

than for men (3). As a result, and similar to other aging-related diseases, the lifetime risk of 

AD dementia is greater for women (4, 5). Although the frequency, or count, of AD dementia 

is higher in women, the age-adjusted prevalence was not found to differ by sex in a meta-

analysis of 45 studies (6). Sex differences in the incidence of AD dementia are less clear and 

may vary across countries and over time epochs (7, 8). In the United States, most studies 

report that the incidence of AD dementia does not differ by sex, even after the age of 85 

years (9–16). Importantly, even if the incidence is similar between men and women, the 

underlying etiologies, symptomatology, and response to treatment can differ so the 

consideration of sex differences is still important (17, 18).

A complication of the many epidemiological and clinic studies assessing sex differences in 

the prevalence or incidence of AD is that they are generally based on a clinical diagnosis, 

with no information about underlying pathology. This is problematic because 10–30% of 

clinically defined AD dementia patients do not have AD pathology at autopsy (19, 20). 

Moreover, approximately 30% of the population aged 70 and older with normal cognition 

have elevated brain amyloid (21–23). Utilizing a biological definition provides the 

opportunity for a more accurate clinical diagnosis (e.g., separating AD dementia from other 

dementia types) and the opportunity to incorporate the preclinical phase of AD (i.e., 

presence of pathology before clinical symptoms are apparent), when interventions are most 

likely to be beneficial in slowing or halting disease progression.

Several biomarkers have been proposed for the primary pathologies of AD including Aβ 
plaques, neurofibrillary tangles, and neurodegeneration. Biomarkers of Aβ may include 
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amyloid PET, CSF Aβ42 or the CSF Aβ42/Aβ40, or blood Aβ42. Biomarkers of paired 

helical filament tau may include tau PET, CSF phosphorylated tau (P-tau), or blood P-tau. 

Lastly, biomarkers of neurodegeneration may include Fluorodeoxyglucose (FDG)-PET 

hypometabolism, Magnetic Resonance Imaging (MRI)-based measures of atrophy or 

cortical thickness in specific brain regions, CSF measures of total tau (T-tau), neurofilament 

light chain (NfL), and neurogranin (Ng), or blood-based measures of T-tau and NfL. 

However, most of these biomarkers are only used for research purposes and are not clinically 

available (24). Currently, three amyloid PET tracers have been approved for clinical use for 

the differential diagnosis of AD dementia: 18F-Florbetapir, 18F-Florbetaben, and 18F-

Flutemetamol (for discussions of appropriate clinical use and benefits, see (25–27). 

However, in the United States amyloid PET imaging is not currently reimbursed by 

Medicare or insurance companies so it is rarely incorporated into clinical care. Tau PET has 

not been approved for clinical use.

CSF concentrations of Aβ and tau are clinically utilized in both the United States and 

Europe. In the United States, a lumbar puncture and measurement of CSF Aβ and tau is 

reimbursable but it not commonly used for AD diagnosis, especially at the population-level. 

Use is typically in specialty clinics to help determine etiology for atypical presentations of 

dementia, for dementia patients who are rapid progressors, or for young onset cases (for 

discussions of appropriate clinical use, see (28). CSF NfL and Ng are also promising 

markers of neurodegeneration but assays have not been approved for clinical use. 

Discussions of translating these markers to the clinic and developing reference intervals are 

ongoing. Lastly, there are no blood-based biomarkers that are currently approved for clinical 

use in the diagnosis or prognosis of AD dementia (see (29) for a comprehensive overview of 

potential blood-based biomarkers for AD).

With the rapidly advancing technology and development of biofluid-based biomarkers in the 

CSF and blood for clinical use, it is a critical time to consider factors that might affect the 

clinical interpretation of biomarker concentrations for the diagnosis or prognosis of AD 

dementia. The overarching goal of this review is to provide an impetus to consider sex 

differences in the measurement and interpretation of AD-related biofluid-based biomarkers. 

