Liu et al. Cancer Cell Int (2020) 20:183

https://doi.org/10.1186/512935-020-01264-1 Cancer Cell International

PRIMARY RESEARCH Open Access

: . : ™
Nine glycolysis-related gene signature iy

predicting the survival of patients
with endometrial adenocarcinoma

JinHui Liu'", SiYue Li', Gao Feng?', HuangYang Meng’, SiPei Nie', Rui Sun', Jing Yang' and WenJun Cheng'"

Abstract

Background: Endometrial cancer is the fourth most common cancer in women. The death rate for endometrial
cancer has increased. Glycolysis of cellular respiration is a complex reaction and is the first step in most carbohydrate
catabolism, which was proved to participate in tumors.

Methods: We analyzed the sample data of over 500 patients from TCGA database. The bioinformatic analysis
included GSEA, cox and lasso regression analysis to select prognostic genes, as well as construction of a prognostic
model and a nomogram for OS evaluation. The immunohistochemistry staining, survival analysis and expression level
validation were also performed. Maftools package was for mutation analysis. GSEA identified Glycolysis was the most
related pathway to EC. gRT-PCR verified the expression level of hub gene in clinical samples.

Results: According to the prognostic model using the train set, 9 glycolysis-related genes including B3GALT6, PAM,
LCT, GMPPB, GLCE, DCN, CAPN5, GYS2 and FBP2 were identified as prognosis-related genes. Based on nine gene sig-
nature, the EC patients could be classified into high and low risk subgroups, and patients with high risk score showed
shorter survival time. Time-dependent ROC analysis and Cox regression suggested that the risk score predicted EC
prognosis accurately and independently. Analysis of test and train sets yielded consistent results A nomogram which
incorporated the 9-mRNA signature and clinical features was also built for prognostic prediction. Immunohistochem-
istry staining and TCGA validation showed that expression levels of these genes do differ between EC and normal
tissue samples. GSEA revealed that the samples of the low-risk group were mainly concentrated on Bile Acid Metabo-
lism. Patients in the low-risk group displayed obvious mutation signatures compared with those in the high-risk
group. The expression levels of B3GALT6, DCN, FBP2 and GYS2 are lower in tumor samples and higher in normal tissue
samples. The expression of CAPN5 and LCT in clinical sample tissues is just the opposite.

Conclusion: This study found that the Glycolysis pathway is associated with EC and screened for hub genes on the
Glycolysis pathway, which may serve as new target for the treatment of EC.
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Background

Endometrial cancer is a kind of female malignancy. In
female tumors, EC ranked fourth. In 2015, the American
Cancer Society (ACS) predicted that the number of new
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90% of patients are over 50 years old, and only 20% of
patients can get diagnosed before they menopause [1].
Though quite a lot of research have been conducted. EC
is not amenable to screening, hence needs to be effec-
tively managed once the diagnosis is made [2-5]. Glyco-
lysis of cellular respiration is a complex reaction and is
the first step in most carbohydrate catabolism. Most of
the glycolysis occurs in the cytoplasm. It does not uti-
lize any molecular oxygen to react. It is a special meta-
bolic pathway. Increased glycolysis is the main source of
energy supply in cancer cells that use this metabolic path-
way for ATP generation. Increased glycolysis can produce
ATP for cancer cells, becoming the main energy source
for cancer cell growth and metabolism. Hence Altered
energy metabolism was seen to be “hallmarks of cancer”
[6]. Research by Ganapathy-Kanniappan et al. Showed
that Tumor glycolysis working as a target to treat can-
cer was very promising [7]. They also found that tumor
glycolysis is closely related to immune evasion in cancer,
which might be a brand new therapeutic opportunities
[8]. Akins et al. found that Inhibition of glycolysis can
fight tumors [9]. Li et al. also found that glycolysis can
be used as a new target for tumor therapy [10]. Qin et al.
found that glycolysis can regulate metastasis of gastric
cancer cells [11]. Feinberg et al. also demonstrated that
glycolysis was involved in the metabolism of lung can-
cer [12]. This study focused on the relationship between
Glycolysis and endometrial cancer treatment, screening
appropriate targets, and opening up new ideas for the
treatment of EC.

