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Abstract

Males and females respond to pathogens differently and exhibit significantly different frequencies of auto-
immune disease. For example, vaccinated adult females control influenza virus better than males, but females
suffer systemic lupus erythematosus at a 9:1 frequency compared to males. Numerous explanations have been
offered for these sex differences, but most have involved indirect mechanisms by which estrogen, a nuclear
hormone, modifies cell barriers or immunity. In search of a direct mechanism, we examined the binding of
estrogen receptor a (ERa), a class I nuclear hormone receptor, to the immunoglobulin heavy chain locus. Here,
we show that in purified murine B cells, ERa and RNA polymerase II (RNA Pol II) exhibit extraordinarily
similar DNA binding patterns. We further demonstrate that ERa preferentially binds adenosine–cytidine (AC)-
repeats in the immunoglobulin heavy chain locus when supplemental estrogen is added to purified,
lipopolysaccharide-activated B cells. Based on these and previous data, we hypothesize that (i) estrogen guides
the binding of ERa and its RNA Pol II partner within the locus, which in turn instructs sterile transcription and
class switch recombination (CSR), (ii) ERa binding to AC-repeats modifies the DNA architecture and loops
associated with CSR, and (iii) by these mechanisms, estrogen instructs antibody expression. By targeting ERa-
DNA interactions in the immunoglobulin heavy chain locus, clinicians may ultimately enhance antibody
responses in the context of infectious diseases and reduce antibody responses in the context of allergic or
autoimmune reactions.
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Introduction

Different immune responses in females and males

Females generally express higher levels of serum
immunoglobulins compared to males, with a tendency

to produce more IgG1 and IgG2 (47,68,88). As a conse-
quence of increased antibody production, females may have
an advantage over males in the clearance of certain patho-
gens. For example, the immune response to influenza virus
is better in vaccinated adult females compared to males.
Furthermore, males often experience worse disease symp-
toms after an influenza virus infection compared to females

(47,58,90). But enhanced antibody responses in females
may come at a cost. Estrogen induces anti-self antibodies
and females have extremely high frequencies of the auto-
immune disease systemic lupus erythematosus (‘‘lupus’’)
compared to males (14,16,75,94). During pregnancy, when
estrogen may rise to levels of >6,000 pg/mL [compared to
levels of <100 pg/mL in males (36,44)], lupus can be life
threatening (14,16,18,65,71,75,78).

Differences between females and males in immune re-
sponsiveness depend on the environment and target anti-
gens. In vitamin A deficient (VAD) C57BL/6 mice, the
female:male differences in IgG2b expression are reversed
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compared to non-VAD mice (47). Moreover, in the context
of a pneumococcus vaccination and infection, C57BL/6
male mice are better protected than females (47).

B cells and class switch recombination

The expression of IgG (including IgG3, IgG1, IgG2b, and
IgG2c in C57BL/6 mice), IgE and IgA depends on class switch
recombination (CSR), which occurs in B cells following anti-
gen or mitogen stimulation to associate V-D-J gene segments
with a constant (C) region gene segment (Cc, Ce, Ca) down-
stream of Cl. CSR involves cleavage of DNA in switch (S)
regions positioned upstream of C gene segments (e.g., Sl and
Sc1) and the ligation of two different S regions to delete in-
tervening sequences (86). During CSR, DNA loops are ob-
served that juxtapose promoters, S regions, and enhancers (87).

One of the first steps in CSR is the initiation of sterile
germline transcription by RNA Polymerase II (RNA Pol II,
spliced transcripts may be integral to the CSR mechanism)
(50,66). R loops form (comprising an RNA–DNA hybrid
and a single strand of DNA) and stalled RNA Pol II recruits
activation induced deaminase (AID) (12,13,50,73). Sub-
sequent steps can include conversion of dC to dU by AID,
excision of dU bases by uracil DNA glycosylase (UNG),
DNA cleavage by abasic endonucleases, and ligation of
cleaved DNA either within or between S regions by non-
homologous end-joining machinery (47).

