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Abstract
Background: Accumulated evidences indicate that long non-coding RNAs (lncRNAs) 
participate in many biological mechanisms. Moreover, it acts as an essential regulator 
in various human diseases such as gastric cancer (GC). Nevertheless, the compre-
hensive regulatory roles and clinical significance of most lncRNAs in GC are not fully 
understood.
Methods: In this research, our aim was to investigate the underlying mechanism of 
lncRNA LINC01234 in GC. Firstly, the usage of qRT-PCR helped to establish expres-
sion pattern of LINC01234 in GC tissues. Following this, appropriate statistical tests 
were applied to analyze the relation between expression level and clinicopathological 
factors. Ultimately, potential functions and regulatory network of LINC01234 were 
concluded via GSEA and a series of bioinformatics tools or databases, respectively.
Results: Consequently, at the end of research we found LINC01234 is up-regulated 
in GC tissues in comparison with adjacent normal tissues. Furthermore, its expres-
sion level is correlated with differentiation of patients with GC. It is also important 
to highlight bioinformatics analysis revealed that LINC01234 is involved in cancer-
associated pathways such as cell cycle and mismatch repair. Also, regulatory network 
of LINC01234 presented a probability in the involvement of tumorigenesis through 
regulating cancer-associated genes.
Conclusion: Overall, our results suggested that LINC01234 may play a crucial role in 
GC.
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1  | INTRODUC TION

Gastric cancer (GC) is a complex disease caused by accumulation 
of both genetic and epigenetic factors and imposes a considerable 
global health burden.1 In fact, in 2016, there were 1.2 million cases 
of GC with 834 000 deaths worldwide and 18.3 million DALYs (dis-
ability-adjusted life years).2 Even though scientists are making great 
efforts and there is a steady decline in GC incidence and mortality 
rates, it is still hard to diagnose GC patients at early stage. To illus-
trate, this means most GC patients are missing their opportunity for 
radical gastrectomy, which is currently the best way to cure GC when 
diagnosed.3,4 Additionally, many patients have a significant risk of 
metastasis and low survival time even after curative resection. Thus, 
it is vital to identify new effective biomarkers and therapeutic target 
agents for the treatment and early diagnosis of GC.

Long non-coding RNAs (lncRNAs) are a kind of non-coding RNAs 
(lacking the ability of encoding protein) with a length larger than 200 nt. 
Even though the same as mRNAs, lncRNAs are also transcribed out of 
DNA by RNA polymerase II; they were initially thought to be a noise 
in transcriptome when first found.5 Despite this, accumulated studies 
established that lncRNAs function as regulators of gene expression, 
stability, and location at the epigenetic, transcriptional, and post-tran-
scriptional levels.6,7 Thus, aberrance of lncRNA expression is involved 
in numerous biological processes such as cell cycle, cell differentiation, 
proliferation, apoptosis, metastasis, invasion, and migration in several 
kinds of cancer including GC.8,9 Also, some lncRNAs can indeed be 
used as a biomarker for the diagnosis and prognosis in many kinds of 
cancers such as breast cancer10 and GC.11 For example, LINC100612 
was found to be a novel biomarker for GC previously. Above all, ln-
cRNAs are important in both the initiation and development of GC.

Over the last decades, numerous experimental researches have 
identified several lncRNAs that play crucial role in GC such as im-
printed maternally expressed transcript (H19),13 small nucleolar 
RNA host gene 5 (SNHG5),14 homeobox transcript antisense RNA 
(HOTAIR),15 AGAP2 antisense RNA 1 (AGAP2-AS1),16 and Pvt1 on-
cogene (PVT1).17 Yet they were only a tip of iceberg, there remain 
a large number of lncRNAs with unknown functions and regulation 
mechanism in GC. Due to the advances of sequencing technology, 
more and more high-throughput data of transcriptome in GC were 
carried out. The Cancer Genome Atlas (TCGA) collects sequencing 
data of genome, transcriptome, and epigenome from many patients 
with various kinds of cancer including stomach adenocarcinoma 
(STAD). It provides an opportunity to dig out unknown genes espe-
cially for those lncRNAs in GC.

