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Abstract

Purpose: To quantify the central visual field (VF) loss patterns in glaucoma using machine-

learning.
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Design: Retrospective study.

Participants: 8,712 patients with 13,951 Humphrey 10–2 tests from 13,951 eyes for cross-

sectional analyses, and 824 patients with at least five reliable 10–2 tests at 6 or more month 

intervals from 1191 eyes for longitudinal analyses.

Methods: Total deviation values were used to determine the central VF patterns using the most 

recent 10–2 tests. A 24–2 VF within a 3 month window of the 10–2 tests was used to stage eyes 

into mild, moderate or severe functional loss using the Hodapp-Anderson-Parrish scale at baseline. 

Archetypal analysis was applied to determine the central VF patterns. Cross-validation was 

performed to determine the optimal number of patterns. Stepwise regression was applied to select 

the optimal feature combination of global indices, average baseline decomposition coefficients 

from central VFs archetypes and other factors to predict central VF mean deviation (MD) slope 

based on the Bayesian information criterion (BIC).

Main Outcome Measures: The central VF patterns stratified by severity stage based on 24–2 

tests and a model to predict the central VF MD change over time using baseline tests.

Results: From cross-sectional analysis, 17 distinct central VF patterns were determined for the 

13,951 eyes across the spectrum of disease severity. These central VF patterns could be divided 

into isolated superior loss, isolated inferior loss, diffuse loss and other loss patterns. Notably, 4 of 

the 5 patterns of diffuse VF loss preserved the less vulnerable inferotemporal zone, while they lost 

most of the remaining more vulnerable zone described by the Hood model. Inclusion of 

coefficients from central VFs archetypical patterns strongly improved the prediction of central VF 

MD slope (BIC decreasing of 35; BIC decreasing > 6 indicating strong prediction improvement) 

than using only the global indices of two baseline VFs. Eyes with baseline VFs with more 

superonasal and inferonasal loss were more likely to have worsening MD over time.

Conclusion: We quantified central VF patterns in glaucoma, which were used to improve the 

prediction of central VF worsening compared with only using global indices alone.

Introduction

The preservation of central visual function is essential to the care of glaucoma patients.1–3 

Modeling central visual function as ascertained from 10–2 visual fields (VFs) with adequate 

sampling of the central 10 degrees offers an opportunity to categorize patterns of central 

vision loss in glaucoma and understand factors that contribute to its progression.

While prior studies have documented the 24–2 or 30–2 VF loss patterns in glaucoma 

patients,4–6 there are few existing analyses concerning 10–2 central VF loss.7,8 Hood et al. 

analyzed the associations between macular structure and the 10–2 VF in eyes with 24–2 VFs 

that are normal outside the central 10 degrees, and segmented the 10–2 VF into more and 

less vulnerable zones.7,8 Specifically, the less vulnerable zone is located in a predominantly 

inferior temporal region and the more vulnerable zone resides in the remaining 10–2 VF 

locations. In a subsequent study9 of the abnormal 10–2 hemifields in mild glaucoma, most 

exhibited an arcuate pattern (68%) while others had diffuse loss (8%), and other 

miscellaneous defects (25%) based on manual assessment. To date, there has been a lack of 

detailed and systematic characterization of central VF loss patterns in the literature.
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In this work, we aim to investigate systematically the central VF patterns in glaucoma and 

demonstrate their clinical utility. First, we performed cross-sectional analysis of the central 

VF patterns from total deviation plots by an unsupervised artificial intelligence (AI) method 

of archetypal analysis for eyes with all glaucoma severities defined by 24–2 VF mean 

deviation. Second, we have demonstrated the clinical utilities of the central VF patterns by 

using them to longitudinally track central VF changes and predict central VF MD slope from 

two baseline VF’s with follow-up of least 24 months.

Methods

We used the VF data from the Glaucoma Research Network (GRN) consortium, which 

consists of Massachusetts Eye and Ear, Wilmer Eye Institute, New York Eye and Ear 

Infirmary, Bascom Palmer Eye Institute, and Wills Eye Hospital. The institutional review 

boards (IRBs) of all institutions approved this research. The IRBs waived the need for 

informed consent because of the retrospective and de-identified nature of the study. This 

study adheres to the declaration of Helsinki.

