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Abstract

In mammals, adaptive immunity is mediated by a broadly diverse repertoire of naive B and T lymphocytes that
recirculate between secondary lymphoid organs. Initial antigen exposure promotes lymphocyte clonal expan-
sion and differentiation, including the formation of memory cells. Antigen-specific memory cells are main-
tained at higher frequencies than their naive counterparts and have different functional and homing abilities.
Importantly, a subset of memory cells, known as tissue-resident memory cells, is maintained without re-
circulating in nonlymphoid tissues, often at barrier surfaces, where they can be reactivated by antigen and
rapidly perform effector functions that help protect the tissue in which they reside. Although antigen-
experienced B cells are abundant at many barrier surfaces, their characterization as tissue-resident memory B
(BRM) cells is not well developed. In this study, we describe the characteristics of memory B cells in various
locations and discuss their possible contributions to immunity and homeostasis as bona fide BRM cells.
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Rationale for the Existence of Tissue-Resident
Memory B Cells

Primary adaptive immune responses are initiated by the
activation of phagocytic antigen-presenting cells (APCs),

typically dendritic cells, at the site of antigen/pathogen ex-
posure (22,24). These APCs acquire antigen in peripheral
tissues, and after activation, migrate through lymphatics to
the draining lymph node (24), where they present antigen to
recirculating, antigen-specific, naive T and B cells. In turn,
the T and B cells respond to engagement of their T cell or
B cell antigen receptors (TCRs or BCRs), combined with
signals through co-stimulatory molecules and cytokine re-
ceptors (51,143,162), by proliferating and differentiating
into specialized effector cell types that eventually recirculate
back to the site of inflammation/infection and perform their
effector functions.

In acute immune responses, the clonal expansion phase is
rapidly followed by a contraction phase (87), in which most
of the effector cells die by apoptosis and a much smaller
population remains as memory cells (120). Despite the
dramatic contraction after a primary response, however, the
frequency of antigen-specific memory cells remains much
higher than the initial frequency of antigen-specific naive
cells (13). Moreover, memory cells are epigenetically
modified to more rapidly perform their effector functions
following secondary antigen encounter (77,176), thereby

preventing or curtailing infections by previously encoun-
tered pathogens. Furthermore, memory lymphocytes are
often imprinted by the way in which they initially encounter
antigen so that they acquire homing or effector functions
that are specialized to protect the site of initial antigen en-
counter or to protect against a particular type of pathogen
(70,132,137).

Memory T cells are often broadly categorized as central
memory T (TCM) cells or effector memory T (TEM) cells
based on their homing properties (131). TCM cells retain
expression of CCR7 and CD62L (131), which promote entry
into lymph nodes through peripheral lymph node addressin
(PNAd)-expressing high endothelial venules (104). In con-
trast, TEM cells lack CCR7 and CD62L and instead express
chemokine receptors like CCR5 and CXCR3 (40,55,67),
integrins like a1b1 or a4b7 (122,128), and adhesion mole-
cules like cutaneous lymphocyte antigen (CLA) (28,104),
which promote entry and recirculation through specific tis-
sues or inflammatory sites. More recent studies show that a
significant portion of memory T cells acquire properties that
promote their maintenance (without recirculation), in pe-
ripheral tissues like the lung, gut, and skin (38). These cells
are a subset of TEM cells and are referred to as tissue-
resident memory (TRM) cells.

TRM cells include conventional CD4+ and CD8+ memory
T cells, T regulatory cells (Tregs), innate-like T cells, such
as invariant natural killer T (iNKT) cells, cd T cells, and
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intraepithelial T cells, as well as a variety of innate lym-
phoid cells (ILCs) (38). In general, these cells locally sense
aberrations in the local environment that might be caused by
infection, stress, or damage and respond by helping to
eliminate infection and restore tissue homeostasis (38). Each
cell type responds to different environmental cues, including
antigen, cytokines, metabolites, and even damage-associated
or pathogen-associated molecular patterns (DAMPs and
PAMPs) (38). As a result, these cell types are an important
component of immune defense in the context of infection
and are also important under homeostatic conditions, and help
to maintain barrier integrity and control inflammation (38).