There are several ways in which sex can affect the measurement or interpretation of biofluid 

biomarkers. For some markers, concentrations will vary by sex. For others, the 

concentrations might not vary by sex, but the impact or interpretation may vary be sex 

depending on the context of use (e.g., diagnostic vs prognostic). Finally, for others, there 

will be no sex differences in concentrations or their interpretation. The review will be laid 

out in a sequence of topics. First, to provide a basis for sex differences, brain structural and 

functional differences will be described and the means by which these differences could 

contribute to sex differences in biofluid concentrations will be discussed. Second, the current 

state of sex differences in the core and up-and-coming AD-related biofluid markers (i.e., Aβ, 

P-tau, T-tau, NfL, and neurogranin [Ng]) will be reviewed. Lastly, factors that can lead to the 

misinterpretation of observed sex differences in biomarkers (either providing evidence for or 

against) will be considered. Throughout, sex is defined as the biological and physiological 

differences between women and men, with sex chromosomes (XX versus XY) and gonadal 

hormones primarily contributing to these differences at the cellular, organ, and systems level 

(30).
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Sex differences in brain structure and function

There are several differences in the brain anatomy of men and women, the most notable 

being that men have about a 10% larger head size and cerebral brain volume compared to 

women (31, 32). Correspondingly, men also have greater CSF, lateral ventricles, and sulcal 

volumes compared to women (32–35). In addition, men have a higher percentage of white 

matter whereas women have a higher percentage of grey matter and higher cerebral blood 

flow at rest and during cognitive activity (35–37). Although many of these differences are 

likely due to sex hormones and sex chromosomes, the exact mechanisms are not well 

understood (38–40).

Sex differences in brain structure and function could contribute to differences in biofluid 

results. For example, there are several ways of quantifying neurodegeneration. CSF 

neurofilament light chain (NfL) is a marker of large-caliber subcortical axonal degeneration 

and studies consistently show higher levels in men compared to women (41, 42), even 

among cognitively unimpaired individuals without a neurodegenerative disease. A potential 

explanation for the higher CSF NfL concentration in men is because of the greater 

proportion of white matter in men’s brains. Thus, sex-specific reference intervals may be 

needed. In addition, sex differences in brain structure and function could contribute to 

differences in the susceptibility to specific brain pathologies. For example, women have 

greater white matter hyperintensity volumes than men even after adjusting for age, 

hypertension, and diabetes (43). In contrast, men have a higher prevalence of cerebral 

microbleeds and cortical infarctions (43, 44). Blood-based biomarkers of each of these 

pathologies may warrant sex-specific cutpoints for screening/diagnostic or prognostic use 

due to differences in susceptibility and presentation of clinical symptoms.

A similar situation exists with AD pathology. An autopsy study of 141 clergy members 

(Catholic nuns, priests, and brothers) found that women had more global AD pathology, 

which was driven by more neurofibrillary tangles but not amyloid plaques (45). Subsequent 

autopsy studies also replicated these findings (46, 47). One of these studies demonstrated 

that hippocampal neurofibrillary tangles quantitatively differed by age at death and sex, with 

women showing more pronounced increases in neurofibrillary tangles in the hippocampus 

with age compared to men, suggesting a sex-specific neuroanatomic susceptibility (46, 47). 

In addition, for the same amount of AD pathology, these studies have reported that women 

were more likely to express clinical symptoms than men (45–47). Thus, a biomarker of AD 

pathology could have sex-specific cutpoints to enhance diagnosis either because of 

differences in the amount of pathology or because of differences in susceptibility. When 

translating these sex differences at autopsy to the development and utility of in vivo 
biomarkers of AD neuropathology, it is important to note that there can be multiple 

biomarkers of each pathology that provide different information. For example, Amyloid PET 

is a measure of aggregated amyloid plaque burden that accumulates over time. In contrast, 

CSF provides the concentrations of Aβ40 and Aβ42 from the lumbar sac that reflect the 

rates of both amyloid production and clearance. Thus, CSF Aβ is a biomarker of a 

pathologic state that is associated with plaque burden but is not a measure of plaque load 

(24).
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Sex differences in AD-related biofluid-based biomarkers

Although several studies have examined CSF and blood-based biomarkers, the majority did 

not specifically examine whether the biomarker concentrations differ by sex, or whether the 

interpretion of the results differ by sex. Instead, studies adjust for sex, which treats the 

variable as a nuisance to be reduced or eliminated rather than trying to examine whether a 

sex difference exists. Thus, there is minimal literature for many markers and it is difficult to 

make specific recommendations about whether sex should be considered in the development 

of reference intervals (with the exception of a couple of markers described below). Below is 

a brief overview of reported sex differences, or lack of sex differences, in the current 

literature of core and up-and-coming AD-related biofluid-based biomarkers.

Amyloid-beta

Low, not high, concentrations of Aβ42 or the Aβ42/Aβ40 ratio are indicative of elevated 

brain amyloid pathology because the more brain amyloid deposited in plaques, the less 

available for secretion to the CSF and blood. The concentration of Aβ40 is an amyloid 

peptide species examined in the blood and CSF but has not been found to be altered in AD. 

