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Lytic replication of Epstein-Barr virus (EBV) is not only essen-
tial for its cell–to– cell spread and host–to– host transmission,
but it also contributes to EBV-induced oncogenesis. Thus,
blocking EBV lytic replication could be a strategy for managing
EBV-associated diseases. Previously, we identified a series of
natural lignans isolated from the roots of Saururus chinensis
(Asian lizard’s tail) that efficiently block EBV lytic replication
and virion production with low cytotoxicity. In this study, we
attempted to elucidate the molecular mechanism by which these
lignans inhibit EBV lytic replication. We found that a represen-
tative compound, CSC27 (manassantin B), inhibits EBV lytic
replication by suppressing the expression of EBV immediate-
early gene BZLF1 via disruption of AP-1 signal transduction.
Further analysis revealed that manassantin B specifically blocks
the mammalian target of rapamycin complex 2 (mTORC2)-medi-
ated phosphorylation of AKT Ser/Thr protein kinase at Ser-473
and protein kinase C� (PKC�) at Ser-657. Using phosphoinosit-
ide 3-kinase–AKT-specific inhibitors for kinase mapping and
shRNA-mediated gene silencing, we validated that manassantin
B abrogates EBV lytic replication by inhibiting mTORC2 activ-
ity and thereby blocking the mTORC2–PKC/AKT-signaling
pathway. These results suggest that mTORC2 may have utility as
an antiviral drug target against EBV infections and also reveal
that manassantin B has potential therapeutic value for manag-
ing cancers that depend on mTORC2 signaling for survival.

Epstein-Barr virus (EBV)5 ubiquitously infects more than
90% of the population worldwide and is also an etiological agent

of several human diseases and malignancies (1, 2). Like other
herpesviruses, the EBV life cycle consists of two phases, latent
and lytic. When EBV infects memory B-lymphocytes, it estab-
lishes latent infection by default and expresses a few latent
genes to maintain latent infection (3, 4). Establishment of
latency is a viral strategy to avoid host immune surveillance for
lifetime-persistent infection. When latent EBV is reactivated in
response to physiological stimuli or chemical assault, lytic rep-
lication occurs where the virus expresses almost all the genes in
its genome, replicates its genomic DNA, and produces progeny
viral particles releasing from cells. EBV lytic replication initiates
at the activation of viral immediate-early genes (ZTA and RTA)
and proceeds as almost all viral genes are expressed in a cascade
fashion that leads to production of progeny virions (5). Lytic
replication is essential for cell–to– cell spread as well as host–
to– host transmission of the virus. In addition, increasing evi-
dence indicates that EBV lytic replication also contributes to
viral pathogenesis and oncogenesis. (i) EBV lytic replication is
crucial for efficient dissemination to the sites of disease. (ii) The
presence of low numbers of EBV lytically-infected cells could
enhance tumor growth through the release of growth factors
and immunosuppressive cytokines (6 –8). (iii) Elevated anti-
body titers against EBV lytic antigens and increased viral DNA
load in serum/plasma are directly correlated with advanced
cancer stages, poor prognosis, or tumor recurrence in nasopha-
ryngeal carcinoma (NPC), Hodgkin’s disease, and Burkitt’s
lymphoma (9). (iv) EBV lytic replication is directly linked to
chronic active EBV infection (CAEBV) and oral hairy leukopla-
kia (10, 11). (v) EBV lytic genes BZLF1, BGLF4, and BGLF5 can
induce genome instability (12) and other lytic gene products,
such as LF1, LF2, LF3, BILF1, BALF4, and BHLF1, are detected
in tumor biopsies (13–15). Therefore, EBV lytic life cycle con-
tributes to EBV-induced oncogenesis, and inhibition of EBV
lytic replication can be a strategy for treatment of EBV-associ-
ated malignancies.
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Reactivation of EBV can be initiated when B cells are differ-
entiated into plasma following B-cell receptor stimulation by
antigen (16). In the cell culture system, EBV lytic life cycle can
be induced by certain chemicals such as 12-O-tetradecanoyl-
phorbol-13-acetate (TPA) and sodium butyrate (17). These
findings indicate that host cell signal transduction and epige-
netic regulation control the switch of the virus between latency
and lytic replication. TPA is found to trigger EBV reactivation
cascade through activating protein kinase C (PKC), leading to
stimulation of the mitogen-activated protein kinase (MAPK)/
extracellular signal-regulated kinase (ERK) pathway (18, 19). As
a consequence of the activation of the pathway, c-Fos is accu-
mulated, and c-Jun is phosphorylated, leading to the formation
of an active AP-1 complex on the ZTA promoter, activation of
the gene of EBV immediate-early transcriptional activator
ZTA, and initiation of the lytic cascade of EBV (20). In B-cell
receptor–mediated EBV activation, PI3K–AKT-activated bZip
transcription factors (ATF/c-Jun/CREB) also bind to the ZII
domain and activate the BZLF1 promoter (21).