Multiple enhancers are present in the murine immuno-
globulin heavy chain locus, including the El enhancer up-
stream of Cl and enhancers within the 3¢ regulatory region
(3¢RR) downstream of Ca (7,56,89). The 3¢RR is rich in
DNase1 hypersensitive sites (HS) and is required both for
CSR and somatic hypermutation (SHM). In mice, a span of
40 kb covers two discrete regions. The upstream segment
(*28 kb) includes four HS sites, HS3A, HS1,2, HS3B, and
HS4. The downstream segment (*12 kb) includes HS5-8,
an insulator region (7). In humans, the heavy chain locus is
configured differently than in mice. There are two distinct
3¢RR regions, one downstream of Ca1, and one downstream
of Ca2. As in mice, these 3¢RR regions influence CSR and
antibody expression. Notably, a human polymorphism that
involves an HS1,2 duplication is associated with a signifi-
cant increase in frequencies of lupus (29,32).

Looping and CSR are influenced by enhanceosomes, the
protein complexes associated with enhancers (53). Many
proteins are associated with the HS1–4 complex, including
Mediator (92), the CCATT enhancer binding protein (CEBP),
the octamer binding protein, Pax5/BSAP, and NFjB family
members (7). In contrast, CCCTC-binding factor (CTCF) and
the subunits of cohesin (SMC1, SMC3) (93) are preferentially
bound farther downstream in the insulator region (6). En-
hanceosomes containing CEBP, CTCF, and/or cohesin can
independently support DNA loop formation. Throughout
the genome, signature cooperative protein sets are observed
(e.g., STAT5A-CEBPb-PML or CTCF-RAD21-SMC3 trios
[9,95,103,104]).

B cell activation under variable conditions will alter en-
hanceosome composition, both within and between HS re-
gions (7). Knock-out (KO) mutations have revealed the
complex influences of different HS sites on CSR and anti-
body expression. Deletion of HS3B and HS4 reduced CSR
to all isotypes except IgG1 (15) while deletion of the entire

upstream (*28 kb) 3¢RR limited CSR to all isotypes and
prevented SHM (6,7,82).

Estrogen, the estrogen receptor,
and the immunoglobulin heavy chain locus

Estrogen functions both within and outside of the nu-
cleus, but is best known for its binding to the class I nuclear
hormone receptor estrogen receptor a (ERa), a transcription
factor that binds DNA to regulate gene transcription
(30,57,99–101). ERa often binds estrogen response ele-
ments (EREs, GGTCAnnnTGACC) (28,30,57,63), but
ERa–DNA interactions can occur in the absence of an ERE
and can be assisted by interactions with other factors in-
cluding NFjB, AP-1, and SP1 (25,28,60,67,70,76,84). ERa
may regulate gene transcription by direct binding to a
promoter, although the ERa–DNA interactions responsible
for gene regulation are often far more complex. For ex-
ample, estrogen regulation of the GREB1 gene involves
recruitment of ERa and RNA Pol II to three different ERE
within 20 kb of upstream flanking sequences, chromatin
loop formation, and juxtaposition of EREs with the tran-
scriptional start site (21,91).

Because ERa will influence the functions of virtually every
mammalian cell, there are many explanations for female/male
differences in influenza virus-specific responses and autoim-
mune disease. As one example, estrogen may regulate innate
cells that in turn regulate B cell functions (37,52). In addition,
estrogen can upregulate AID, an enzyme integral to the ini-
tiation of CSR (61,69).

We previously hypothesized that ERa might also influence
antibody expression by direct binding to the immunoglobulin
heavy chain locus, and therefore queried the locus for ERE. In
so doing, we discovered hotspots of response elements, both
for type I and type II nuclear hormone receptors. These in-
cluded ERE and retinoic acid response elements [two half-
sites, PuG(G/T)TCA, often separated by a short spacer] (42).
We then used chromatin immunoprecipitation (ChIP)-seq
analyses to confirm that ERa was bound to DNA and found
peak binding within enhancers known to influence CSR
(46,47). Moreover, when ERE sequences were removed from
enhancers in the heavy chain locus using clustered regularly
interspaced short palindromic repeats (CRISPR)- CRISPR-
associated protein-9 nuclease (Cas9) KO strategies in
CH12F3.5B1 cells, the switch in isotype from IgM to IgA
expression was inhibited (79).