Material and method

Source of obtaining data

TCGA provided mRNA data and the corresponding EC
clinical information [13], which was proceeded on plat-
form Illumina HiSeq RNA-seq [14], containing 552 EC
patient samples and 35 normal tissues. We analyzed
all EC patients with complete follow-up information.
After integrating clinical information, 520 samples were
obtained. These samples were classified into the training
cohort randomly (n=260), the testing cohort (n=260).
The training cohort was used for prognostic model con-
struction, while the testing cohort and entire cohort were
chosen for validation.

Gene set enrichment analysis (GSEA)

GSEA (http://software.broadinstitute.org/gsea/index.jsp)
[15] was used to determine the Molecular Signatures
Database (MSigDB) provided hallmark gene sets in order
to predict biological processes between the healthy sam-
ples and EC samples. The P-value<0.05 and FDR (false
discovery rate) < 0.01 were set as the cutoff.
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Identification of prognostic genes and their characteristics
Univariate regression analysis, Lasso analysis and mul-
tivariate regression analysis were applied to explore
the correlation between expression levels of glycolysis-
related genes and patients’ overall survival (OS). In the
univariate Cox regression analysis, gene was seen to be
a candidate prognostic gene when P-value was<0.05.
Lasso-penalized and multivariate analysis were next per-
formed for further screening. Hazard ratios (HRs) and
regression coefficient were calculated for each gene, and
the satisfactory mRNAs were ultimately included. The
gene alteration type and frequency, as well as the most
frequently altered neighbor genes of satisfactory genes
were exhibited by the cBioPortal (cBio Cancer Genomics
Portal) tool [16].

Construction of the gene-related prognostic model

The prognostic risk-score model for outcomes predic-
tion of EC patients was the combination of each optimal
prognostic mRNA expression level multiplying relative
regression coefficient weight calculated from the multi-
variate model according to the following way:

Risk Score(patient) = Z Coefficient(mRNA,)

12

x Expression(mRNA;)

All patients from the training cohort were divided into
high- and low-risk groups on the basis of the median risk
score. The Kaplan—Meier survival curves of both groups
were plotted and the ROC (receiver operating character-
istic) curve for OS prediction was present to assess the
sensitivity and specificity of the model [17]. Cox multi-
variate analysis regarding several clinicopathological
features of EC patients were also performed to exam the
independency of the prognostic model without clinical
characters.

Validation of the efficacy of the prognostic risk model

By comparing the testing cohort and entire cohort
patient’s risk score with the cut-off value calculated from
the training cohort, each patient was categorized as the
high-risk or low-risk group. Time-dependent ROC,
Kaplan—Meier curve and cox multivariate analysis were
also performed. Meanwhile, the stratification analysis
was operated based on clinicopathological features.

Validation of the hub genes

A nomogram and calibrate curve was built by the “rms”
package on R. The correctness was examined to check
the consistency index between actual observation fre-
quency and predicted probability. Then, we presented the
predicted and observed results in the calibration curve
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to visualize the performance of the nomogram. And the
45° line represents the best prediction. TCGA data was
also used so as to validate the glycolysis-related genes
expression level between EC and normal samples. And
the immunohistochemistry staining of both the nor-
mal and EC samples were downloaded from the Human
Protein Atlas database (https://www.proteinatlas.org/).
Survival analysis was also conducted for hub genes using
“survminer” R package and “survival” R package.EC sam-
ples from TCGA were divided into two groups based on
each hub gene’s best-separation cut-off value to plot the
Kaplan—Meier (K-M) survival curves.

Mutation analysis
The mutation data were processed and visualized by R
package maftools.

Preparation of endometrial cancer clinical tissue samples
and normal endometrial tissue samples

Throughout the study, we signed an informed consent
form for tissue sample acquisition and analysis with each
patient, which was approved by the Institutional Review
Committee of Nanjing Medical University. After remov-
ing part of the tissues of patients with endometrial can-
cer, we immediately frozen them and stored them at
— 80 °C until they were taken out. From June 2019 to Jan-
uary 2020, the Obstetrics and Gynecology Department of
the First Affiliated Hospital of Nanjing Medical Univer-
sity obtained tissue samples from patients with informed
consent, including a total of 10 clinical tissue samples of
endometrial cancer and 10 clinical cases of normal endo-
metrium Tissue samples.