Participants and Data

Reliable Swedish interactive thresholding algorithm (SITA) Standard 10–2 VFs with 

stimulus size III measured by the Humphrey Field Analyzer (HFA; Carl Zeiss Meditec, 

Dublin, CA) were selected for our data analyses. Reliable 24–2 VFs from the same subjects 

were used to stratify the 10–2 VFs by glaucoma severity. The reliability criteria for VF 

selection were fixation loss rate ≤ 33%, false negative rate ≤ 20%, and false positive rate ≤ 

20%.10–15 Although using these strict reliability criteria can potentially exclude true VF 

defects in severe glaucoma as it is known that fixation loss, false positive and negative rates 

are typically higher in eyes with worse VF loss, 12,16,17 we intentionally chose the same 

criteria for all glaucoma severities to ensure that the VFs included were sufficiently reliable.

A 24–2 VF within a 3 month window of the 10–2 tests was used to stage eyes into mild, 

moderate or severe functional loss using the Hodapp-Anderson-Parrish scale at baseline.18 

Eyes with mild glaucoma had a 24–2 VF with mean deviation (MD) ≥ −6 dB; eyes with 

moderate glaucoma had 24–2 VFs with −12 dB ≤ MD < −6 dB, while eyes with severe 

glaucoma had a 24–2 VF with MD < −12 dB.

Eyes with at least five reliable 10–2 VFs with intervals of at least 6 months between tests 

were selected for longitudinal analyses to track VF changes by central VF patterns and 

predict central VF MD slope.

All VFs were converted to right eye format, and were accordingly analyzed and plotted in 

right eye format.

Statistical Analyses

An unsupervised AI method, archetypal analysis, was used to determine the central VF 

patterns. Compared to the axis-learning19,20 and center-learning21,22 methods, archetypal 

analysis identifies the patterns that are more recognizable clinically23 and therefore are 

readily interpretable.24–26
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The total deviation values of the most recent reliable VF from each eye were used to identify 

central VF patterns. We applied archetypal analysis to determine the central VF patterns for 

eyes across the spectrum of glaucoma severity. Each 10–2 VF can be linearly decomposed to 

the central VF patterns. The decomposition coefficients sum to 100%. The optimal number 

of central VF patterns was determined with 10-fold cross-validation by minimizing VF 

reconstruction error.27 In detail, the data were randomly divided into 10 partitions, where 

each of the 10 partitions was used as the testing set once, with the remaining nine subsets 

used as training set. The VF reconstruction errors on test data were calculated for the 

number (k) of archetypes from 2 to 20 (the potential range of number of archetypes). The 

VF reconstruction errors were calculated as the differences between the original VFs and the 

reconstructed VFs, which were the sum of the archetypes multiplied by their linear 

decomposition coefficients. Bayes factor28 was finally applied to determine the optimal k, 
where the reconstruction errors with k were sufficiently lower (Bayes factor ≥ 3.0)29 from 

the reconstruction errors with k-1.5 Once the optimal number of patterns k was determined, 

the central VF patterns were determined over all data using that number. Similarly, central 

VF patterns were determined for each glaucoma severity stage.

To demonstrate the clinical utility of tracking 10–2 VF pattern specific changes, a series of 

VFs were decomposed to the central VF patterns for eyes with all severities. Linear 

regression was applied to the decomposition coefficient over time. Global indices and central 

VF pattern features of the first two baseline VFs were used to predict the MD slope of 

central VF with linear regression adjusted for age.30,31 Global indices include the average of 

MD and pattern standard deviation (PSD) of the two baseline VFs, and the rate of MD and 

PSD change between baseline VFs. Central VF pattern features include the average baseline 

VF decomposition coefficients to the 10–2 archetypal VF patterns for eyes with all severities 

and the average mean absolute error (MAE) of the two baseline VFs reconstruction. The 

MAE of baseline VF reconstruction was calculated as the mean absolute difference between 

total deviation values at each of the locations in the original 10–2 baseline VFs and the 

reconstructed baseline VFs, which is the sum of the archetypal VF patterns multiplied by 

respective archetypal coefficients. Stepwise regression32 was applied to select the optimal 

feature combination that predicts central VF MD slope based on Bayesian information 

criterion (BIC).33 A sub-analysis for eyes with baseline VF MD ≥ −12 dB was performed as 

well. Note that, the linear mixed model was used to address the issue of intereye correlation, 

which might bias the linear regression model.34

Results

Central VF Pattern Quantification

13,951 VFs of 13,951 eyes from 8,712 patients were selected to determine the central VF 

patterns for eyes across all stages of glaucoma severity. The mean ± standard deviation of 

age, spherical equivalent (SE) and 10–2 MD were 65.6 ± 16.2 years, −0.5 ± 2.0 diopter and 

−9.4 ± 9.2dB, respectively. Table 1 details the statistical distributions of age, SE and 10–2 

MD stratified by glaucoma stages defined by their matching 24–2 MD values.