PI3K/mTOR signaling is a chief mechanism for controlling
cell proliferation, survival, and metabolism (22). mTOR exists
in two different complexes, mTOR complex 1 (mTORC1) and
mTOR complex 2 (mTORC2). In mTORC1, mTOR is associ-
ated with Raptor, PRAS40, and mLST8/G�L (23), whereas in
mTORC2, mTOR complexes with two unique regulatory
proteins named Rictor and Sin1 in addition to mLST8/G�L,
PROTOR/PRR5, and DEPTOR (24 –27). mTORC1 is highly
sensitive to rapamycin, whereas mTORC2 is insensitive to
short-term treatment of rapamycin. mTORC1 and mTORC2
participate in different pathways and recognize distinct sub-
strates. mTORC1 regulates cell growth by controlling the activ-
ity of the S6 kinases 1 (S6K1) and the eIF-4E-binding protein 1
(4E-BP1) (23), whereas mTORC2 modulates cell survival,
growth, proliferation, and metabolism by controlling the phos-
phorylation of AKT Ser-473 (29). Previous studies showed that
inhibition of mTORC1 by rapamycin inhibits EBV and KSHV
lytic replication (30, 31). In addition, EBV in turn is able to
activate or manipulate PI3K/mTOR signaling, which is associ-
ated with oncogenesis. PI3K/mTOR is activated in EBV-posi-
tive post-transplant lymphoproliferative diseases, Hodgkin’s
lymphoma, NPC, and gastric carcinoma (32). In this study, we
found that EBV reactivation depends on mTORC2 and inhibi-
tion of mTORC2 function by a potential mTORC2 inhibitor,
CSC27 (manassantin B), and blocks EBV switch from latency to
lytic replication. Manassantin B inhibits mTORC2 phosphory-
lation of AKT and PKC� and, as a consequence, blocks EBV
lytic replication.

Results

Manassantin B blocks EBV lytic replication by suppressing
ZTA-initiated reactivation cascade

In our previous work, we identified a series of natural lignans
isolated from the roots of Saururus chinensis and showed that
they efficiently block EBV lytic replication with low cytotoxicity
(33). To understand the mechanism underlying their antiviral
activities, a representative compound among these lignans,
CSC27 (manassantin B, a dineolignan), was chosen for further