In this research, we first analyzed gene expression profiles of 
STAD patients in TCGA and found a number of lncRNAs differently 
expressed in cancerous tissues compared with adjacent non-can-
cerous tissues. Then, we verified one of the up-regulated lncRNA, 
LINC01234, in GC tissues compared with adjacent non-cancerous 
tissues by real-time quantitative reverse transcription-polymerase 
chain reaction (qRT-PCR). Also, the association between expression 
level of LINC01234 and clinicopathological factors was analyzed. 
Subsequently, we annotated the functions of LINC01234 using 

Gene Set Enrichment Analysis (GSEA) method and constructed the 
LINC01234 regulatory network to well interpret the regulation mech-
anism of LINC01234 in GC.

2  | MATERIAL S AND METHODS

2.1 | Differently expression analysis of lncRNAs in 
STAD from TCGA

Fragments per Kilobase of transcript per Million fragments mapped 
(FPKM) expression profiles and clinical information of STAD patients 
were downloaded from TCGA website (https​://portal.gdc.cancer.
gov/). There are 375 cancerous samples and 32 adjacent normal 
samples (Table S1). Long intergenic non-coding RNA (lincRNA) and 
antisense RNAs were selected as lncRNAs and were analyzed by t 
test. False discovery rate (FDR) method was used to correct P values. 
Those with FDR < 0.05 and fold change larger than 1.5 were consid-
ered to be as differently expressed lncRNAs.

2.2 | Collection of GC samples and patients' clinical 
information

Paired cancerous and adjacent normal tissues of 83 GC patients 
were collected during surgery in the span of 2010 to 2015 at 
Zhejiang Cancer Hospital. The adjacent normal tissues were de-
fined as those tissues located 5  cm away from the edge of the 
tumor. All the samples with a size of around 0.1 cm3 were imme-
diately preserved in RNA fixer (BioTeke) and stored at −80°C until 
use. For each GC patient, the clinical information consisted of age, 
gender, invasion depth, differentiation, lymphatic metastasis, dis-
tal metastasis, and TNM stage. It is important to state no patient 
had undergone preoperative radiotherapy or chemotherapy. Also, 
each patient had handed over a written consent with a signed 
name indicating they are willing to participate in this research 
and the ethics committee of Ningbo University approved for this 
investigation.

2.3 | Total RNA extraction and qRT-PCR

The methods for total RNA preparation and qRT-PCR were anal-
ogous to our previous study.18 For instance, we extracted the 
total RNA using TRIzol reagent (Thermo Fisher Scientific) from 
each cancer tissue and adjacent normal tissue. From here, we 
were able to detect total RNA by using a protein-nucleic acid 
spectrophotometer according to A260/280 ratio. Hereafter, 
2  μg RNA was reverse-transcribed into cDNA with GoTaq qPCR 
Master Mix (Promega) and the process of qRT-PCR was per-
formed on LightCycler 480 (Roche). The sequences of PCR 
primers for β-actin were 5′-CATGTACGTTGCTATCCAGGC-3′ 
(forward) and 5′-CTCCTTAATGTCACGCACGAT-3′ (reverse). On 
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the other hand, the sequences of PCR primers for LINC01234 
were 5-TCTACTAGAGCCTCCAGAAGG-3′ (forward) and 
5-CTACTCTTCACGCAGAGGA-3′ (reverse). Importantly, the con-
ditions of thermal cycling were as follows: predegeneration at 95°C 
in 10 minutes, after which 45 cycles at 95°C for 15 seconds, 55°C 
for 30 seconds, and 72°C for 30 seconds. The expression level of 
LINC01234 was calculated using the ΔCt method with β-actin ex-
pression value as control, which was calculated by subtracting the 
Ct values of β-actin from the Ct values of LINC01234. Then, ΔΔCt 
of LINC01234 was calculated by subtracting ΔCt of adjacent non-
cancerous tissue from that of the paired cancer tissue. At last, the 
fold change of LINC01234 was calculated by the equation 2−ΔΔCt. All 
results were described as the expression of mean ± standard devia-
tion of three independent experiments.

2.4 | Gene set enrichment analysis of LINC01234

By using the median expression level of LINC01234 as cutoff, STAD 
patients were divided into two groups: with low expression and 
high expression of LINC01234, respectively. Subsequently, FPKM 
expression profiles for STAD patients and group labels of samples 
were put into GSEA software.19 Gene Ontology (GO) Biological 
Process (BP) term and KEGG pathway datasets were selected to 
calculate the enriched functions and pathways associated with 
LINC01234. Adjusted P-value <  .05 was considered to be statisti-
cally significant.