Figure 1 (a) shows the 17 (optimal number of patterns determined by cross-validation) 

central VF patterns determined by archetypal analyses for the 13,951 eyes with all glaucoma 
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severities, with the respective average decomposition weight for each pattern expressed in 

percentage format. The most prevalent central VF pattern was an intact field (38.1%). There 

were 4 central VF patterns related to isolated superior loss, 4 patterns related to isolated 

inferior loss and 5 patterns related to diffuse loss with various patterns, accounting for 

17.2%, 12.5% and 19.8% of central VFs, respectively. The total loss pattern accounted for 

5.2% of the central VFs. Notably, 4 of the 5 central VF patterns with diffuse loss accounting 

for 16.9% of central VFs (archetypes 9, 10, 11 and 12 in Figure 1 (a)) preserved the less 

vulnerable zone while they lost most of the remaining more vulnerable zone (see schematic 

in Figure 1 (a)) proposed by Hood and coworkers.8 Furthermore, various arcuate defect 

patterns were found including 3 superior arcuate defects (archetypes 1, 2, 3) and 3 inferior 

arcuate defects (archetypes 5, 6 and 8) accounting for 23.0% of central VF loss patterns. An 

example of a patient’s central VF decomposed quantitatively into a linear combination of the 

17 central VF patterns is shown in Figure 1(b). More specifically, a central VF can be 

approximately represented as the sum of each central VF pattern multiplied by its respective 

linear decomposition coefficient, which sums to 100%. Intuitively, the central VF pattern 

with the highest coefficient most resembles the actual VF compared to patterns with lower 

coefficients. We also applied the t-distributed stochastic neighbor embedding (t-SNE) 

method to transform the central VFs into a two-dimensional data space for the purpose of 

better data visualization.35,36 The transformed central VFs were plotted in two-dimensional 

space with each data point colored based on the respective primary VF pattern. The primary 

VF pattern was defined as the pattern demonstrating the largest weight coefficient when 

decomposing the VF into its component patterns. See more details in Supplemental Figure 1.

Figure 2 shows the various central VF patterns for eyes with (a) mild (3,529 eyes), (b) 

moderate (1,528 eyes) and (c) severe (3,066 eyes) glaucoma respectively as determined 

using accompanied 24–2 VF mean deviation. The average decomposition weight of the 

intact central VF archetype decreased from 50% in mild glaucoma (archetype 8 in Figure 2 

(a)), to 29% in moderate glaucoma (archetype 8 in Figure 2 (b)) and to 9% in severe 

glaucoma (archetype 13 in Figure 2 (c)), while the average weight of diffuse loss increased 

from 2.3% in mild glaucoma (archetype 11 in Figure 2 (a)), to 4.2% in moderate glaucoma 

(archetype 9 in Figure 2 (b)) and to 39.7% in severe glaucoma (archetypes 8, 9, 10, 11, 12 

and 14 in Figure 2 (c)). The percentage of arcuate loss increased from 31.1% (archetypes 1, 

2, 4, 6, 7 and 9 in Figure 2 (a)) in mild glaucoma to 45.3% (archetypes 1, 2, 3, 4, 6 and 7 in 

Figure 2 (b)) in moderate glaucoma, and decreased again to 26.5% (archetypes 2, 3, 4 and 5 

in Figure 2 (c)) in severe glaucoma.