investigation based on its antiviral potency (Fig. 1A). The effect
of manassantin B on EBV lytic replication was analyzed using
P3HR-1 cells, an EBV latently-infected Burkitt lymphoma cell
line. P3HR-1 cells were induced for reactivation with TPA and
sodium butyrate (NaB). Three hours post-induction, the cells
were exposed to manassantin B in a wide range of concentra-
tions. Intracellular viral genomic DNA was determined at 48 h
post-induction. Encapsidated viral DNA was measured for
released virions in the media 5 days post-induction. The half-
maximal DNA replication inhibitory concentration (IC50) and
the half-maximal antiviral effective concentration (EC50) of
manassantin B were determined from the dose-response curves
of the intracellular DNA and extracellular virion to be 1.72 and
0.5 �M, respectively (Fig. 1B). The cytotoxicity of the compound
was assessed using the trypan blue exclusion method for cell
viability at 48 h, and the 50% cytotoxic concentration (CC50)
was determined to be �50 �M, leading to a selectivity index
(� CC50/EC50) of �100. In addition, the antiviral property of
manassantin B was also examined in EBV-carrying Akata-BX1
cells in which EBV reactivation was induced by anti-IgG treat-
ment. Result showed that manassantin B inhibited EBV lytic
DNA replication and virion production with IC50 of 12.96 �M

and EC50 of 3.06 �M in Akata-BX1 cells (Fig. 1C).
Cytotoxicity of manassantin B to primary lymphocytes

was assessed with human peripheral blood mononuclear
cells (PBMCs) after 48 h of treatment, and the result demon-
strated low cytotoxicity of manassantin B to primary lym-
phocytes (Fig. 1D).

Transition from latency to lytic state is controlled by two
viral transcription factors, namely ZTA and RTA, encoded by
BZLF1 and BRLF1. Both ZTA and RTA are essential for viral
lytic gene expression and ori-Lyt– dependent DNA replication.
The expression of BZLF1 and BRLF1 in induced P3HR-1 cells
was determined 48 h post-treatment by qRT-PCR and Western
blot analysis. Results showed significant reductions of both
BZLF1 and BRLF1 gene expression in the cells treated with
manassantin B in both mRNA and protein levels (ZTA) in a
dose-dependent manner (Fig. 1, E and F). As a consequence, the
expression of downstream gene, EA–D protein, was also
reduced (Fig. 1F). We conclude that manassantin B inhibits
EBV lytic replication by blocking ZTA- and RTA-initiated viral
reactivation cascade.

Manassantin B inhibits AP-1–signaling pathway

EBV reactivation can be initiated through activating protein
kinase C (PKC). As a consequence, c-Fos is accumulated and
c-Jun is phosphorylated, leading to the formation of an active
AP-1 complex on the ZII domain of the BZLF1 promoter and
activation of ZTA gene (20). In addition, other cellular tran-
scription factors, such as CREB and ATF, are also reportedly
associated with the promoter in response to PI3K–AKT signal-
ing (21). We asked whether manassantin B inhibits EBV ZTA
activation through disrupting the AP-1–signaling pathway. To
this end, we first employed an electrophoretic mobility shift
assay (EMSA) to study the effects of the lignan on the AP-1
DNA-binding property. Two dsDNA fragments, one contain-
ing a consensus AP-1– binding motif and the other harboring
the ZII element of the ZTA promoter, were reacted with the
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nuclear extract of TPA-induced P3HR-1 cells that have been
treated with manassantin B in various concentrations. Results
showed that a DNA–protein complex was detected with the
AP-1– binding oligonucleotide, and the binding was reduced
with the extracts of the cells treated with manassantin B (Fig.
2A). Similarly, a DNA–protein complex that appeared only
with TPA-induced P3HR-1 nuclear extract on the ZII element
was also diminished in response to manassantin B in a dose-de-
pendent manner (Fig. 2B), indicating that manassantin B pre-
vents the TPA-induced transcription factor (AP-1 or CREB/c-
Jun/ATF) from binding to the ZTA promoter. However,
manassantin B did not block the transcription factors in the
nuclear extract of nonmanassantin B–treated cells binding to