2.5 | Construction of LINC01234 
regulatory network

2.5.1 | TF-LINC01234 regulation

We downloaded the genomic location of peaks of transcription factor 
(TF) from Cistrome databases,20 which re-calculated ChIP-seq data-
sets for TF and histone modification from GEO database.21 Next, we 
compared the chromosome position of these binding regions with that 
of LINC01234, only those with the binding sites locating promoters of 
LINC01234 were considered as TF-LINC01234 regulation relationships. 
Then, TFs were filtered by differently expressed protein-coding genes 
in GC identified from STAD expression profiles from TCGA by using t 
test. False discovery rate (FDR) method was used to correct P-values 
for multiple comparisons, and .05 was set as a cutoff.

2.5.2 | miRNA-LINC01234 interactions

The conclusion of miRNA-LINC01234 interactions was established 
upon reliable miRNA target prediction tool known as miRanda set on 
default parameters.22 Due to the up-regulation of LINC01234 in GC, 
only those miRNAs down-regulated in GC were obtained according 
to miRCancer database.23

2.5.3 | RBP-LINC01234 interactions

Likewise, prediction of RBP-LINC01234 interactions was set by utiliz-
ing a model called lncPro24 using sequence information downloaded 
from UniProt.25 Afterward, RBP was also filtered by removing non-
differently expressed protein-coding genes in STAD from TCGA.

2.6 | Statistical analysis

IBM SPSS 21.0 software (SPSS) and R 3.3.3 were the two software 
used to perform statistical analysis. Comparison of “expression values” 
among three or more groups was analyzed by one-way analyses of 
variance (ANOVAs), while that between two groups was performed by 
Student's t test. Statistical differences were set at *P < .05, **P < .01, 
and ***P < .001. P < .05 was set to analyze the statistical significances.

3  | RESULTS

3.1 | Experimental verification of LINC01234  
up-regulation in GC tissues

Firstly, we downloaded the expression profiles of STAD from TCGA 
and investigated the differently expressed lncRNAs. Consequently, 
1016 up-regulated and 140 down-regulated lncRNAs in GC com-
pared with non-cancer tissues were found (Figure 1A, Table S2). 
Among them, one of up-regulated lncRNAs, LINC01234, was se-
lected to study deeply because of poor knowledge of it in GC. We 
then verified the disorder expression pattern of LINC01234 using 
qRT-PCR in 83 GC tissues and adjacent normal tissues (Figure 1B). 
Hence, by comparing the adjacent non-cancerous tissues, it is con-
cluded that LINC01234 is strictly up-regulated in 61 of 83 GC tissues 
(73.5%, Figure 1C, P < .001).

3.2 | Association analysis between expression 
level of LINC01234 and clinicopathological factors in 
GC patients

In the previous study, LINC01234 was considered to be a po-
tential diagnostic marker in GC based on the data of TCGA.26 
Consequently, we evaluated the likely diagnostic value of 
LINC01234 based on our own dataset. Initially, we performed a 
statistical analysis to examine the relationship between the clin-
icopathological factors and the expression level of LINC01234. 
As a result, we found differentiation of GC was associated with 
LINC01234 expression, that means the lower the LINC01234 ex-
pression is, the more the possibility for poor differentiation of 
GC tissues is (P  <  .05, Table 1). Besides, P value of the test for 
association between distal metastasis and LINC01234 expres-
sion is <0.05. However, the sample size of GC patients with M1 
stage is not enough (n = 5) that the result may be unbelievable. 
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Other clinicopathological factors including age, gender, great-
est tumor dimension, invasion depth, lymphatic metastasis, and 
TNM stage are not related to LINC01234 level. In addition, we 
further explored the ability of differentiation of GC tissues from 
the normal adjacent tissues by a receiver operating characteristic 
(ROC) curve. The area under the ROC curve (AUC) was 0.888 for 
TCGA dataset (95% CI, 0.848-0.929; P  <  .05, Figure 2A) while 
0.664 for our qRT-PCR results (95% CI, 0.581-0.748; P  <  .05, 
Figure 2B), indicating that LINC01234 plays a prominent role in 
GC tumorigenesis.

3.3 | Potential functions of LINC01234

To explore the potential functions of LINC01234 in GC, we firstly 
divided the STAD patients from TCGA into two groups, low expres-
sion and high expression of LINC01234 in cancer tissues, respec-
tively. Secondly, GSEA was performed to investigate biological 
processes or pathways that were associated with LINC01234. 
Thus, the results showed LINC01234 may be involved in can-
cer and immune-related pathways such as cell cycle (Figure 3A), 
mismatch repair (Figure 3B), intestinal immune network for IgA 
production (Figure 3C), and B-cell receptor signaling pathway 
(Figure 3D). In the case of GO BP, cancer-associated functions 
were found such as negative regulation of tumor factor–mediated 

signaling pathway (Figure 3E) and positive regulation of cell mi-
gration are involved in sprouting angiogenesis (Figure 3F). These 
findings present a strong evidence that LINC01234 has a major 
role in GC formation.