Total RNA extraction, reverse transcription and real-time
quantitative RT-PCR (qRT-PCR) analysis

We used TRizol reagent (Thermo Fisher Scientific,
Waltham, MA, USA) to extract total RNA from tissue
samples and Agilent Bioanalyzer 2100 (Agilent Tech-
nologies, Santa Clara, CA, USA) with RNA 6000 Nano
kit to evaluate the integrity of extracted RNA. We used
a high-capacity cDNA reverse transcription kit (Thermo
Fisher Scientific) to react with the extracted RNA to syn-
thesize single-stranded complementary DNA from RNA,
and then used the SYBR Green PCR kit (Thermo Fisher
Scientific) for real-time quantification. Record the cycle
threshold (Ct) of each gene. The relative expression of
the target gene was calculated using the 2724t method
(ACt=Cttarget gene-in vitro control). All program steps
of real-time quantitative RT-PCR (qRT-PCR) are per-
formed in accordance with the instructions provided
by the manufacturer. See Additional file 1: Table S1 for
primer sequence.
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Result

Functional pathway screening using GSEA

Clinical features information of a total of 587 samples
including 552 EC and 35 healthy samples were achieved
from the TCGA. Based on the mentioned data, GSEA
indicated that whether the identified gene sets showed
significant differences between EC and adjacent healthy
tissues. And we found that these genes are significantly
enriched in glycolysis, cholesterol homeostasis, fatty acid
metabolism and xenobiotic metabolism. Glycolysis was
shown to be the most relevant pathway (Fig. 1).

Establishment of glycolysis-related genes and EC
prognosis models

Firstly we integrated mRNA expression profiles and clini-
cal information so as to screen out 520 EC samples. We
analyzed 520 EC samples and found a total of 179 par-
ticipating genes on the Glycolysis pathway in order to
research the relationship between Glycolysis and the
prognosis of EC patients. Then we randomly selected
260 samples as training cohort and built a prognostic
model for 260 samples. Univariate Cox regression analy-
sis screened out 11 genes with the cutoff of P<0.05. These
prognosis-related Glycolysis genes were further analyzed
with the least absolute shrinkage and selection opera-
tor (LASSO) Cox regression algorithm (Fig. 2a, b). Then
multivariate Cox proportional hazards regression analy-
sis built the risk signature. We constructed prognostic
models and the risk scores were calculated. Nine genes
including B3GALT6, PAM, LCT, GMPPB, GLCE, DCN,
CAPNS5, GYS2 and FBP2 were identified as prognosis-
related genes. The risk score come out as the followed:
0.000755345* B3GALT6-5.19E—05* PAM +0.029807032*
LCT-0.000708518*  GMPPB+0.000784398*  GLCE-
0.00015091* DCN + 0.000258397* CAPN5 +0.031956259*
GYS2+0.00431111* FBP2.

According to the median levels of risk score, EC
patients were classified into low-risk (n=130) and high-
risk groups (n=130). In the model, survival analysis
indicated that low-risk patients had significantly longer
overall survival time than high-risk patients (Fig. 2c).
We also performed the receiver operating characteristic
curve (ROC) analysis. As shown in Fig. 2d, ROC curve
analysis was also completed according to the 1, 3, 5-year
survival of the area under the receiver operating charac-
teristic curve (AUC) value, the specificity and sensitiv-
ity were highest when the risk score was 0.794, 0.765,
0.773. The risk score and survival status indicated by the
prognostic model was displayed in Fig. 3a—c. To assess
whether the model was an independent predictor of EC,
univariate and multivariate Cox regression analyses were
conducted, including risk scores and clinical factors. And
the results showed that this prognostic model showed
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Fig. 1 GSEA identified that four gene sets were significantly enriched including glycolysis, cholesterol homeostasis, fatty acid metabolism and
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moderate and independent prognostic power for Glyco-
lysis pathway (Fig. 3d, e).