AP-1–responsive promoters (Fig. 2, C and D), suggesting that
manassantin B acts at the pathway upstream of AP-1 activation
rather than blocking activated AP-1 binding to DNA. Second,
the effect of manassantin B on the transcription activity of
AP-1–responsive promoter was analyzed using a promoter–
reporter assay. 293T cells were transfected with the AP-1
promoter–luciferase reporter plasmids. Six hours post-trans-
fection, cells were treated with TPA to activate AP-1 signaling.
Manassantin B in different concentrations was added into the
cell culture. The activation of the AP-1–responsive promoter in
the absence and presence of manassantin B was measured
through the luciferase activities 36 h post-induction. Manas-
santin B was found to be able to block TPA-induced transcrip-

Figure 1. Effect of manassantin on EBV lytic replication. A, structure of manassantin B (CSC27). B, P3HR-1 cells were treated with a wide range concentration
of manassantin B 3 h after being induced by TPA and sodium butyrate (NaB) for EBV lytic replication. Intracellular EBV DNA replication (blue), extracellular EBV
virion production (green), and cell viability (orange) were determined as described under “Experimental procedures.” The mean values from three independent
experiments and standard deviations are presented on the y axis of dose-response curves. Calculated IC50, EC50, and CC50 values are presented in the table. C,
Akata-BX1 cells were treated with manassantin B in a wide range concentration 3 h after being induced by anti-IgG antibody for EBV lytic replication.
Intracellular EBV DNA replication (blue), extracellular EBV virion production (green), and cell viability (orange) were determined and presented as IC50, EC50, and
CC50 values in the table. D, cytotoxicity of manassantin B to PBMC was assessed after 48 h of treatment by trypan blue staining. E, effect of manassantin B on ZTA
and RTA mRNA levels in TPA/NaB-induced P3HR-1 cells were determined using qRT-PCR at 24 h post-induction. F, expression of ZTA and EA–D were detected
by Western blot analysis at 24 h post-induction.
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tion activity of the AP-1–responsive promoter in a dose-depen-
dent manner (Fig. 2E). Taken together, manassantin B inhibits
the AP-1–signaling pathway upstream of ZTA, thereby block-
ing EBV reactivation.

Kinase mapping: mTOR is required for EBV lytic replication

To identify the target of manassantin B, we continued to
trace upstream pathways that are responsible for EBV lytic rep-
lication and targeted by manassantin B. PI3K/mTOR and the
Ras–ERK pathway are two main upstream pathways of AP-1
transduction signaling (34, 35). To understand whether these
two pathways are involved in EBV reactivation in P3HR-1 cells,
we employed a whole panel of pharmacological inhibitors of the
PI3K/mTOR and ERK pathways for a kinase mapping. The
effect of each inhibitor on EBV lytic DNA replication was deter-

mined, and results showed that the inhibitors to ERK (U0126),
PI3K subunits (LY294002, HS173, TGX221, and AS252424
CAL-101), and AKT1/2/3 (AT7867) in the concentrations of
10� their IC50 exhibited little effect on EBV lytic replication. In
contrast, mTORC1 inhibitor rapamycin gave a moderate inhibi-
tion, and PI3K/mTOR dual inhibitor BEZ235 led to an efficient
inhibition of EBV DNA synthesis (Fig. 3, A and B). The cytotoxicity
of these inhibitors to P3HR-1 cells in these concentrations was
determined (Fig. 3C). Furthermore, the effects of rapamycin and
BEZ235 in a wide range of concentrations on EBV ZTA expression
and viral DNA replication were further examined. Rapamycin
exhibited partial inhibition on ZTA expression and EBV DNA
replication even at the concentration of 1000� IC50 (Fig.
3E). In contrast, BEZ235 was able to block ZTA expression
and EBV DNA replication in P3HR-1 cells (Fig. 3F).

