Skip to main content
. 2020 Apr 29;17(9):3093. doi: 10.3390/ijerph17093093

Table 1.

A summary of automated AF detection in ECG signals. A “+” in the Salient features column indicates a positive point. Conversely, a “−” indicates a negative point.

Authors Data Digital Biomarkers AI Performance in % Salient Features
Acc Sen Spe
Wang et al., 2020 [183] MIT-BIHAFDB WPD followed by multivariate statistical features ANN 98.8 98.7 98.9
  • +

    Good model performance

  • +

    Cross-validation used

  • Digital biomarkers required

  • Only one database used

  • No blind fold validation

Cao et al., 2020 [184] CinCchallenge 2017 Data augmentation DNN 78.35 - -
  • +

    Improving small datasets

  • Real measurement data are required

  • Classification models might exploit weaknesses in the augmentation

Marsili et al., 2019 [185] MIT-BIH AFDB and measurements Shannon entropy Threshold 98.1 99.2 97.3
  • +

    Hardware implementation

  • +

    Fast and energy efficient

  • Local decision making

  • Impossible to verify the decision

Yao et al., 2019 [186] CinC challenge 2017 DWT Multi-scale CNN 98.18 98.22 98.11
  • +

    Good model performance

  • High computational complexity

  • One type of digital biomarker

Lui et al., 2018 [187] MIT-BIH AFDB/NSR/Arrhythmia Database Normalized fuzzy entropy Threshold - - -
  • +

    Focused study

  • One type of digital biomarker

  • No AI

Xia et al., 2018 [188] MIT-BIH AFIB STFT, SWT CNN 98.63 98.79 97.87
  • +

    Focused study

  • One type of digital biomarker

  • No AI

  • No validation

Kora et al., 2017 [189] MIT-BIH AFIB CS-SCHT LMNN 99.30 96.97 99.43
  • +

    Good model performance

  • Classical machine learning

  • No validation

Tripathy et al., 2017 [138] MIT-BIH AFIB Sample entropy, VMD DBN 98.27 98.80 97.77
  • +

    Good model performance

  • +

    Index to combine multiple digital biomarkers

  • Classical machine learning

  • No validation

  • Only one database used

Annavarapu and Padmavathi, 2016 [190] MIT-BIH Arrhythmia Database CS-SCHT LMNN 99.50 99.97 98.70
  • +

    Good model performance

  • Classical machine learning

  • No validation

Abdul-Kadir et al., 2016 [102] MIT-BIH NSR/AFDB Dynamic system ANN, SVM 95.00
  • +

    Cross-validation used

  • Linear digital biomarkers

  • Classical machine learning

Yuan et al., 2016 [180] MIT-BIH NSR/AFDB/LTAFDB - Autoencoder DL 98.31 96.56 99.04
  • +

    Good model performance

  • +

    Deep learning

  • No validation

Asgari et al., 2015 [135] MIT-BIH AFDB SWT, Log-energy entropy, peak-to-average power ratio SVM 97.10 97.00 97.10
  • +

    2-fold cross-validation

  • Classical machine learning

Daqrouq et al., 2014 [191] MIT-BIH AFIB WPD PNN 97.92 - -
  • +

    2-fold cross-validation

  • Classical machine learning

  • No outcome directed digital biomarker selection

Martis et al., 2013 [192] MIT-BIH AFDB/Arrhythmia Database DWT NB 99.33 99.32 99.33
  • +

    10-fold cross-validation

  • +

    Multiple arrhythmias

  • +

    Noise considerations

  • Classical machine learning

Majia et al., 2013 [193] MIT-BIH Arrhythmia Database HOS and EMD Thresholded - 96 -
  • +

    Classic approach

  • Single decision border

  • Only one database

  • No validation

Rincón et al., 2012 [194] MIT-BIH AFIB Statistical measures Fuzzy classifier - 98.09 91.66
  • +

    P-wave detection

  • Classical machine learning

  • Only one database

  • No validation

Lee et al., 2012 [41] MIT-BIH NSR/AFDB RMSSD, sample entropy, Shannon entropy Threshold 98.44 97.63 99.61
  • +

    M-health

  • +

    Event recorder

  • Local decision making

Fukunami et al., 1991 [195] Measurement data Frequency-domain Statistical analysis - 91 76
  • +

    Classic manuscript

  • No benchmark test

  • No AI

Parvaresh and Ayatollahi, 2011 [196] MIT-BIH AFIB Autoregressive model Statistical classifier - 96.14 93.20
  • +

    Early paper

  • Machine learning

  • Linear digital biomarkers