Although the role of B cells at mucosal surfaces is in-
tensely studied (17,35,64,96), the formal identification of
resident memory B (BRM) cells in these locations has lag-
ged behind that of TRM cells (100). This oversight may be
due, in part, to the idea that the primary function of B cells is
to make long-lived antibodies that circulate throughout the
body (105), whereas T cells make short-lived cytokines or
cytolytic molecules that are targeted specifically to the cells
that display their cognate antigens (25). Thus, one might
expect that there may be little need to place memory B cells
in peripheral tissues. Moreover, the activities of activated B
cells are typically performed in specialized domains, such as
the germinal centers (GCs) of secondary lymphoid tissues
(93). Thus, memory B cells in peripheral tissue may not
have access to cell types or structures that they require for
their function. Despite these objections, there is now clear
evidence that tissue-resident memory B cells not only exist
but also perform protective functions in peripheral tissues
(3). In this review, we will highlight some of the features of
memory B cells in lymphoid and non-lymphoid organs that
may contribute to their function as BRM cells.

Identifying Tissue-Resident Memory B Cells

Memory B cells are identified using a variety of markers
that often differ between mice and humans. For example,
IgD is expressed by naive B cells in both humans and mice
and is downregulated upon activation (26). As a result, the
loss of IgD is commonly used as a marker of activat-
ed/memory B cells in both species (173). IgM is also lost in
isotype-switched memory B cells, but is retained in un-
switched memory B cells (74). In humans, most memory B
cells express CD27 (167); however, this marker is not ex-
pressed on murine memory B cells. CD38 is often used to
distinguish B cell subsets: naive and memory B cells express
CD38 in mice (125), whereas naive and memory B cells
lack CD38 in humans (111). CD73 is also a marker of
memory B cells in mice (159), at least in lymphoid tissues,
although more than half of the memory B cells in the lung
lack this marker (3). Thus, there is no single memory marker
for B cells. Instead, multiple markers are required to identify
memory B cells, in part, by eliminating non-memory cells,
including naive B cells, GC B cells, and antibody secreting
cells (ASCs). More importantly, we do not yet have a de-
finitive marker of tissue-resident memory B cells in any
tissue, meaning that these cells must be identified based on
their functional properties.

One way that researchers can functionally distinguish
tissue-resident cells from circulating cells is to use intravas-
cular staining, in which a fluorochrome-conjugated antibody

specific for the population in question is intravenously ad-
ministered a few minutes before euthanasia and tissue col-
lection (3,161). In this procedure, all cells in circulation are
labeled, whereas the unlabeled cells are ‘‘protected’’ by their
residence in a tissue (Box 1). Although this procedure clearly
identifies those cells currently in circulation, it does not
identify those cells that are circulating, but are currently
traversing a tissue compartment (3,161). For example, all
naive B cells continuously recirculate between secondary
lymphoid organs. However, intravenous administration of
anti-CD19 will not label those naive B cells that are currently
in a B cell follicle.

To definitively show that a particular cell population re-
sides in a tissue without recirculating, one can surgically
join two animals that express distinct alleles of a protein
expressed by the population of interest. This procedure,
known as parabiosis (61), links the peripheral, but not the
lymphatic, circulation of the two animals so that any cell in
circulation will freely move between them. Some estimates
suggest that, once circulatory equilibrium is established,
parabionts completely exchange their entire blood supply up
to ten times a day (50). As a consequence, the circulating
cells in each tissue will consist of a 50:50 mix of cells from
each partner, whereas the tissue-resident, noncirculating
cells in each tissue will be primarily composed of endoge-
nous cells, with little to no contribution of partner cells
(Fig. 1). In many cases, the intravenous infusion of anti-
bodies is combined with parabiosis to distinguish cells that
are currently in tissues, but are actually circulating, from
those that are truly tissue resident (3,151) (Box 1).
Investigators also use intravital imaging to examine the
short-term activities of tissue-resident memory cells in recall
responses (12,76,99).