Figure 2. Manassantin B blocks AP-1 binding to AP-1–responsive promoter and the BZLF1 promoter. A, Cy5-labeled double-stranded oligonucleotide
containing a consensus AP-1– binding motif; B, double-stranded oligonucleotides of the ZII element of the BZLF1 promoter were incubated with the nuclear
extracts (NE) prepared from TPA/NaB-induced P3HR-1 cells that were treated with manassantin B in various concentrations. Protein DNA complexes were
resolved by EMSA. Unlabeled DNA duplexes were used to determine binding specificity. C and D, nuclear extracts prepared from TPA/NaB-induced P3HR-1 cells
that were not treated with manassantin B were incubated with the same double-stranded oligonucleotides above and manassantin B in different concentra-
tions. Protein DNA complexes were resolved by EMSA. E, 293T cells were co-transfected with pAP-1–promotor–luciferase vector and pRL-TK control vector,
followed by induction with TPA. Manassantin B in a wide range of concentrations was added to the culture medium. The promoter activities were measured
after 36 h post-treatment using a luciferase assay, normalized by Renilla luciferase activity.
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Figure 3. mTOR is critical for EBV lytic replication. A, list of PI3K/AKT/mTOR inhibitors used in this experiment and their targets, IC50 and 10 � IC50. B, each
inhibitor listed in A was added to TPA/NaB-induced P3HR-1 cells at a concentration of approximately 10 � IC50. EBV lytic DNA replication was determined by
real-time PCR. C, associated cytotoxicity of each inhibitor to P3HR-1 cells was assessed by trypan blue staining. D, effect of each inhibitor on EBV ZTA expression
was determined by Western blotting 24 h after treatment. E, wide range concentration of rapamycin (Rapa) was used to examine the effect of the mTORC1
inhibitor on EBV gene expression (ZTA and EA–D) as well as EBV lytic DNA replication. F, wide range concentration of BEZ235 was used to analyze the effect of
the dual inhibitor on EBV gene expression (ZTA and EA–D) as well as EBV lytic DNA replication.
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Manassantin B inhibits mTORC2, AKT, and PKC signaling

Given that mTOR signaling is required for EBV reactivation,
we wondered whether manassantin B inhibits EBV lytic repli-
cation by targeting mTOR signaling. mTOR assembles into two
distinct complexes, designated mTORC1 and mTORC2. To
gain insight into how manassantin B acts on mTOR pathways,
we examined the effect of manassantin B on the activation sta-
tus of the components in mTOR pathways, including AKT,
PKC, MEK, ERK, and p70S6K using Western blot analysis 24 h
post-induction. AKT activation is tightly controlled by PI3K/
mTOR signaling and involves the phosphorylation of Thr-308
in the activation loop or the phosphorylation of Ser-473 in the
hydrophobic motif. As shown in Fig. 4, manassantin B specifi-
cally blocked the phosphorylation of AKT at Ser-473 but not
Thr-308. It is known that phosphorylation of Thr-308 residue
in AKT is accomplished by PDK1, whereas phosphorylation of
Ser-473 residue is mediated by mTORC2 (29). Furthermore,
phosphorylation of another mTORC2 substrate, PKC�, was
also inhibited in the presence of manassantin B. In contrast,

manassantin B showed little effect on mTORC1 activity as the
phosphorylation of p70S6K was not decreased or even slightly
increased by this lignan. Therefore, manassantin B appears to
target mTORC2 and inhibit its kinase activity.

The ERKs1/2 are ubiquitous Ser/Thr kinases that phosphor-
ylate hundreds of substrates. Manassantin B inhibits the phos-
phorylation of ERK1/2. However, the phosphorylation of
MEK1/2 was not affected by manassantin B.

As the end effector of the signal transduction, the phosphor-
ylation of AP-1 (c-Jun) in response to manassantin B treatment
was examined. Results showed that the phosphorylation of
c-Jun at Ser-73 increased in the cells induced with TPA/butyr-
ate, and the induced phosphorylation of c-Jun was inhibited in
the presence of manassantin B in a dose-dependent manner
(Fig. 4).