3.4 | Regulatory network of LINC01234

LncRNAs have been discovered to interact with various types of mol-
ecules including DNA, miRNA, mRNA, and protein. To analyze the 
regulation mechanism of LINC01234 in GC, we constructed a regu-
latory network of LINC01234 by utilizing a series of bioinformatics 
tools and databases. This network included TF-lncRNA regulation, 
miRNA-lncRNA relationship, as well as lncRNA-RBP interactions. In 
total, 31 TFs, 49 miRNAs, and 138 RBPs associated with LINC01234 
were achieved (Table S3, Figure 4).

3.4.1 | TF-LINC01234 regulation

Some of the 31 TFs have thoroughly participated in GC develop-
ment. For example, FOXK2 inhibited the proliferation, invasion, and 
migration of GC cells, and its down-regulation is related to poor 
prognosis in GC patients.27 Besides, HDAC2 was significantly up-
regulated in various histopathologic grades of human GC, and the 

F I G U R E  1  A, Differently expressed 
lncRNAs in STAD. B, Expression level 
(FPKM) of LINC01234 in STAD tissues 
compared with adjacent normal tissues. 
C, Expression level (△Ct value) of 
LINC01234 in GC tissues compared with 
adjacent normal tissues
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inactivation of HDAC2 has been confirmed to reduce cell motility, 
cell invasion, clonal expansion, and tumor growth.28 Specifically, 2 
TFs were found to co-express with LINC01234 according to the co-
expression network we previously constructed.29 They are ELK1 and 
ZNF664 (Table S4).

3.4.2 | miRNA-LINC01234 regulation

A total of 49 miRNAs were predicted to regulate LINC01234 in 
GC. Several of them have already been accepted to be correlated 
with GC progression. Also, the overexpression of miR-1284 was 

Characteristics Groups
Number of 
Patients (%)

Expression level 
(Mean ± SE) P-value

Age (y)       .079

≧60 33 (39.76) 17.55 ± 2.14  

<60 50 (60.24) 18.34 ± 1.88  

Gender       .619

Male 63 (75.9) 17.96 ± 1.92  

Female 20 (24.1) 18.22 ± 2.31  

Greatest tumor 
dimension (cm)

      .474

≧5 40 (48.19) 18.19 ± 1.91  

<5 43 (51.81) 17.87 ± 2.12  

Invasion depth       .804

T1/T2 14 (16.87) 18.15 ± 1.76  

T3/T4 69 (88.13) 18 ± 2.07  

Differentiation       <.001*

Well/
Moderate

37 (44.58) 17.17 ± 1.65  

Poor 46 (55.42) 18.71 ± 2.03  

Lymphatic metastasis       .377

N0/N1 28 (33.73) 18.3 ± 1.93  

N2/N3 55 (66.27) 17.88 ± 2.06  

Distal metastasis       .013a

M0 78 (93.98) 18.16 ± 1.99  

M1 5 (6.02) 15.88 ± 0.818  

TNM stage       .87

I/II 22 (26.51) 18.09 ± 1.95  

Ⅲ/Ⅳ 61 (73.49) 18 ± 2.05  

Abbreviation: SE, standard error.
aThe sample size is so small that the result may be unbelievable even though P < .05. 
*P < .05. 

TA B L E  1   Relationship between 
LINC01234 expression level (ΔCt value) 
and clinicopathological factors of GC 
patients

F I G U R E  2  Diagnostic value of 
LINC01234 in GC. A, ROC curve of 
LINC01234 predicting STAD samples using 
FPKM value from TCGA. B, ROC curve of 
LINC01234 predicting GC samples using 
△Ct value detected by qRT-PCR



6 of 9  |     ZHU et al.