Tissue-resident memory cells lose their ability to re-
circulate and maintain their residence in tissues primarily
due to alterations in the expression of chemokine and
homing receptors (117). For example, most tissue-resident
memory cells, including BRM cells, reduce their expression
of CCR7 and CD62L (3,104,175), thereby eliminating their
ability to traverse high endothelial venules and recirculate
through secondary lymphoid organs. Many memory B cells
also lose their expression of CXCR5, one of the receptors
that maintains B cells in lymphoid follicles (54,172).
Moreover, TRM cells also poorly express the sphingosine-1-
phosphate receptor (S1PR1) (142), which normally pro-
motes the emigration of lymphocytes from tissues into blood

Box 1. Features of tissue-resident memory cells.

� Are not labeled with a short pulse of intravenously
administered antibody.

� Fail to attain equilibrium in tissues of surgically
joined (parabiotic) mice.

� Lack expression of lymph node homing receptors
and instead express homing receptors for peripheral
or inflamed tissues.

� Rapidly respond to local antigen exposure by per-
forming critical effector functions.

� Are established, in part, by antigen encounter at the
site of residence.
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(89). In addition, many TRM cells, as well as BRM cells,
express CD69 (134), which antagonizes S1PR1 signaling
(134), further impairing their ability to leave tissues and
enter the circulation. Thus, tissue-resident memory cells
lack homing receptors that allow re-entry into secondary
lymphoid tissues or promote exit from lymphoid tissues into
the blood (Box 1).

Instead, tissue-resident memory cells express a variety of
homing receptors that target them to peripheral sites. For
example, BRM cells in the lung express CXCR3 (3), a
chemokine receptor that responds to the interferon-inducible
chemokines, CXCL9, 10, and 11 (158). Memory B cells also
often express CCR6 (36,148), the receptor for CCL20 (56),
which is expressed by a variety of epithelial cells (56), in-
cluding those in the respiratory tract, the intestinal tract, and
skin—all sites where tissue-resident memory cells reside. In
fact, the intestinal tract is home to more memory B cells
than any other site (145) and memory B cells in the gut
preferentially express CCR9 (145) and CCR10 (145), often in
combination with specific integrins and adhesion molecules
that promote homing to the gut as well as gut-associated
lymphoid tissues (145).

Most tissue-resident memory cells in the gut express the
integrin, a4b7 (57,129), which binds to mucosal addressin
cell adhesion molecule (MAdCAM) and promotes homing
to gut-associated lymphoid tissues (145). B cells that are
primed in gut-associated lymphoid tissues are exposed to
retinoic acid (RA), which is produced by retinaldehyde
dehydrogenase-expressing epithelial cells and dendritic cells
and triggers B cells to express a4b7 and CCR9 (145), and
promotes isotype-switching to IgA (97). Similarly, the cu-
taneous lymphoid antigen (CLA) is commonly expressed by

skin-homing lymphocytes (35). CLA binds E-selectin (35),
which is upregulated on inflamed endothelial cells, and in
combination with chemokine receptors like CCR4, CCR6,
and CCR10, guides lymphocytes to the skin (35). Immune
responses in skin-draining lymph nodes, but not mucosal
lymphoid tissues, promote the expression of CLA by re-
sponding B cells (35,62). Moreover, skin-derived dendritic
cells metabolize vitamin D3 into 1,25(OH)2D3, the active
form of vitamin D3, which promotes CCR10 expression and
suppresses a4b7 and CCR9 (35), again supporting a model
in which tissue-specific priming promotes the acquisition of
tissue-specific homing.

Other integrins are also involved in the homing of memory
cells to peripheral tissues or in the persistence of tissue-
resident memory cells in those tissues, even though they
may not be tissue specific. For example, integrins like a1b1
(VLA-1), a receptor for collagen (122,124), a4b1 (VLA-4),
a receptor for VCAM (102) and fibronectin, and aEb7
(CD103), a receptor for E-cadherin, are often expressed by
tissue-resident memory cells (101). CD8+ TRM cells in a
variety of locations express CD103 (100), and CD103 ex-
pression is important for the maintenance of CD8+ TRM cells
in those sites (78,85). However, the expression of CD103 is
only reported on malignant B cells (163) and influenza-
specific, lung-resident memory B cells completely lack this
marker, suggesting that CD103 may not be used by tissue-
resident memory B cells. In contrast, VLA-4 is highly ex-
pressed on memory B cells (20) and is required for B cells to
enter some peripheral sites (79).