Knockdown of mTORC2 completely blocks EBV lytic replication

To further confirm that mTORC2 is critically required for
EBV lytic replication and serves as the target of manassantin B,
we silenced the expression of the genes for mTOR, Raptor, and
Rictor using an shRNA knockdown approach. mTOR is a
shared component of mTORC1 and mTORC2, whereas Raptor
and Rictor are specific components of mTORC1 and mTORC2,
respectively. Knockdown of mTOR, which destroyed both
mTORC1 and mTORC2, resulted in a complete shutdown of
ZTA expression (Fig. 5A), EBV lytic DNA replication (Fig. 5D),
and virion production in TPA-induced P3HR-1 cells (Fig. 5E).
Silencing Rictor, which down-regulates mTORC2, also led
to dramatic reduction in ZTA expression (Fig. 5B), viral DNA
replication (Fig. 5D), and virion production (Fig. 5E). In con-
trast, knockdown of Raptor expression, which down-regulates
mTORC1, only reduced ZTA expression to a certain extent
(Fig. 5C) and led to partial inhibition of viral DNA replication
(Fig. 5D) and virion production (Fig. 5E). These results,
together with manassantin B inhibiting the phosphorylation of
Akt-473 and PKC�-657, led to the conclusion that mTORC2 is
crucial for EBV lytic replication, and manassantin B blocks the
EBV reactivation through inhibiting mTORC2 signaling. A
model for the function of mTORC2 in EBV lytic replication and
action of manassantin B (CSC27) is illustrated in Fig. 6.

Discussion

A class of lignans isolated from the roots of S. chinensis was
found to be able to effectively block EBV lytic replication (33). In
this study, we investigated the pharmacological property and anti-
viral mechanism of a representative compound, namely manas-
santin B (CSC27). The study showed that manassantin B blocks
EBV reactivation via preventing the viral switch gene ZTA from
being activated by cellular signaling pathways. Interestingly,
manassantin B targets and disrupts mTOR signaling to achieve the
inhibitory effect on EBV reactivation. Revelation of the pharma-
cology of manassantin B paved the way for exploring the applica-
tion value of this natural lignan in antiviral drug development. Our
findings have shown additional salient features as follows.

(i) This study demonstrated essential roles of mTORC2 sig-
naling in EBV reactivation. EBV can be induced to enter lytic
replication by either phorbol ester (TPA) treatment or B-cell
receptor engagement at the B-cell surface (17, 19, 37). This

Figure 4. Manassantin B inhibits mTORC2–PKC-signaling pathways. The
expression and phosphorylation of AKT, PKC, MEK, ERK, p70S6K, and c-Jun
were examined by Western blot analysis at 24 h post-induction in the absence
and presence of manassantin B.
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Figure 5. mTORC2 is critical for EBV lytic replication. shRNA lentivirus targeting mTOR (A), Rictor (B), and Raptor (C), along with a nontargeting control shRNA
lentivirus (shCtr), were transduced into P3HR-1 cells. The effects of the shRNA on each target gene and EBV ZTA gene expression were determined by Western
blotting. D, cells stably expressing mTOR, Raptor, Rictor, and control shRNAs were induced by TPA and NaB for lytic viral replication. EBV lytic DNA replication
was evaluated at 48 h post-induction by qRT-PCR as described. E, EBV virion production was assayed 5 days after induction as described under “Experimental
procedures.”