However, some studies have suggested that the Aβ42/Aβ40 ratio is superior to the 

concentration of Aβ42 alone for diagnosing AD (48–51).

Cross-sectionally, sex differences have not been found in the concentrations of CSF Aβ42, 

Aβ40, or in the Aβ42/40 ratio (52–55). Because CSF Aβ concentrations do not appear to 

differ by sex, sex-specific reference intervals are not needed for diagnostic purposes (i.e., 

determining whether a patient has elevated brain amyloid). Longitudinally, studies have 

found interactions between sex and CSF Aβ42 such that for a given CSF Aβ42 

concentration, women have greater declines in hippocampal atrophy and memory 

performance and a greater increase in CSF P-tau concentrations (54, 56). Thus, given the 

differential prognostic performance of CSF Aβ42 by sex, sex-specific reference intervals 

may need to be considered for this context of use. For example, when developing cutpoints 

for predicting rate of cognitive decline and neurodegeneration, a lower cutpoint may be 

needed for women. Such sex-specific cutpoints could be particularly useful in clinical trials 

to identify and enroll the men and women most likely to progress over the trial duration.

Most studies of blood Aβ42, Aβ40, or in the Aβ42/40 ratio have also not assessed sex 

differences in concentrations. An initial attempt to determine reference intervals of plasma 

Aβ1–42 using the Innotest ELISA kit among 245 individuals did not find a sex difference 

(57). With the continuous development of multiple assays to quantify blood Aβ, all assay 

platforms will need to determine if sex differences exist because some platforms measure 

different isoforms, for example AβN-42 vs Aβ1–42.

Phosphorylated tau

High CSF and blood P-Tau are indictive of abnormal hyperphosphorylation of the 

microtubule-associated protein tau. Similar to CSF Aβ, cross-sectional CSF studies of P-tau 

concentrations generally do not find sex differences (52–55). However, as mentioned, 

women with low CSF Aβ may be more susceptible to increased phosphorylated tau 
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concentrations (54, 56). To date, few studies have measured P-tau in the blood. The Mayo 

Clinic Study of Aging (MCSA) did not observe sex differences in plasma P-tau 181 

concentrations (unpublished observations) (58). Other studies of plasma phosphorylated tau 

181 did not examine whether concentrations differed by sex (59, 60).

Total tau

Similar to CSF P-tau, studies have not found sex differences in T-tau concentrations (41, 52–

55). However, this is not surprising because the correlation between CSF P-tau and T-tau is 

so high across the AD clinical spectrum (spearman’s rho>0.96), and sex differences in CSF 

P-tau concentrations have not been reported (61–63). In contrast to CSF, the correlation 

between plasma P-tau and T-tau is much lower (spearman’s rho = 0.29) (58). A possible 

explanation for this discrepancy is that tau isoforms in blood differ from those in the CSF. In 

particular, full-length tau is the dominant isoform in plasma but not in CSF (64). Studies 

including Biofinder, the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and the 

MCSA, all of which used the Quanterix single-molecular array (SiMoA) platform, did not 

find sex differences in T-tau concentrations (65). However, a study using the 

immunomagnetic reduction (IMR) assay from MagQu found higher plasma T-tau 

concentrations in men compared to women after adjustmen for age and APOE genotype 

(66). The SiMoA assays measures the midregion of tau isoforms whereas the IMR assay is 

focused on the C terminal region of the tau protein. Whether this difference in target region 

of the assay is driving the disparate results in sex differences is not known, but additional 

research is clearly warranted. Specifically, comparative studies of mulitple platforms on the 

same study samples are needed to adequately compare the diagnostic and prognostic 

properties.

Neurofilament light chain

Neurofilament light chain (NfL) is a biomarker of subcortical large-caliber axonal 

degeneration across mulitple neurodegenerative disorders (67, 68). Multiple studies across 

the AD clinical spectrum, and in other neurodegenerative diseases, have reported higher CSF 

NfL concentrations among men (41, 42, 69). Whether this difference is the result of a greater 

vascular burden or a greater proportion of brain white matter for men compared to women is 

not known. However, it has been suggested that reference intervals for CSF NfL should be 

sex-specific (41, 42).