Validation of glycolysis-related genes and EC prognosis

In order to verify the authenticity of the above prognostic
model, we built another prognostic model using the test-
ing cohort (260 samples). Based on the training cohort’
cut-off, samples were divided into low-risk (n=124)

and high-risk group (n=136) according to the median
levels of risk score. Survival analysis indicated that low-
risk patients had significantly longer overall survival
time than high-risk patients (Fig. 4a). ROC curve analy-
sis showed that the specificity and sensitivity were high-
est when the risk score was 0.717, 0.613, 0.643 according
to the 1, 3, 5-year survival of the area under the receiver
operating characteristic curve (AUC) value (Fig. 4b). The
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Fig. 2 Prognostic model of the training cohort. a, b The coefficients calculated by LASSO. ¢ Kaplan-Meier survival analysis of the low- and high-risk
group patients in the training cohort. d ROC curve analysis according to the 1, 3, 5-year survival of the area under the AUC value

risk score and survival status indicated by the prognos-
tic model was displayed in Fig. 4c—e. To assess whether
the model was an independent predictor of EC, univari-
ate and multivariate analyses were completed, including
clinical factors and risk scores. The results showed that
this prognostic model showed moderate and independ-
ent prognostic power for Glycolysis pathway (Fig. 4f, g).
These conclusions were all consistent with previous prog-
nostic model trends, validating the reliability of our spec-
ulation that Glycolysis is involved in the development of
EC and affects the prognosis of EC.

Complete glycolysis-related prognostic model

We finally built a complete prognostic model based on
entire cohort (520 samples). Based on the training cohort’
cut-off and median levels of risk score, samples were clas-
sified into low-risk (n=254) and high-risk (n=266) group,
and survival analysis indicated that low-risk patients had
significantly longer overall survival time than high-risk
patients (Fig. 5a). ROC curve analysis showed that the speci-
ficity and sensitivity were highest when the risk score was
0.763, 0.692, 0.705 according to the 1, 3, 5-year survival of
the area under the receiver operating characteristic curve
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(AUC) value (Fig. 5b). The risk score and survival status
indicated by the prognostic model was displayed in Fig. 5¢c—
e. To assess whether the model was an independent predic-
tor of EC, univariate and multivariate analyses were done,
including clinical factors and risk scores. The results showed
that this prognostic model showed moderate and inde-
pendent prognostic power for Glycolysis pathway (Fig. 5f,
g). These further validate the reliability of our previous two
prognostic models.

Hierarchical analysis of clinical features

and glycolysis-related hub genes

Univariate and multivariate Cox proportional haz-
ards regression analysis identified nine genes including
B3GALT6, PAM, LCT, GMPPB, GLCE, DCN, CAPN5,
GYS2 and FBP2 to be prognosis-related. Among the 9
genes, we found significant differences in the expression
levels of 7 genes in the high-risk and low-risk groups
(Fig. 6a). In addition, the heatmap showed the expres-
sion of the nine genes in high- and low-risk patients in
the TCGA dataset. We observed significant differences
between the high- and low-risk groups associated with
tumor status, grade, histological type and stage (Fig. 6b).
We further analyzed the relationship between nine genes
and various clinical features including risk, tumor status,
grade, histological type, stage and age. We found that
tumor status, grade, histological type and stage were sig-
nificantly related with the 9 genes. We analyzed 9 genes
for different clinical features respectively. We found that
expression level of CAPN5, DCN, GLCE and GMPPB
were significantly different in different age groups (Addi-
tional file 2: Figure S1).For different histological type, the
expression level of B3GAL, CAPN5, GLCE, GMPPB and
PAM were significantly different (Additional file 3: Figure
S2). For different grade, the expression level of CAPNS5,
DCN, GLCE, GMPPB and PAM were significantly dif-
ferent (Additionalfile 4: Figure S3). For different tumor
status, DCN, GMPPB and PAM expressed differ-
ently (Additional file 5: Figure S4). In next, the stratifi-
cation analysis was done according to histological type,
grade, stage, tumor status and age. Patients were strati-
fied into endometrioid subgroups, grade G1 and G2 sub-
group, grade G3 and G4 subgroup, tumor free subgroup,
with tumor subgroup, stage I and stage II subgroup, stage
III and stage IV subgroup, age > 60 subgroup and age <60
subgroup. For the patients in endometrioid subgroup, the
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survival time of patients in the low-risk case was signifi-
cantly longer than that of patients in the high-risk case
(Fig. 7a), which was consistent with the results belonging
to the grade G1 and G2 subgroup, grade G3 and G4 sub-
group, stage I and stage II subgroup, stage III and stage
IV subgroup, tumor free subgroup, with tumor subgroup,
age > 60 subgroup and age <60 subgroup. (Figure 7b-1i).