When comparing the central VF patterns present in different glaucoma stages, similar 

central VF defects were found in different glaucoma stages including superonasal defects 

(e.g., archetype 1 in Figure 2 (a) and (b), and archetype 3 in Figure 2 (c)) and temporal 

island patterns (e.g., archetype 11 in Figure 2 (a), archetype 9 in Figure 2 (b), and archetype 

8 in Figure 2 (c)). Unique patterns specific to glaucoma stages include the central defect 

superior-peripheral loss (10.0%; archetype 9 in Figure 2 (a)) and central defect (6.0%; 

archetype 10 in Figure 2 (a)) for mild glaucoma, the central-nasal loss (5.2%; archetype 11 

in Figure 2 (b)) for moderate glaucoma, and the total loss (8.6%; archetype 14 in Figure 2 

(c)) and inferotemporal loss (4.1%; archetype 7 in Figure 2 (c)) for severe glaucoma.
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Using Central VF Patterns to Assess Change

1,191 eyes from 824 patients with at least 5 reliable 10–2 VFs obtained at follow-up 

intervals of at least 6 months were selected for longitudinal analyses to illustrate the 

potential clinical relevance of the archetypal central VF patterns. At the time of the two 

baseline VFs (average 102 MD: −11.2 ± 7.9 dB), the mean age of the patient population was 

64.7 ± 13.5 years. 384 eyes had 10–2 MD ≥ −6 dB, 677 eyes had 10–2 MD between −6 dB 

and −12 dB and 514 eyes had 10–2 MD worse than −12 dB. The medians of the follow-up 

time and number of follow-up tests were 6.3 years and 6, respectively. The average MD 

slope for eyes with all severities was −0.37 ± 0.66 dB/year and −0.39 ± 0.67 dB/year for 

eyes with baseline MD ≥ −12 dB.

Figure 3 shows representative examples of (a) increased superonasal loss (12% per year) and 

(b) increased inferonasal loss (10% per year), which were detected by quantitatively tracking 

the spatial pattern changes using the 17 central VF patterns for eyes with all glaucoma 

severities illustrated in Figure 1 (a).

Figure 4 (a) shows the optimal combinations of features to predict the 10–2 MD slope. 

Inclusion of central VF pattern features strongly improves the prediction of central VF MD 

slope (BIC decreasing of 35) than using global indices of two baseline VFs. Note that, BIC 

decreasing > 6 indicates strong prediction improvement.29 Specifically, more negative MD 

slope of central VF was significantly (p < 0.004 for all) associated with higher coefficients 

of archetypes 3 (superonasal loss), 5 (inferonasal loss), 6 (extended inferonasal loss), mean 

absolute error between archetypal VF reconstruction and original baseline VFs, and lower 

coefficient of archetype 15 (total loss). As expected, older age and decreased MD and PSD 

between baselines were also significantly (p < 0.001 for all) associated with more negative 

central VF MD slope. The positive association between archetype 15 and MD slope is likely 

due to either floor effect or the beneficial effect of cataract surgery.

Figure 4 (b) shows the optimal combination of features to predict central VF MD slope in 

eyes with baseline MD ≥ −12 dB. Adding central VF pattern features improves the 

prediction of central VF MD slope (BIC decreasing of 25) compared to global indices alone. 

In particular, more negative MD slope was statistically (p < 0.006 for all) correlated with 

higher coefficients of archetypes 5 (inferonasal loss), 9 (diffuse loss with temporal island), 

and mean absolute error of archetypal VF reconstruction, and lower coefficient of archetype 

15 (total loss). Again, older age and decreased MD between baselines were also statistically 

(p < 0.001 for all) associated with more negative MD slope of central VF.

Discussion

In this work, 17 central VF patterns were autonomously identified for eyes with all severities 

of functional loss by unsupervised AI. In addition, 11, 11 and 16 central VF patterns were 

subsequently determined for eyes with mild, moderate and severe glaucoma, respectively. To 

the best of our knowledge, this is the first study that systematically and quantitatively 

describes central VF patterns in glaucoma. Among the 17 central VF patterns identified, 

various arcuate defect patterns were found and most of the diffuse loss patterns preserved 

the so called less vulnerable zone.8 Similar central VF defects across different glaucoma 
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stages and unique central VF defects specific to a certain glaucoma stage were found, which 

might represent different subtypes of central VF loss with possibly different underlying 

pathophysiology and biomarkers.

More importantly, the potential clinical utilities of the central VF patterns were 

demonstrated including tracking spatial pattern changes over time and predicting the central 

VF MD slope by baseline central VF patterns.