There are strong correlations between plasma and CSF NfL (70), and NfL in both mediums 

have been found to similarly associate with cognitive decline and change in cortical 

thickness or white matter integrity (70). Interestingly, however, plasma and serum NfL 

concentrations have not been found to differ by sex across the AD clinical spectrum (71, 72) 

or among patients with inherited peripheral neuropathies (73). The reason for the 

discrepancy in sex differences for NfL in the CSF versus blood, and the contributing 

mechanisms are not known. Regardless, given the ongoing development of reference 

intervals for plasma and CSF NfL, additional research is needed to identify what is 

contributing to the sex difference, or lack of sex differences, in order to best interpret what 

the values mean with regards to tracking neurodegeneration. Studies to date examining the 

prognostic utility of CSF or plasma NfL have not examined sex differences.
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Neurogranin

Neurogranin (Ng) is a synaptic protein that is highly enriched in the dendrites, is regulated 

by synaptic activity, and promotes the synaptogenesis process (74). As a marker of 

neurodegeneration, Ng is thought to be more specific to AD compared to other 

neurodegenerative diseases (e.g., Parkinson’s disease, Frontotemporal dementia, 

Huntington’s disease) (75–78). In a community-based study of 777 participants, the majority 

(88%) of whom were cognitively unimpaired, women had higher CSF NG concentrations 

compared to men (41). In another study of 302 participants, Ng concentrations were higher 

in women than men, but did not reach significance (79). The reasons for the higher CSF 

concentrations of Ng among women are not known but warrant further exploration to clarify 

the mechanisms and to determine their clinical meaning. To date, the few studies examining 

blood-based measures of Ng have not found differences between AD patients and 

cognitively unimpaired controls, or differences in Ng concentrations by sex (80). A possible 

explanation for the lack of findings in blood is that the predominant endogenous CSF and 

human brain tissue Ng peptide consisting of amino acids 48 to 76 is not found in the blood 

(81).

Examples of sex-related factors that can influence the interpretation of AD-

related biofluid biomarker results

There are multiple differences between women and men in anatomy and physiology across 

cells, tissues, organs, and systems. These differences can result from the sex chromosomes 

(e.g., presence of Y gene, increased doses of X genes in XX vs XY cells) or sex hormones 

(e.g., estrogen, testosterone). Social determinants of health that influence the physical and 

social environments are also important to consider. All of these differences can have marked 

influences on the development and progression of AD-related pathophysiology and on the 

measurement of related biomarkers (e.g., due to differences in protein clearance, 

metabolism, structure, etc.). A few examples are provided.

APOE genotype

The ε4 allele of the Apolipoprotein ε gene (APOE), which codes for apoE protein, is the 

strongest known genetic risk factor for late-onset AD (82, 83). The apoE4 protein has 

consistently been linked with the reduced brain clearance of Aβ and a diminished response 

to neuronal injury compared to the apoE3 or apoE2 proteins (84, 85). Compared to non-

carriers, carriers of one ε4 allele are 3–4 times more likely to develop AD, while the risk for 

those with two ε4 alleles is considerably higher (83, 86).

Most studies have reported that the effects of the ε4 genotype are more pronounced in 

women than in men, e.g. (87–93). For example, a study of almost 58,000 participants 

showed that among persons aged 65–75 years with the APOE ε3/ε4 genotype, the risk of 

AD dementia was four-fold higher in women compared to men (93). With regards to AD 

biomarkers, women APOE ε4 carriers had higher CSF P-tau and T-tau, but not Aβ42, 

compared to men who were ε4 carriers (94). Several mechanisms underlying the interaction 

between sex and the APOE genotype on risk of AD have been proposed. For example, 

female APOE e4 knockout mice had decreased presynaptic density in the hippocampus (95) 
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and less of the beneficial microglial interactions with amyloid plaques compared to male 

mice (96). However, how the interactions between sex and APOE and the resulting 

mechanistic differences results in sex differences in concentrations of AD-associated 

biofluid-based biomarkers, and how such potential differences should be interpreted remain 

unclear.

Sex differences in blood-brain barrier permeability

The blood-brain barrier (BBB) selectively regulates the transfer of molecules between the 

blood, brain parenchyma, and CSF. The permeability of the BBB increases with age and in 

the preclinical stages of many neurodegenerative conditions, leading to the accumulation of 

various molecules in the brain (97). The CSF/serum albumin ratio (QALB) is a standard way 

to measure BBB permeability because albumin is almost exclusively produced in the liver 

(98). Thus, an increased QALB is indicative of higher permeability and potential for the 

transfer of proteins between the CSF and blood. A recent study of more than 20,000 patients 

who had undergone a lumbar puncture for any reason and 335 volunteers, aged one to 90 

years, found significantly higher QALB in men compared to women, starting around the age 

of 6 and up to 90 years (99). Because the sex difference was not markedly changed at 

puberty or menopause, it is unlikely that sex hormones explain the difference. It is possible 

that sex differences in CSF drainage or production could contribute to higher concentrations 

in men, but these mechanisms were not examined (100–102). The sex difference in QALB is 

important because it could result in higher concentrations of blood-specific isoforms in the 

CSF and higher concentrations of CSF-specific isoforms in the blood among men. This 

aspect will need to be considered when examining sex differences in the concentrations of 

both blood and CSF AD-related biomarkers.