Here, we examine additional features of ERa binding in
the immunoglobulin heavy chain locus to dissect estro-
gen’s influence on CSR and gene expression. We find that
ERa and RNA Pol II binding patterns are strikingly similar
in El, Sl, and the 3¢RR in purified B cells, supporting our
previous finding that supplemental estrogen in purified B
cell cultures drives synchronous shifts in ERa and RNA
Pol II binding within the locus (47). We also find a pro-
pensity for ERa binding to adenosine–cytidine (AC)-rich
sequence repeats in the 3¢RR of estrogen-supplemented B
cell cultures. Results support our hypothesis that estrogen
instructs the composition of enhanceosomes and assists
DNA loop formation, explaining at least in part why males
and females exhibit different antibody expression patterns
and are variably susceptible to pathogens, allergies, and
autoimmune disease.
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Materials and Methods

ChIP-Seq libraries

The ChIP-seq library from lipopolysaccharide (LPS)-
stimulated purified B cells has been described previously
(46,47). Briefly, B cells were purified from the spleens of
C57BL/6J mice by negative selection with anti-CD43 and
anti-CD11b microbeads (Miltenyi Biotec) using a MACS
LD Column (Miltenyi Biotec). Purified B cells were cul-
tured in RPMI medium (Life Technologies) containing 10%
fetal bovine serum, 2 mM l-glutamine, 50 lg/mL gentami-
cin, and 55 lM 2-mercaptoethanol. LPS (Sigma) was added
to a final concentration of 5 lg/mL and cultures were in-
cubated at 37�C in 5% CO2 for 1 day.

Harvested cells were treated with 2 mM disuccinimidyl
glutarate (ProteoChem) in Dulbecco’s phosphate buffered
saline (DPBS) (Lonza) with proteinase inhibitors (PIs)
phenylmethylsulfonyl fluoride (PMSF) (Sigma), Pepstatin
A (Sigma), and Leupeptin (Sigma) and then washed and
fixed in DPBS plus PIs and 1% paraformaldehyde (Sigma,
Thermo Scientific) for 5 min with rotation at room temper-
ature. The reaction was quenched with glycine (200 mM
final concentration) and rotation for an additional 5 min. The
cell pellet was washed with DPBS plus PIs and lysed in
Covaris lysing buffer + PIs on ice for 10 min. Nuclei were

centrifuged at 1500–1700 g for 5 min and washed 2 · with
Covaris wash buffer and then 2 · with shearing buffer with
PIs. The pellet was resuspended in Covaris shearing buffer
plus PIs at a concentration of 1 mL per initial 2 · 107 cells
and sheared in the Covaris E210 or E220 in Covaris Milli-
Tubes with 200 cycles/burst, 20 W for 25–30 min. Sheared
chromatin was diluted with Covaris ChIP dilution buffer
and immunoprecipitated with anti-ERa antibody (Abcam;
Cat#32063, monoclonal E115) or with anti-RNA Poly-
merase antibody (Active Motif Cat#61081) in combination
with anti-mouse IgG bridging antibody (Active Motif
Cat#102302) and Protein A/G magnetic beads. DNA was
isolated from beads, purified, and quantified using the
Quant-iT PicoGreen assay (Life Technologies) Qubit
dsDNA HS Assay Kit (ThermoFisher Scientific) or Spec-
traMax Quant AccuBlue Pico dsDNA assay kit (Molecular
Devices).

For the ERa studies with LPS or LPS + E cultured cells,
libraries were prepared from DNA using the NEBNext
ChIP-Seq Library Prep Reagent Set for Illumina with
NEBNext Q5 Hot Start HiFi PCR Master Mix according to
the manufacturer’s instructions (New England Biolabs,
Ipswich, MA) with a modification: a second 1:1 Ampure
cleanup was added after adaptor ligation. For RNA Pol II
studies with LPS-cultured cells, libraries were prepared