Where Might Tissue-Resident Memory
B Cells Reside?

Tissue-resident memory T cells and ILCs often reside at
barrier surfaces like the respiratory tract, the intestinal tract,
and the skin (52). These same sites contain memory B cells.
For example, in the upper respiratory tract, memory B cells
are found in the nasal-associated lymphoid tissue (NALT)
of mice (16,153) and the tonsils and adenoids of humans
(75,113,138), as well as in the submucosa of the trachea and
nasal passages (64,76,154). In the lower respiratory tract,
memory B cells are found in the inducible bronchus-
associated lymphoid tissue (iBALT) (4,118), in non-
lymphoid areas underneath the airway epithelium (64), and
even in the airways themselves (64), perhaps adjacent to
airway-resident memory T cells (144). At least some of
these memory B cells are bona fide lung-resident memory B
cells as shown by antibody infusion and parabiosis experi-
ments (3). Interestingly, the phenotype of memory B cells in
the lung is distinct from those in the lymph node. Lung-
resident memory B cells uniformly express CXCR3, but
more than half of them lack CD73 (3), perhaps indicating a
differential dependence on GCs for the generation or that
they have different functional capacities to differentiate into
ASCs or repopulate secondary GCs (156,177).

Memory B cells are also found in the skin, one of the
largest barrier surfaces and an important site for immuno-
logical defense [reviewed in Egbuniwe et al. (35)]. Skin is
stratified into an outer layer, the epidermis, a middle layer,
the dermis, and a lower layer, the hypodermis (114). Spe-
cialized skin dendritic cells (Langerhans cells) and skin-
resident memory CD8+ T cells reside in the epidermis (28),

FIG. 1. Parabiosis allows the identification of resident
memory cells. Mice that can be distinguished by a congenic
allele (i.e., CD45.1 and CD45.2) are initially infected/im-
munized to generate memory B cells. Once memory B cells
are established, the mice are surgically joined at the skin and
allowed to heal. Joint circulation is established in about 10
days and after that point, circulating cells will consist of a
50:50 mix of cells from each partner. Tissue-resident cells
will not reach equilibrium between partner mice, resulting in
a high host:partner ratio of cells.
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whereas macrophages, mast cells, NK cells, skin-resident
memory CD4+ T cells (28), dermal dendritic cells, ILCs, and
B cells are found in the dermis (Fig. 2) (112). Memory B
cells in the skin express E selectin ligand (ESL-1) (95,146)
as well as a4 and b1 integrins (41), similar to skin-resident
memory CD4+ T cells, which use ESL-1 for homing to in-
flamed skin (157). Memory B cells in the skin also express
CCR6 and migrate toward its ligand, CCL20, which is ex-
pressed by skin epithelial cells (41).

Both B2 and B1 B cells are found in skin, with the B2
population more prevalent than the B1 cells (42). Interest-
ingly, a4b1 integrin-expressing B1 B cells from the peri-
toneal cavity can migrate to inflamed skin (41) and secrete
the anti-inflammatory cytokine, IL-10 (42). Clonal expan-
sions of particular BCRs are observed in both normal skin
and melanoma (103,133), suggesting that skin-resident B
cells are responding to local antigens. Moreover, activation-
induced cytidine deaminase (AID) is expressed by B cells in
normal skin and in melanoma lesions (133), suggesting that
isotype switching may occur locally in the skin. In mela-
noma, skin-resident IgG1-expressing B cells inhibit disease
(71), whereas IgG4-expressing B cells exacerbate disease
(63). Pemphigus patients also experience an isotype-specific
activation of their disease (141). Patients with skin allergies
or parasitic infection of the skin often have increased fre-
quencies of IgE-expressing B cells in their skin (116). Long-
term IgM, IgA, and IgG responses to tumor antigens and
autoantigens are observed in the skin, but the origin of these
cells and the role of resident memory cells in the mainte-
nance of these cells need further scrutiny (30).