Building predictive nomogram
For the goal of establishing a clinically method to pre-
dict the survival probability with EC patients, we created
a nomogram based on the TCGA cohort to estimate the
probability of the 3- and 5-year OS. The predictors of the
nomogram contained 6 independent prognostic factors
including stage, age, histological type, grade, tumor status
and risk score Fig. 8a). The C-index of the model for eval-
uation of OS was 0.871. The 45° line represented the best
prediction. Calibration plots suggested that the nomo-
gram performed well (Fig. 8b—c). ROC curve analysis
also showed that the risk score AUC value of the model
was 0.757, the clinical factors AUC value was 0.772,
both much significantly higher than the clinical stage
(AUC=0.690), grade (AUC=0.622), histological type
(AUC=0.608), tumor status (AUC=0.751) and patients’
age (AUC=0.578). Interestingly, when combined the risk
score with clinical factors, the ROC curve of combination
model was much higher than each alone (AUC=0.805).
Based on 9 glycolysis-related gene expression, principal
component analysis of the training cohort, testing cohort,
and entire EC cohort displayed a significantly different
distribution pattern of high and low risk which indicating
their difference in glycolysis phenotype (Fig. 9a—c).

Genetic information of the glycolysis-related genes

The genetic alteration in the Glycolysis-related genes was
analyzed with cBioPortal software. The network con-
structed by B3GAL, DCN, GLCE, GYS2 and their most
associated neighbor genes were exhibited (only four out
of the 9 genes had a joint node, while the remaining 5
genes had no junctions and were not shown) (Fig. 10a).
Figure 10b, c illustrated that the 9 genes were altered in
92 (17%) from the 547 patients; LCT and CAPN5 showed
most diverse alteration including amplification, missense
mutation etc.

(See figure on next page.)

Fig. 3 Risk signature with the 9 glycolysis-related hub genes. a, b The risk scores for all patients in training cohort are plotted in ascending order
and marked as low risk (blue) or high risk (red), as divided by the threshold (vertical black line). ¢ The distribution of risk score, survival status, and the
expression of 9 genes of each patient in training cohort by z-score, with red indicating higher expression and light blue indicating lower expression.

d Univariate regression model. e Multivariate regression model
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Validation of glycolysis-related hub genes

All of the 9 glycolysis-related hub genes were validated in
TCGA data. We found that DCN had the lower expres-
sion level of EC tissues than that of healthy tissues, while
the B3GALT6, PAM, LCT, GMPPB, GLCE, CAPNS5,
GYS2 and FBP2 had the higher expression levels of EC

tissues than that of healthy tissues (Additional file 6: Fig-
ure S5). We further validated the 9 glycolysis-related hub
genes including B3GALT6, PAM, LCT, GMPPB, GLCE,
DCN, CAPN5, GYS2 and FBP2 using immunohisto-
chemistry. PAM, GMPPB, GLCE, CAPN5, GYS2 and
FBP2 had the consistent expression trend. B3BGALT6 and
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LCT were not available in the database (Fig. 11a—g). AUC
value was used to identify the diagnostic efficacy of dis-
tinguishing normal and cancerous tissues, AUC value of
9 genes combined diagnosis was 0.992, which means the
9 genes can well identify cancer tissue and normal tissue
(Fig. 11h). Regarding prognosis, Kaplan-Meier curves
showed that higher expression of CAPN5, FBP2 and

GYS2 correlated significantly with poor overall survival
(OS), while the lower expression of DCN, GMPPB and
PAM correlated significantly with OS (Additional file 7:
Figure S6). We further verified the expression of these
9 genes in clinical sample tissues (Fig. 12). The results
prove that the expression levels of B3GALT6, DCN,
FBP2 and GYS2 are lower in tumor samples and higher
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in normal tissue samples. The expression of CAPN5 and
LCT in clinical sample tissues is just the opposite.