We demonstrated that the central VF patterns can be used to track and detect the focal 

changes of central VFs over time. This functionality can be used to develop new progression 

detection algorithms based on spatial pattern analyses of central VF. A similar algorithm to 

detect 24–2 VF progression has been developed and demonstrated to be more accurate than 

existing progression detection methods.26

Consistent with the study by Traynis et al. assessing 10–2 central VF defects manually,9 we 

found various arcuate defect patterns including 3 superior arcuate defects (archetypes 1, 2, 

3) and 3 inferior arcuate defects (archetypes 5, 6 and 8) accounting for 23% of central VFs. 

Furthermore, 4 out of the 5 patterns of diffuse loss with islands preserved the less inferior 

temporal vulnerable zone as described.8 The quantification of central VF loss by spatial 

pattern analyses with archetypal analysis independently confirmed the observational findings 

of frequent arcuate defects and relative preservation of the inferotemporal less vulnerable 

zone.8

We also have shown that central VF patterns of baseline VFs are predictive of central VF 

MD slope when used in a model with age and global indices of baseline VFs. Interestingly, 

among the 17 central VF patterns, there were 4 central VF patterns (Figure 4 (a)) specifically 

associated with central VF MD slope. In particular, higher coefficients of archetypes 3 

(superonasal loss), 5 (inferonasal loss) and 6 (extended inferonasal loss) were associated 

with more negative central VF MD slope. Our model could be used by clinicians to decide 

which patients/eyes need to be treated more aggressively to slow central VF worsening.37

To further support the generalizability of our model, we have compared the VF 

reconstruction error on our training dataset with the VF reconstruction error on a different 

testing dataset recently received from Columbia University, which were not included in our 

original data analysis. The most recent reliable VFs of 2,965 eyes in training and testing 

datasets were selected. Inter-eye correlation was adjusted with the linear mixed model. The 

average mean absolute error of VF reconstruction on the training dataset was 2.41 dB 

compared with the average mean absolute error of VF reconstruction on the testing data 2.32 

dB. The modeling error on the testing data was even slightly lower than the modeling error 

on the training data (p < 0.001). This small difference is likely from sampling effect.

AI shows great potential to improve glaucoma diagnosis and prognosis evidenced by 

numerous recent publications. AI is generally divided into supervised AI (e.g. deep learning) 

and unsupervised AI (e.g. archetypal analysis). While the supervised AI has been typically 

applied for glaucoma detection and forecasting, 36–42 the unsupervised AI mainly helps 

clinicians to understand the patterns of glaucomatous damages and their changes over time.
22,43,44 In previous research,22,43,44 axis-learning such as principal component analysis and 
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independent component analysis and center-learning such as Gaussian mixture modeling 

have been applied to improve glaucoma progression detection. Compared with axis-learning 

and center learning methods, the corner-learning AI method of archetypal analysis produces 

clinical recognizable and interpretable VF patterns which can help translate findings into 

clinical practice.5,25,26 However, archetypal analysis is theoretically more prone to data 

outliers compared those aforementioned methods. A hybrid approach combining axis-

learning, center-learning and corner-learning might be promising to further improve the 

clinical utilities of unsupervised AI.

Our study has limitations. First, we do not have detailed demographic (e.g. race and gender) 

and diagnostic information, treatment history and accompanying structural measurements 

for our central VF data. Those factors might be related to different central VF patterns, 

which need to be address in our future studies when the relevant information is available in a 

new dataset. We would like to stress the fact that we included all patients from five 

glaucoma services across the US with reliable central 10–2 VF from 1999 to 2014. No 

patients were excluded due to demographics and past ocular history, therefore our data used 

to generate the model are probably fairly close to “real world” clinical data. Patients may 

also have VF loss from confounding diseases, such as macular degeneration, stroke, cataract, 

etc. For example, archetypes 16 and 17 in Figure 1 (a) might be related to macular 

degeneration and hemianopia, respectively. More structural measurements and detailed 

medical records will be needed to determine the exact pathological causes of those VF 

patterns. On the other hand, the presence of patterns potentially related to confounding 

diseases is not necessarily a disadvantage, because the subjects in glaucoma clinics may 

have glaucoma and other vision-related diseases and our model can be potentially used to 

quantify and distinguish their vision loss related to different diseases. Second, our central 

VF samples might be biased toward severe glaucoma stage compared with their natural 

distributions, because central VF is more frequently tested in severe stage disease than in 

mild stage disease as suggested by the similar numbers of eyes with 10–2 VF for mild and 

severe glaucoma while typically there are much fewer eyes with severe glaucoma compared 

with mild glaucoma. However, if the central VF samples are biased in the same way in most 

glaucoma clinics, then this bias does not affect the applicability of our model. Third, though 

we demonstrated that central VF patterns of baseline VFs can predict central VF MD slope 

in addition to global indices, we do not have the detailed diagnostic information and the 

treatment history of individual patient to more accurately identify the risk factors of the 

central VF worsening. Lastly, more work is needed to demonstrate the correlation between 

central VF patterns to the structural damages, perhaps using macular ganglion cell thickness 

maps.