The intestinal tract, another barrier surface, contains more
B cells and produces more immunoglobulin than any other
location in the body due to continuous exposure to antigens
from food and commensal organisms [reviewed in Cerf-
Bensussan and Gaboriau-Routhiau (23)]. Memory B cells
reside in numerous locations in the gut, including lymphoid
structures such as Peyer’s patches and isolated lymphoid
follicles in the small intestine (83,123), colonic patches in

the large intestine (1), and non-lymphoid areas in the lamina
propria beneath the mucosal epithelium. The lymphoid tis-
sues of the gut are classic mucosal structures, with a dome
epithelium containing M cells that transport antigens from
the gut lumen to the underlying immune cells (106). Gut-
associated lymphoid tissues contain large B cell follicles,
many with GCs, but most of the memory B cells are layered
beneath the dome epithelium and some even reside in the
basolateral pocket of M cells (43,86), where they are poised
to receive incoming antigen. Although the lamina propria of
the intestine is not an organized lymphoid tissue, it none-
theless contains a wide variety of tissue-resident cells (150).
Intraepithelial lymphocytes are embedded in the intestinal
epithelium and consist of both ab and cd T cells as well as
ILCs (14,44,45,152), but not B cells. Instead, IgM+ and IgA+

memory B cells as well as IgA-secreting plasmablasts reside
underneath the epithelium (86). Many memory B cells in the
lamina propria and Peyer’s patches are long lived (83),
perhaps resident. These cells typically express the mucosal
homing receptors a4b7 and CCR9 (43), and upon adoptive
transfer, recolonize the lamina propria and Peyer’s Patches,
where they are maintained for extended periods (84).

The formation of IgA-secreting cells in the gut can occur
in a T cell-dependent and T cell-independent manner (37);
however, the generation of long-lived memory B cells only
occurs in T-dependent responses (48,139,145). Interestingly,
the sequential introduction of commensals into the gut
promotes a series of IgA responses, with IgA-secreting cells
of a prior specificity being replaced by those of a newer
specificity, suggesting that most IgA-secreting cells are short
lived and that they are out-competed by cells responding to
more recent antigens (48). However, long-lived memory B
cells and IgA production are observed in strong T-dependent
responses against pathogens like rotavirus (139,145) or an-
tigens like cholera toxin (6,83). IgM+ memory B cells re-
sponding to commensal antigens can persist in gut-associated
lymphoid tissues and continuously produce IgM- and IgA-
secreting cells (86). However, other studies suggest that oral

FIG. 2. Resident memory B cells in the skin. The immune cells enter the dermis of the skin through capillary venules and
exit through lymphatic vessels. Langerhans cells and resident memory CD8+ T cells are maintained in the epidermis.
However, most other immune cells, including macrophages (Macs), ILCs, iNKT cells, mast cells, dermal DCs, and helper
CD4+ T cells, are found in the dermis. Memory B cells reside in the dermis and can be reactivated locally by antigen. DCs,
dendritic cells; ILCs, innate lymphoid cells; iNKT, invariant natural killer T.
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immunization elicits distinct populations of IgA-secreting
cells and memory B cells (10). Taken together, these data
suggest that the establishment of memory B cells and perhaps
resident memory B cells in the gut is dependent on both the
type of antigen and its persistence.

Although gut-associated responses are generally thought
to occur in gut-associated lymphoid tissues, a significant
portion of IgA is derived from B cells in the peritoneal
cavity and Omentum (46,69). The omentum is an adipose
tissue that connects the stomach, spleen, pancreas, and colon
and contains organized lymphoid structures called milky
spots (94). Like the B cells in the peritoneal cavity, many of
the B cells in the omental milky spots are B1 cells (119),
which are dependent on CXCL13 made by local macro-
phages (5). Interestingly, peritoneal B1 and B2 cells often
home to the small intestine and produce IgA (11), likely due
to the activity of GATA6-dependent macrophages in the
peritoneal cavity that convert vitamin A to RA (107), which
promotes isotype switching to IgA and imprints the ex-
pression of gut-homing receptors (98,130). Both B1 and B2
cells in the peritoneal cavity express the S1PR1 (73), which
promotes their egress into the circulation. Not surprisingly,
treatment with the S1PR1 modulator, FTY-720, leads to the
rapid disappearance of peritoneal B cells and reduces se-
cretory IgA production in the gut (73). These data suggest
that peritoneal and omental B cells are circulatory rather
than resident. However, parabiosis experiments show that
both B1 and B2 cells in the peritoneal cavity do not reach
equilibrium—even after 8 weeks (5). Moreover, peritoneal
infection with Ehrlichia muris elicits IgM+ memory cells
and IgM-secreting cells that persist in the peritoneal cavity,
even in mice lacking conventional secondary lymphoid or-
gans (59), suggesting that at least some memory B cells
maintain residency in the peritoneal cavity and omentum.