Association between nine hub genes and genetic
mutations

We compared the frequency of genetic mutations
between high- and low-risk score groups through R pack-
age maftools. The high-risk group had somatic mutations
in the following order: TP53>PTEN >PIK3CA >ARID

1A >TTN>PIK3R1 > KMT2D > CTNNB1>CTCF>M
UC16 (Additional file 6: Figure S5). The low-risk group
had somatic mutations in the following order: PTEN > A
RID1A >PIK3CA > TTN > PIK3R1 > CTCF > KMT2D > Z
FHX3>MUC16 >MUC5B (Additional file 6: Figure S5).
Furthermore, we found that the patients in the low-risk
group showed obvious mutation signatures, compared
with patients in the high-risk group (Additional file 8:
Figure S7).
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Identification of nine cell cycle-related genes risk score
associated biological pathways

GSEA further analyzes high- and low-risk group samples,
revealing the main enrichment pathway. The samples
of the high-risk group were mainly concentrated on the
pathways such as dna repair, g2m checkpoint, myc tar-
gets vl and myc targets v2. The samples of the low-risk
group were mainly concentrated on the pathways such
as bile acid metabolism, fatty acid metabolism, heme
metabolism and xenobiotic metabolism (Fig. 13).

Discussion

Endometrial cancer is a common malignant tumor that
threatens women’s lives. It often occurs in postmenopau-
sal women and is difficult to diagnose in the early stage.

Therefore, it needs to be widely regarded. Glycolysis is
a common energy metabolism pathway in human body.
Many studies have shown that Glycolysis affected the bio-
logical behavior of tumor cells. We reasonably speculated
that Glycolysis was related to the development of endo-
metrial cancer, so we analyzed endometrial cancer sam-
ples by GESA. Glycolysis was found to be the most highly
enriched pathway, initially confirming our hypothesis.

EC samples were randomly classified into training
cohort, testing cohort and entire cohort. We used train-
ing cohort to construct Cox regression prognostic model,
testing cohort and entire cohort for validation. Nine
glycolysis-related prognostic genes including B3GALT6,
PAM, LCT, GMPPB, GLCE, DCN, CAPN5, GYS2 and
FBP2 were screened out. After a comprehensive analysis
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of the clinical information, we found that these nine genes
are associated with multiple clinical features of EC
respectively.

After reviewing the existing literature, we found that
these nine genes are more or less related to tumors. For
example, Saldise et al. found that the distribution of pep-
tidyl-glycine alpha-amidating mono-oxygenase (PAM)
enzymes in normal human lung and in lung epithelial
tumors were different [18]. Lactase-phlorizin hydrolase
was researched to be associated with colorectal cancer
patients by Piepoli A [19]. p-glucuronyl C5-epimerase

Page 130f 18

(GLCE) was shown as a potential tumor suppressor gene
which participated in lung and breast carcinogenesis [20,
21] by inhibiting tumor angiogenesis and invasion/metas-
tasis pathways, which was also proved to affect angiogen-
esis in prostate cancer cells [22]. Decorin (DCN), as an
important component of the extracellular matrix (ECM),
is a small leucine-rich proteoglycan and synthesized by
fibroblasts, the deficiency of which promoted renal cell
carcinoma growth and metastasis [23]. DCN was also
seen to be potential biomarker of Colon Cancer [24].
Zhang et al’s research proves that DCN affects the micro-
environment of tumors [25]. glycogen synthase 2 (GYS2)
was demonstrated to participate in a feedback loop
which restricted HBV-Related Hepatocellular Carcinoma
growth [26]. Far-upstream element (FUSE)-binding pro-
tein 2 (FBP2) belongs to single-stranded DNA-binding
protein family; it usually acts in regulating transcription
and post-transcription and has been widely learned in
liver tumors [27, 28] Kajiwara et al. demonstrated that in
colon cancer tissues c-myc suppressor far-upstream ele-
ment-binding protein-interacting repressor splicing vari-
ants were activated [29], which was also proved to induce
invasion and migration of non-small cell lung cancer cells
[30]. Wang et al. found that FBP2 was correlated with
proliferation and doxorubicin resistance in human breast
cancer cell lines [31]. B3GALT6, GMPPB and CAPN5
have not been thoroughly studied in tumors.