FIG. 1. ERa binding and RNA Pol II binding patterns match. ChIP-seq libraries are aligned using IGV software (mm9,
chromosome 12). The locations of switch regions and 3¢RR enhancers are indicated. The ChIP-seq library with LPS-
stimulated, purified splenic B cells from C57BL/6 mice was described previously (46,47,79) (range 0–138). Data were
normalized against 15M uniquely mapped reads (102). Additional ChIP-seq libraries were from ENCODE. These used
unstimulated, purified splenic B cells from C57BL/6 mice. ENCODE ChIP-seq libraries examined RNA Pol II (range 0–
2.74), H3K27ac (range 0–37), H3K4me1 (range 0–4.41), H3K36me3 (range 0–3.38), H3K4me3 (range 0–31), and CTCF
(range 0–18). For input, the range was 0–2.23. Patterns were most similar between ERa and RNA Pol II binding. ER,
estrogen receptor; RNA Pol II, RNA polymerase II; CTCF, CCCTC binding factor; HS, (DNase I) hypersensitive site; ChIP,
chromatin immunoprecipitation; LPS, lipopolysaccharide; RR, regulatory region; IGV, Integrative Genomics Viewer.
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from *1 to 10 ng of purified DNA using the KAPA Hy-
perPrep Library Preparation Kit (Roche). Fifty cycle
single-end or paired-end sequencing was performed on an
Illumlina HiSeq 2000 or 2500, NovaSeq 6000, or NextSeq
550 instrument.

For ChIP-Seq data analysis, we followed the guideline of
ENCODE for quality control (54). Details and codes have
been previously described (19,54,102). The bigwig tracks
were normalized to 15M uniquely mapped reads.

ENCODE ChIP-seq libraries were produced with purified
C57BL/6J splenic B cells, negatively selected for CD43+

and CD11b+ cells. Bigwig tracks were downloaded from the
ENCODE portal with the following identifiers: SERIES
ENCSR902FHL, ENCSR000CBC, ENCSR000CBD, ENCSR
000CBE, ENCSR000CBY, ENCSR000CBZ, ENCSR000
CDJ, ENCSR000CFT, and ENCSR000CGA (17,19). Li-
braries were evaluated using Integrative Genomics Viewer
(IGV) software.

Results

ERa and RNA Pol II co-bind the immunoglobulin
heavy chain locus

We previously described ERa binding patterns in the im-
munoglobulin heavy chain locus of purified, LPS-activated
C57BL/6 splenic B cells (46,47,79). Because RNA Pol II
recruitment has been previously described as an integral step
in estrogen-induced gene regulation (21,101), we queried the

relationships between ERa and RNA Pol II binding within the
immunoglobulin heavy chain locus. To this end, we aligned
our ERa ChIP-seq data with RNA Pol II ChIP-seq data from
ENCODE (Library ENCSR000CBZ, Target POLR2A). Both
libraries originated from purified (negatively selected for
CD43+ and CD11b+ cells), C57BL/6 splenic B cells, in one
case collected after LPS stimulation. As shown in Figure 1,
the alignment revealed strikingly similar binding patterns
between ERa and RNA Pol II; each protein bound Sl and
3¢RR HS sites within the immunoglobulin heavy chain locus.

We aligned additional ENCODE ChIP-seq data
(ENCSR000CBC, ENCSR000CBD, ENCSR000CBE,
ENCSR000CBY, ENCSR000CDJ, ENCSR000CFT, and
ENCSR000CGA) to examine positions of histone modifica-
tions and CTCF binding in the immunoglobulin heavy chain
locus of purified B cells. We found that H3K27ac and
H3K4me1 binding patterns were similar to ERa and RNA Pol
II (Fig. 1). In contrast, H3K36me3 and H3K4me3 bound
predominantly to upstream sequences and poorly to the 3¢RR
region. CTCF bound predominantly in the insulator region as
previously described (7). Overall, the ERa and RNA Pol II
binding patterns were best matched, illustrating a partnership
of the two proteins within the immunoglobulin heavy chain
locus.

As shown in Figure 2, when we added supplemental estro-
gen to purified, LPS-stimulated B cell cultures, ERa binding
exhibited improved focus on the ERE hotspot in Sl. RNA
Pol II was similarly targeted to this site. Results supplement

FIG. 2. Focused binding of ERa and RNA Pol II on an ERE hotspot in Sl in estrogen-supplemented B cell cultures. ChIP-
seq libraries were prepared from purified B cells stimulated with LPS or LPS plus estrogen (LPS + E). In the latter case, both
ERa and RNA Pol II were tested. Potential ERE (RRYYRNNNTGANY) were mapped using the IGV ‘‘Find Motif’’
function. ERE were identified in forward (blue ticks and arrows) and reverse (REV, red ticks) directions. The position of Sl
is indicated by a horizontal blue bar. Data ranges were 0–150 for the LPS library with ERa, 0–106 for the LPS + E library
with ERa, and 0–233 for the LPS + E library with RNA Pol II. ERE, estrogen response element.
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our previous discovery of synchronous shifts in ERa and RNA
Pol II DNA binding patterns when supplemental estrogen was
added to LPS-stimulated B cell cultures (47).