Although tissue-resident memory cells are most often as-
sociated with peripheral, non-lymphoid tissues and barrier
sites, some tissue-resident memory cells reside in secondary
lymphoid organs (2,99). For example, memory B cells reside
just beneath the subcapsular sinus of the lymph node (Fig. 3),
adjacent to subcapsular macrophages (60,99). Interestingly,
CD169+ subcapsular macrophages capture large antigens
from the incoming lymph and transfer them to naive B cells,
which carry those antigens to the B cell follicle and present
them to T cells (21,60,115). However, naive B cells pass
through the subcapsular sinus in less than 24 h, whereas
memory B cells persist in this location nearly three times as
long (99). Upon secondary antigen exposure, memory B cells
in the sinus become activated, rapidly proliferate, and gener-
ate foci of short-lived antibody-secreting cells (99). Memory
B cells also accumulate in the B cell follicles of lymph nodes
(39), where they are situated in close proximity to memory T
follicular helper cells (8). Again, secondary antigen encounter
leads to local proliferation and differentiation (8). Although
these studies do not demonstrate tissue residency, other ex-
periments using antibody infusion and parabiosis show that
some influenza-specific memory B cells are retained in the
lung-draining lymph node and do not recirculate (3). Thus, at
least some memory B cells are lymph node-resident memory
cells and are positioned for secondary antigen encounter and
rapid recall responses.

Memory B cells also reside in the spleen (Fig. 4). Many of
these memory B cells express CCR6 and are found in the

marginal zone and perifollicular areas of the spleen (36,82).
Moreover, CCR6 is required for their placement and sec-
ondary responsiveness (36). Interestingly, the splenic mar-
ginal zone is functionally analogous to the subcapsular area
of lymph nodes (92,147). In mice, blood is delivered to the
marginal sinus, whereas in humans, the blood is delivered to
the red pulp and perifollicular zone (92,147). Like the sub-
capsular area of lymph nodes, the marginal zone contains B
cells and macrophages and collects incoming antigens and
pathogens (88). Although most marginal zone B cells are
not bona fide memory cells, they poorly migrate in parabiosis
experiments (27,160), suggesting that they are primarily a
resident population. Marginal zone B cells are phenotypically
and functionally distinct from follicular B cells and respond
more efficiently to innate signals like LPS (160), although it is
not clear whether memory B cells in the marginal zone share
these properties. Despite the tissue-resident properties of
marginal zone B cells in mice, IgM+CD27+ memory B cells
are found in the peripheral blood of humans and have a gene
expression profile similar to splenic marginal zone B cells
of the same phenotype (169). These cells also have highly
mutated BCRs, suggesting that they are selected in GCs
(82). Moreover, these cells do not appear in the circulation
until marginal zone B cells develop in the spleen and, in
splenectomized individuals, the frequency of IgM+CD27+

marginal zone memory cells is reduced (53), suggesting that
the circulating cells are directly related to those in the
marginal zone.