In summary, representative central VF patterns were determined by archetypal analysis 

using a large multi-center dataset. Those central VF patterns quantitatively confirmed 

previous observational findings of arcuate defects and less vulnerable zones in central VF. 

We demonstrated the potential clinical utilities of central VF patterns including predicting 

central VF MD change over time. Furthermore, as numerous studies have shown that the 

central VF is most relevant to the quality of life (QoL) of glaucoma patients,46–51 we believe 

that further distinguishing the central VF loss based on their spatial patterns can better 

identify the QoL impairment of glaucoma patients than only using central VF MD.
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Central visual field patterns in glaucoma were quantified by an unsupervised artificial 

intelligence technique, and were used to improve the prediction of central visual field loss 

over time compared with only using global indices alone.
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Figure 1. 
A, Seventeen central visual field (VF) patterns determined by archetypal analysis for 13 951 

eyes with all glaucoma severities with annotated average decomposition coefficients on all 

13 951 VFs. The numbering of the archetypes is based on location of VF loss. The 

percentage in parenthesis indicates the respective average decomposition weight for each 

pattern. B, Example of the VF decomposition to the central VF patterns. All VFs are plotted 

in right-eye format. AT = archetype; MD = mean deviation; TD = total deviation.

Wang et al. Page 14

Ophthalmology. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wang et al. Page 15

Ophthalmology. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wang et al. Page 16

Ophthalmology. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
A, Eleven central visual field (VF) patterns for eyes with mild glaucoma (3529 eyes). B, 

Eleven central VF patterns for eyes with moderate glaucoma (1528 eyes). C, Sixteen central 

VF patterns for eyes with severe glaucoma (3066 eyes). The glaucoma stage was determined 

by accompanying 24–2 VF mean deviation. All VFs are plotted in right-eye format. AT = 

archetype.
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Figure 3. 
Representative example of (A) increased superonasal loss and (B) increased inferonasal loss 

detected by tracking the spatial pattern changes using the 17 central visual field (VF) 

patterns for eyes with all glaucoma severities illustrated in Figure 1A. All VFs are plotted in 

right-eye format. AT = archetype; MD = mean deviation.
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Figure 4. 

Wang et al. Page 20

Ophthalmology. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bar graphs showing (A) optimal features to predict the mean deviation (MD) slope of central 

visual field (VF) for eyes with baseline MDs of all severities (n = 1191 eyes) and (B) 

optimal features to predict the MD slope of central VF for eyes with baseline MDs of –12 

dB or more (better than severe glaucoma; n = 677 eyes). See Tables S1 and S2 (available at 

www.aaojournal.org) for the detailed model coefficients and their 95% confidence intervals. 

AT = archetype; MAE = mean absolute error of the baseline VFs reconstruction by central 

VF archetypes; Diff. = difference between 2 baseline results; PSD = pattern standard 

deviation.
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Table 1

The statistical distributions of age, SE and 10–2 MD stratified by glaucoma stages defined by their matching 

24–2 MD values. SE = spherical equivalent; MD = mean deviation.

Glaucoma
Stage

VF
Number

Eye
Number

Patient
Number

Age
(years)

SE
(diopter)

10–2
MD (dB)

All stages 13,951 13,951 8,712 65.6 ± 16.2 −0.5 ± 2.0 −9.4 ± 9.2

Mild 3,529 3,529 2,502 64.5 ± 14.8 −0.6 ± 2.0 −3.0 ± 3.6

Moderate 1,528 1,528 1,304 68.2 ± 13.8 −0.5 ± 1.9 −8.3 ± 4.8

Severe 3,066 3,066 2,532 71.1 ± 14.0 −0.5 ± 2.0 −16.8 ± 7.0
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