Sex differences in blood proteins

Plasma and serum have a higher total protein concentration and a more complex protein 

matrix than the CSF, which can make it difficult to accurately measure AD-related 

biomarkers in the blood. For example, the binding of blood Aβ42 to many proteins in 

plasma or serum (e.g., albumin, lipoproteins, Aβ autoantibodies, apolipoprotein J, 

fibrinogen, immunoglobulin, α−2-macroglobulin, apolipoprotein E, transthyretin, 

plasminogen, and serum amyloid p component) (103–105) can reduce the concentration of 

blood Aβ42 available for measurement. Sex differences in blood protein concentrations 

could therefore impact the measurement of blood Aβ42 and other AD-related proteins. 

Indeed, sex differences in serum albumin concentrations beginning around puberty and 

continuing to the age of 60 have been reported (106). In addition, women have higher 

platelet counts and higher platelet reactivity compared to men (107, 108). Multiple studies 

are already examining platelet Aβ, Aβ precursor protein, and tau concentrations, but sex has 

typically been considered a confounder and sex-specific differences have not been examined 

(109–111).

Consideration of study design

Inclusion of both men and women in studies is more nuanced than just trying to enroll equal 

numbers. Menopausal status and subsequent hormone therapy use, comorbidities, and 

environment, among other factors, should be considered to optimize the generalizability and 
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validity of the study. If there are differences in comorbidities (e.g., kidney function) by sex, 

this could influence sex differences in the clearance and measurement of some AD-related 

biomarkers. There are also sex differences in the prevalence of vascular-related risk factors 

and morbidities such that men on average have more vascular risk factors and vascular 

events up until around the age of 70 or 75 years, at which time women catch up. The 

addition of vascular pathology to AD-pathology can result in earlier symptom expression. A 

recent autopsy study of over 1,500 community-dwelling older adults found that women were 

more likely than men to have mixed AD and vascular pathology (112). As discussed above, 

women with the same amount of AD pathology are more likely to express clinical symptoms 

than men (45–47). However, whether this difference is due to comorbid vascular pathology 

or other factors such as brain reserve remains to be examined. Thus, several sex-related 

differences need to be considered in study designs.

CONCLUSION

In this current era of precision medicine, it is increasingly important to consider sex 

differences in the etiology and progression of AD. Recent studies suggest that sex 

differences are observed in the concentrations of some biofluid-based biomarkers and also 

influence the interpretation of results. Thus, the consideration of sex differences throughout 

the development of AD-related biofluid-based biomarkers for clinical use is important and 

timely. This is especially true because most of the biofluid-based assays are still in 

development; comparisons across platforms and the consideration of reference intervals still 

need to be delineated. Thus, timing is excellent to consider whether concentrations for each 

marker and platform vary by sex and other factors before they are applied to clinic 

populations.
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Nonstandard abbreviations:

Aβ amyloid-beta

CSF cerebrospinal fluid

NfL Neurofilament light chain

P-tau phosphorylated tau

T-tau total tau

Ng neurogranin

ADNI Alzheimer’s Disease Neuroimaging Initiative

MCSA Mayo Clinic Study of Aging

SiMoA single-molecular array
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BBB blood-brain barrier

QALB CSF/serum albumin ratio

Human Genes:

APOE apolipoprotein
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IMPACT STATEMENT

In the past few years, there has been rapid development of cerebrospinal fluid and blood-

based biomarkers for Alzheimer’s disease (AD) and related disorders. Some assays are 

nearing clinical use for screening or diagnostic purposes. However, one aspect not 

commonly considered in assay development is sex differences. There are several ways in 

which sex can affect the measurement or interpretation of AD-related biofluid 

biomarkers, including sex-differences in biomarker concentrations and sex differences in 

the impact or interpretation of the biomarker. This review highlights the impetus to 

consider sex differences in the development and interpretation of clinical assays for AD 

dementia and related disorders.
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