The somatic mutations analysis between samples of
high- and low-risk group were conducted, the result
of which showed that the different mutated genes
could contribute to the different sore of genes in the
EC patients. The mutation rate of PTEN, ARID1A and
PIK3R1 in the low-risk group is higher than that in the-
high-risk group. Interestingly, these three genes have
been proved to have a certain tumor suppressive effect
by previous studies [32—34]. PIK3CA has been found to
play a role in gynecological tumors such as cervical can-
cer [35]. The mutations of other genes have not been
explored in EC, and it is worth studying in detail in the
future.

GSEA displayed that the samples of the high-risk group
were mainly concentrated on the pathways such as dna
repair, while the samples of the low-risk group were
mainly concentrated on the pathways such as bile acid
metabolism. Research proved that when DNA repair
fails, this damage can lead to carcinogenesis and tumor
genomic instability. In this pathway, biological targets
involved in immunotherapy can be found [36]. Bile Acid
Metabolism has been found to be related to Signaling in
Cholestasis, Inflammation, and Cancer [37].
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The advantage of this study is that, firstly, it was found
that the Glycolysis pathway is related to the mechanism
of EC, opening a new perspective for the regulation of
metabolic processes and the treatment of EC. Secondly,
we found hub genes closely related to EC survival in
this pathway. Most of these genes have been confirmed
to affect tumor progression and are likely to be used for
targeted therapy. BBGALT6, GMPPB and CAPN5 have
not been thoroughly studied. We firstly discovered that

these three genes were related to EC and might become
an innovative research direction in the future.

Conclusion

This study found that the Glycolysis pathway is asso-
ciated with EC and screened for hub genes on the Gly-
colysis pathway, which may serve as new target for the
treatment of EC.
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Supplementary information

Supplementary information accompanies this paper at https://doi.
0rg/10.1186/512935-020-01264-1.

Additional file 1: Table S1. Primer sequence of genes in gRT-PCR.

Additional file 2: Figure S1. Expression level of CAPNS5, DCN, GLCE and
GMPPB in different age groups. (A) CAPNS, (B) DCN, (C) GLCE, (D) GMPPB.

Additional file 3: Figure S2. Expression level of B3GAL, CAPN5, GLCE,
GMPPB and PAM in different histological type. (A) B3GAL, (B) CAPNS5, (C)
GLCE, (D) GMPPB, (E) PAM.

Additional file 4: Figure S3. Expression level of CAPN5, DCN, GLCE,
GMPPB and PAM in different grade. (A) CAPNS5, (B) DCN, (C) GLCE, (D)
GMPPB, (E) PAM.

Additional file 5: Figure S4. Expression level of DCN, GMPPB and PAM in
different tumor status. (A) DCN, (B) GMPPB, (C) PAM.

Additional file 6: Figure S5. TCGA Expression level Validation of 9 glycoly-
sis-related hub genes. (A) B3GALTS, (B) DCN, (C) FBP2, (D) GLCE, (E) GMPPB,
(F) GYS2, (G) LCT, (H) PAM. (I) CAPN5.

Additional file 7: Figure S6. Kaplan-Meier curves showed that higher
expression of CAPN5, FBP2 and GYS2 correlated significantly with poor
OS, while the lower expression of DCN, GMPPB and PAM correlated signifi-
cantly with OS. The yellow line indicates samples with highly expressed
genes (above best-separation value), and the green line designates the
samples with lowly expressed genes (below best-separation value).

Additional file 8: Figure S7. Somatic mutation analysis. (A) Oncoplot
displaying the somatic landscape of EC with high-risk score. (B) Oncoplot
displaying the somatic landscape of EC with low-risk score. Stacked bar
chart and cohort summary plot displaying distribution of variants accord-
ing to variant classification, type, and SNV class. Bottompart (from left to
right) indicates mutation load for each sample, variant classification type
of the high-risk group (C) and low-risk group (D).
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EC: Endometrial cancer; OS: Overall survival; ROC: Receiver operating charac-
teristic; HRs: Hazard ratios; GSEA: Gene set enrichment analysis.
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