In addition to the memory B cells in the marginal zone,
splenic memory B cells are also found in B cell follicles
adjacent to GCs and close to CD4 T cells (2), and upon

FIG. 3. Resident memory B cells are located under the
subcapsular sinus in lymph nodes. Circulating and resident
memory B cells are found in lymph nodes. At least some of
the resident memory B cells reside below the subcapsular
sinus. As a result, they are poised to encounter antigens that
are delivered from the afferent lymphatic vessels to the
subcapsular sinus. Antigens are often captured by subcap-
sular sinus macrophages, which present antigens to B cells.
Memory TFH-like cells also remain in this location and
provide help to reactivating memory B cells.
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challenge immunization, present antigen to CD4 cells and
rapidly differentiate into antibody-secreting cells (2). More-
over, experiments using antibody infusion and parabiosis
show that, although most influenza-specific memory B cells
in the spleen are recirculating, the memory population does
not completely reach equilibrium (3). Thus, at least some
memory B cells in the spleen and lymph nodes have properties
of tissue-resident cells. However, it is not yet clear what
subsets of memory B cells are tissue resident (or not) or
whether tissue residency impacts their functional activities.

As detailed in the examples above, tissue-resident memory
T and B cells persist at sites of previous antigen encounter,
which allows them to rapidly detect incoming antigen and
respond accordingly. In part, their tropism to these sites may
be due to the expression of homing receptors that were im-
printed by location-specific factors. However, the most rele-
vant location-specific factor is likely to be antigen itself. For
example, responding T cells must re-encounter antigen in a
peripheral site to become tissue-resident memory cells in that
tissue (65,150). Similarly, responding B cells must re-
encounter antigen in a peripheral tissue to establish tissue
residency in that location (3). The requirement for prospec-
tive tissue-resident memory cells to re-encounter antigen
ensures that they return to the site of antigen exposure, in-
dependent of factors like homing receptor expression. This
re-encounter with antigen likely occurs very early in a pri-
mary response, consistent with the early formation of mem-
ory cells in general (168). However, persistent antigen, such
as that in oil-emulsion vaccines (18,47), tumors (110,135), or
tissue-specific target autoantigens (126), may drive continued
recruitment or local expansion of recruited memory cells and
maintain their residency at that site.

Functions of Tissue-Resident Memory B Cells

Tissue-resident cells like T cells or ILCs have a variety
of functions, most notably the rapid production of effector
molecules following infection or local inflammation
(72,108). In this regard, tissue-resident memory B cells are
likely poised to make antibody following a secondary en-
counter with antigen. For example, influenza-specific, lung-
resident memory B cells rapidly differentiate in situ into
antibody-secreting cells following a challenge infection (3),
and BRM cells in the subcapsular sinus of lymph nodes
rapidly differentiate following recall immunization (99). In
the context of infection, rapid antibody production at a
barrier surface will likely accelerate pathogen clearance
either directly, by neutralizing activity or complement ac-
tivation, or indirectly, through the FcR-dependent functions
of phagocytic or cytolytic cell types (31,149,164).

The current paradigm suggests that reactivated memory
B cells either differentiate into antibody-secreting cells or re-
enter the GC for continued expansion and affinity maturation
(32,91,109). One might expect that tissue-resident memory
B cells, particularly those in non-lymphoid compartments
like the skin, lung, or gut, might be exclusively biased toward
ASC differentiation, as these cells would not reside in
(or even near) a B cell follicle and would probably not en-
counter T follicular helper cells. Moreover, as tissue-resident
cells, they have likely lost the homing receptors to return to
lymphoid structures. Consequently, resident memory cells in
peripheral tissues may be restricted to a single fate—rapid
differentiation into an antibody-secreting cell. In contrast,
those memory B cells in follicular areas are more likely to
encounter TFH cells and may be destined to re-enter the GC.

FIG. 4. Resident memory B cells in the spleen. The open circulation into the spleen allows antigen entry into the red pulp,
which is separated from the white pulp or the PALS by the MZ. Some IgM+ memory B cells reside for extended periods in
the MZ, where they are poised to encounter blood-borne antigens. Memory B cells also reside in the B cell follicles of the
spleen, just outside GCs near memory TFH cells. IgM+ memory B cells are more scattered throughout the B cell follicle.
GCs, germinal centers; MZ, marginal zone; PALS, periarteriolar sheath.
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Given that subsets of memory B cells that are more prone to
become antibody-secreting cells or re-enter the GC can be
defined based on cell surface phenotype (177), it seems likely
that these same markers (and perhaps additional markers like
CD73) (3,159) may distinguish tissue-resident memory B
cells in different locations and with different functions. An-
other interesting question is whether tissue-resident memory
cells are destined to terminally differentiate into antibody-
secreting cells or whether they also self-renew in the pe-
riphery, outside of a GC.