Focused binding of ERa to AC-repeats in the presence
of supplemental estrogen

ERE hotspots (42) and individual ERE clearly mark
some, but not all sites of ERa binding in the immunoglob-
ulin heavy chain locus (46,47,79). We and others have
previously identified AC-repeat sequences and other repet-
itive elements in and near the 3¢RR among loci of rodents
and primates (7,79,81,82). We therefore asked whether ERa
binding associated with these sites (7,47) in B cells activated
with LPS or LPS plus supplemental estrogen (LPS + E).

As shown in Figure 3, the ERa binding peaks were indeed
aligned with AC-repeat sequences (mapped as ‘‘ACACAC’’
using the ‘‘Find Motif’’ function of IGV), particularly when
B cells were stimulated in the presence of supplemental
estrogen (LPS + E). AC-repeats are shown within the 3¢RR
in Figure 3 with blue and red ticks (indicating forward [left
to right] and reverse (REV) sequence orientations, respec-
tively). The four highest ‘‘LPS + E’’ peaks are indicated
with arrows. Each peak aligned with at least one AC-repeat
(at least 44 bases in length), either in a forward or reverse

orientation. For example, the highest peak of ERa binding in
Figure 3 (marked with a blue arrow) mapped to a sequence
containing a 54 base AC-repeat straddled on both sides by
one or two TGACC ERE half-sites; half sites were each
located within 70 bases of the AC-repeat. We also observed
focused ERa binding to AC-repeats and poly A sequences in
and near Sl, Cl, and Cd gene segments when supplemental
estrogen was added to B cell cultures (45).

Discussion

Synchronous binding of ERa and RNA Pol II

Data in this report reveal a striking similarity between
patterns of ERa and RNA Pol II binding within the immuno-
globulin heavy chain locus. Results supplement our previous
finding that when estrogen was added to purified LPS-
stimulated splenic B cells, there were synchronous shifts in
binding patterns for ERa and RNA Pol II (47). Apparently,
when estrogen ligands alter the conformation of ERa, both
ERa and RNA pol II can be repositioned within the immu-
noglobulin heavy chain locus. These two transcription factors
are clearly integral members of switchosomes (47,79) and
enhanceosomes that regulate CSR and immunoglobulin ex-
pression patterns (99–101).

FIG. 3. Shifts in ERa toward improved binding of AC-repeat sequences in the presence of supplemental estrogen. ChIP-
seq libraries were from purified B cell cultures with LPS or LPS plus estrogen (LPS + E), shown using IGV software (mm9,
chromosome 12). Data were normalized against 15M uniquely mapped reads (102). Data ranges were 0–134 for the LPS
library and 0–87 for the LPS + E library. AC-repeat sequences (ACACAC) were mapped using the IGV ‘‘Find Motif’’
function. Ticks mark each sequence with a 5¢–3¢ orientation from left to right (blue) or right to left (red, termed ‘‘REV’’).
The four highest peaks of ERa binding in the LPS + E culture are marked with arrows, color-coded to match corresponding
AC-repeat sequence orientations. AC, adenosine–cytidine.
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In purified murine B cells, H3K27ac binding patterns were
closely matched to those of ERa and RNA Pol II and
H3K4me1 exhibited the next-best match. H3K36me3 and
H3K4me3 associated predominantly with Sl and surround-
ing regions, perhaps indicative of their roles in transcription
initiation and elongation (33). The various histone marks will
recruit different readers and thereby impact functions of
RNA Pol II (2,33,35,59). CTCF, another factor known to
regulate histone modifications and influence DNA architec-
ture of the immunoglobulin heavy chain locus throughout B
cell development, was associated with the HS5-8 insulator
region as previously described (6,20,32). These proteins
define only a fraction of enhanceosome composition, illus-
trating the enormous complexity of factors that influence
enhanceosome function (7).