(A) (B)

(C) (D)

(E) (F)



     |  7 of 9ZHU et al.

reported to be a suppressor for GC by controlling over cell prolif-
eration and apoptosis.30 In fact, a prior study showed miR-1284 
might modulate multidrug resistance of GC cells by targeting spe-
cific genes.31 The miR-1297 expression found to be remarkably 
lower in GC tissue and suppress GC cell growth by inhibiting the 
expression of CREB1.32

3.4.3 | RBP-LINC01234 regulation

A total of 138 RBPs were predicted to likely interact with LINC01234. 
Among them, a part of RBPs was already shown to be related to GC. 
For example, reports revealed DDX21 could affect the proliferation 
of GC cells by up-regulating levels of cyclin D1 and CDK2.33 Likewise, 

F I G U R E  3  Potential functions of LINC01234 in GC. GSEA showed that aberrant expression of LINC01234 would affect the genes 
involved in cancer-related pathways such as cell cycle (A), mismatch repair (B), intestinal immune network for IgA production (C), B-cell 
receptor signaling pathway (D), negative regulation of tumor factor–mediated signaling pathway (E), and positive regulation of cell migration 
involved in sprouting angiogenesis (F)

F I G U R E  4  Regulatory network of LINC01234 in GC. The central node is LINC01234. Rectangle nodes represent TF, circle nodes 
represent RBP, and green triangle nodes represent miRNA. Red color represents high expression in GC, while blue color represents low 
expression in GC. Color strength represents log2 value of fold change in GC tissues to adjacent normal tissues
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the suppression of EIF3B inhibits the proliferation and metastasis 
of GC by effectively modulating the expression of cancer-related 
genes.34 Likewise, we also found 15 co-expression relationships in 
RBP interactions such as CPSF3, DDX18, DKC1, and FUS (Table S4).

4  | DISCUSSION

LncRNA is a type of non-coding RNAs without the ability of en-
coding proteins; despite this, it has a regulating gene expression 
at chromatin modification, transcriptional, or post-transcriptional 
levels.35 In addition, the polymorphisms in lncRNAs could be a risk 
of disease or cancer.36 In fact, an increasing number of lncRNAs 
have been identified to be related to numerous kinds of diseases,37 
including GC. For example, through the expression analysis of 
metabolic pathway-related lncRNAs and protein-coding genes, 
a dozen of lncRNAs were functionally annotated and discovered 
to be important in GC.38 DGCR9, another lncRNA up-regulated 
in GC, was shown to promote the tumorigenesis of GC.39 Some 
of lncRNAs were even indeed considered as biomarkers for di-
agnosis or prognosis of GC. For instance, a metabolism-related 
lncRNA, RP11-555H23.1, was found to be a potential diagnostic 
biomarker in GC.40 Also, the expression level of H19 in plasma 
could be served as a biomarker for patients with GC.41 Due to 
the regulatory role of lncRNAs, exploring new lncRNA biomarkers 
can help to explain the initiation and progression mechanism of 
GC. Nevertheless, still there are many unknown lncRNAs in GC 
nowadays.

The previous study found LINC01234 is highly expressed in 
esophageal squamous cell carcinoma (ESCC). Also, it is one of the 
three lncRNAs that can be a signature to predict the survival time of 
ESCC patients accurately.42-44 Besides, it was likewise discovered to 
be up-regulated in the GC in prior study.26 However, the functions 
and regulatory role of LINC01234 need to be studied.

In this research, we identified that LINC01234 was also highly 
expressed in GC tissues compared with adjacent non-cancerous tis-
sues. Later, we explored the associations between the expression 
level of LINC01234 and clinical features through which we found 
LINC01234 was correlated with differentiation of GC. LncRNAs 
usually interact with other kinds of molecules to involve in multi-
ple biological processes. For example, the binding of lncRNA OLC8 
and IL-11 will impair the degradation of IL-11 mRNAs to accelerate 
GC development.45 Besides, combination of lncRNA and its target 
may increase the diagnostic value of lncRNA. Just as it was found by 
previous report that the combined use of RP11-19P22.6-001 and its 
target NOS2 may be useful to diagnose patients with GC.46 Thus, we 
further explored the potential functions and regulatory network of 
LINC01234. We identified 218 relationships of LINC01234 in total. 
Among them, 17 associations including two pairs of TF regulation 
and 17 pairs of RBP interaction were found to be co-expressed. One 
of 2 TFs, ELK1, is an important regulator and known to activate many 
lncRNAs including TRPM2-AS, MIR100HG, and HOXA10-AS in cancer 

until now,47-49 indicating ELK1 may induce expression of LINC01234 
to promote tumor progression in GC too.

In conclusion, the results of this present study indicated that 
LINC01234 expression is linked with the diagnostics of patients with 
GC and similarly may be involved in differentiation in GC through cell 
cycle or other cancer-related pathways.
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