Recall responses of tissue-resident memory B cells are
almost certainly dependent on interactions with T cells.
Although dendritic cells are often described as the most
potent APCs for priming T cells, B cells can be particularly
effective APCs due to their ability to selectively (and with
high affinity) acquire cognate antigen through their BCR. As
a result, tissue-resident memory B cells may be particularly
potent APCs for T cells of the same specificity, perhaps
themselves tissue-resident memory cells, thereby promoting
the production of cytokines or cytolytic activity. This en-
hanced antigen-presenting function may be beneficial when
re-encountering pathogens (155), but may be detrimental
when re-encountering allergens or autoantigens, due to the
inappropriate production of cytokines that recruit inflam-
matory cells or cause tissue damage (126).

Of course, cytokines are also produced by activated B cells,
and like T cells, the way in which B cells are initially acti-
vated determines what cytokines they are likely to make
(33,34,49). Notably, B cells can make inflammatory cyto-
kines like IFNc and GM-CSF (9,121,166), which along with
antibodies, may help clear infection, but may also promote
pathological responses and tissue damage. For example,
memory B cells are associated with autoimmune diseases of
the skin, including pemphigus vulgaris (174), atopic derma-
titis (29), scleroderma (15), and Sjogren’s syndrome (127).
Given that pemphigus is mediated by autoantibodies against
desmoglein 1 and 3 (174) and that lesions return at the same
sites in the skin, one might expect that tissue-resident mem-
ory B cells are, in part, responsible for this pathology, perhaps
by making cytokines and by locally stimulating antigen-
specific memory T cells. Conversely, B cells can also produce
anti-inflammatory cytokines, including IL-10 and IL-35
(19,136), which reduce inflammation and help restore tissue
homeostasis. In fact, IL-10-expressing B cells reside in nor-
mal skin (42) and suppress inflammation-driven fibrosis (90),
psoriasis (7), and SLE (171). These cells may also promote
wound healing (58), as the introduction of splenic B cells to
wounds increased healing (140). One might imagine that
pathogen-specific memory B cells in the lung or gut may
perform similar functions.

B cells have a particular association with Th2 cells.
B cells are required to maintain Th2 memory cells (81) and
to eliminate helminths by enhancing Th2 responses (170).
B cells are also required to generate and maintain allergic
Th2 responses in the airways (68,80). Along with Th2 cells,
B cells can also promote the progression of tumors (63).
These responses all involve the antigen-presenting func-
tions of B cells (80,170), most likely to TFH-like cells that
are the precursors to Th2 cells (80). These same functions
are likely to exacerbate Th2-driven responses like atopic
dermatitis (66), perhaps through antigen-presenting skin-
resident memory B cells. In contrast, B cells reduce local

inflammation in contact hypersensitivity by acting as reg-
ulatory B cells (165). Given that many of these activities
occur in non-lymphoid tissues, it seems likely that BRM
cells are contributing to these processes.

Conclusions

The focus of many researchers on B cell activities in spe-
cialized domains of secondary lymphoid organs and the idea
that the function of B cells is limited to antibody production
have delayed the identification and functional characterization
of tissue-resident memory B cells. However, recent advances
in our ability to identify antigen-specific B cells using labeled
antigens and ‘‘B cell tetramers’’ combined with techniques
like parabiosis, antibody infusion, and intravital microscopy
are now making it possible to characterize antigen-specific
memory B cells in peripheral tissues. In addition, the ap-
preciation that B cells have antibody-independent functions
that allow them to regulate immune responses both posi-
tively and negatively provides an incentive to better un-
derstand how B cells participate in health and disease. As a
result, we are now looking forward to new studies demon-
strating the functional contribution of tissue-resident
memory B cells in resistance to infection, the progression
and resolution of inflammation, as well as tissue homeo-
stasis and repair.
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Sjögren’s syndrome. J Autoimmun 2010;35:241–247.
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