ER binds AC-repeat sequences, particularly
when supplemental estrogen is added

We found that in the context of estrogen-supplementation,
ERa binding to DNA was well focused on AC-repeats (Fig. 3).
Sequence repeats were previously identified throughout the
immunoglobulin heavy chain locus in both primates and ro-
dents (79,82) and AC-repeats have been previously described
as regulatory elements (41). These repeats are somewhat
reminiscent of the heptamer-nonamer sequences instrumental
in V-D-J joining during B cell development (e.g., a typical
heptamer has the sequence CACAGTG). Possibly, for both
V-D-J joining and CSR, ERa binding to AC-repeats assists
DNA looping, alignment of DNA strands, and juxtaposition of
regulatory elements, as is necessary for the initiation of DNA
rearrangement events (26,30,98).

Cross-regulation of transcription factors

Transcription factors are cross-regulatory whereby chan-
ges in one hormone or transcription factor will alter the
functions of others. As an example, as stated above, DNA
loop formation is signaled by cooperative protein sets such
as STAT5A, CEBPb and PML or CTCF, RAD21, and
SMC3 (9,95,103,104). Interactions have been described be-
tween ERa and NFjB (8,48,64), ERa and PPAR (49), ERa
and STAT-5A (43,51,97), ERa and retinoic acid receptors
(RAR) (55), and RAR and CTCF (43).

Nuclear hormone receptors compete both for DNA
binding sites and ligands (39). This explains why patterns of
antibody isotype expression are difficult to predict in vivo
(3,24,39,48,51) and helps account for our previous finding
that IgG2b is generally higher in C57BL/6 females com-
pared to males, but that ratios can be reversed in the
context of VAD (47). Perhaps estrogen supports IgG2b
production, but ERa and RAR have competitive influences
on CSR [vitamin A often drives the switch to IgA (55,77)].
If this is the case, estrogen’s capacity to upregulate IgG2b
in male mice may be more evident when vitamin A is
absent.

From flu to lupus

As stated above, females and males respond differently to
influenza virus (and other) infections and exhibit different
frequencies of autoimmune disease. These differences are
due, at least in part to variant estrogen levels, influenced by

factors including sex, age, pregnancy, and hormone re-
placement therapies (34). We suggest that changes in estro-
gen and ERa binding to DNA may have profound influences
on gene rearrangement and antibody output [as is the case for
other factors such as Ikaros, Mediator, and the histone-reader
bromodomain family member BRWD1 (62,80,92)]. Changes
in antibody output may, in turn, translate to serious disease
consequences (16,29).

Intentional and targeted manipulations of ERa binding
within enhanceosomes and switchosomes of the immuno-
globulin heavy chain locus (e.g., by using CRISPR-Cas9
technologies) (4,5,10,22–23,27,31,38,40,72,74,83,85,96), may
eventually allow clinicians to improve control of pathogens
and to reduce threats of autoimmune disease.

Conclusion

We previously identified hotspots for ERE in the im-
munoglobulin heavy chain locus, identified ERa binding
to the locus, showed that estrogen induced synchronous
shifts in DNA binding for ERa and RNA Pol II, and showed
that deletion of ERE in HS1,2 or El reduced CSR in a B cell
line (7,46,47,79). Here, we show that ERa and RNA Pol II
binding patterns within the immunoglobulin heavy chain
locus have an extraordinary similarity and we show that
ERa has a preference for binding to AC-repeat sequences in
the 3¢RR in the presence of supplemental estrogen. Data
are presented to encourage further research to define
functions of ERa and related nuclear hormones in the im-
munoglobulin heavy chain locus.

We emphasize that the binding of nuclear hormones to
regulatory elements defines just one of many mechanisms
by which nuclear hormones influence pathogens and path-
ogen control in mammals. Important ERa binding sites are
also situated in T cell receptor loci and among V, D, and J
gene fragments (47). Next steps will be to employ new
molecular technologies to modify ERE and ERa-DNA binding
patterns in vivo (1,4,5,10,11,23,27,31,38,40,72,74,83,85,96).
Better understanding and control of ERa-DNA binding in
the immunoglobulin heavy chain locus may ultimately allow
clinicians to improve immune responses in cases of immu-
nodeficiency and reduce immune responses in cases of al-
lergic reactions or autoimmunity.
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