Figure 6. Signaling network of mTORC2 that leads to activation of PKC pathway and reactivation of latent EBV. The mTORC2–PKC–AP-1–ZTA as
well as mTORC2–AKT–ATF/CREB–ZTA axes are critical for EBV reactivation, and manassantin B (CSC27) blocks EBV reactivation by inhibiting mTORC2
kinase activity.
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study revealed the involvement of mTORC2 in TPA-mediated
EBV lytic replication, which can be blocked by manassantin B
(Fig. 1B). We also showed that manassantin B can inhibit anti-
IgG–induced EBV lytic replication in Akata cells (Fig. 1C), sug-
gesting that both TPA and B-cell receptor engagement-medi-
ated EBV reactivation are likely to share or merge into the same
pathway, mTORC2 signaling, and ultimately lead to EBV lytic
replication. It has been reported that B-cell receptor-mediated
EBV lytic replication in Akata cells is regulated by mTORC2
(38). Therefore, the study on manassantin B pharmacology
revealed a crucial role of mTORC2 signaling in EBV lytic repli-
cation as follows. (a) Stimuli activate mTORC2 that phosphor-
ylates AKT at Ser-473 and PKC� at Ser-657. (b) Active PKC–
AP-1 signaling leads to activation of ZTA and RTA, which
initiates EBV lytic replication cascade (Fig. 6). On the other
side, manassantin B inhibits mTORC2 kinase activity and
blocks the mTORC2–PKC–AP-1–ZTA pathway, thereby halt-
ing the EBV reactivation from latency.

(ii) The findings that the mTORC2–PKC–AP-1 axis is abso-
lutely required for EBV reactivation and that manassantin B can
block EBV reactivation validated mTORC2 as an effective drug
target for EBV-associated diseases. EBV is an important patho-
gen responsible for a number of human diseases and cancers.
Although much of the EBV-induced pathology has been attrib-
uted to viral latency, the importance of EBV lytic replication in
viral pathogenicity has been increasingly recognized. Evidence
is emerging that reactivation of lytic virus and the lytic activator
protein ZTA is associated with tumorigenesis and autoimmune
diseases (13, 14, 39, 40). EBV lytic replication is directly linked
to chronic active EBV infection (CAEBV), oral hairy leukopla-
kia in immunosuppressed individuals, and an increased risk
of EBV-associated nasopharyngeal carcinoma (41–46). There-
fore, inhibition of EBV lytic replication may be a strategy for
treatment of some EBV-associated diseases. Although a few
drugs have been developed against �- and �-herpesviruses (47,
48), there are no effective drugs available to treat �-herpesvirus
(KSHV and EBV) infections. Therefore, efficacious drugs
against EBV are very much needed. Identification of the natural
lignin manassantin B as an effective antiviral agent that inhibits
EBV reactivation with minimal cytotoxicity provides a candi-
date compound or lead for further development of a new drug
to treat EBV-associated diseases.

(iii) mTOR signaling is known as a master regulator of home-
ostasis, which controls most anabolic and catabolic processes
in response to nutrients and growth factors. Two distinct
complexes, mTORC1 and mTORC2, correspond two major
branches of signal output. mTORC1 has been well-character-
ized in terms of its structure, regulation, and function, whereas
mTORC2 is less studied. mTOR has been a validated drug tar-
get for cancer treatment. Rapamycin (mTORC1 inhibitor) and
derivatives were approved for treatment of certain cancers but
have been less successful than anticipated (22). Several PI3K/
mTOR dual inhibitors, such as NVP-BEZ235 and VS-5584, are
under clinical trial for cancer therapy, including lymphoma
treatment (49, 50). These drugs have also shown some pro-
mise in preclinical and early clinical trial data but have raised
concerns over dose-limiting toxicities (22). Deregulation of
mTORC2, particularly hyperactivation, has been observed in

many types of human cancers (51, 52). Recent studies in cancer
biology indicate that mTORC2 activity is essential for the transfor-
mation and vitality of a number of cancer cell types, but is less
essential in normal cells (28, 36, 53). Thus, the mTORC2-specific
inhibitor has special value for cancer treatment. Our recent study
showed that mTORC2 is involved in NPC cancer stem cell forma-
tion, and manassantin B is able to inhibit NPC growth in a xeno-
graft mouse model.6 Thus, manassantin B exhibits a unique advan-
tage as an mTORC2 inhibitor to treat EBV-associated cancers by
targeting multiple layers of pathogenesis, i.e. EBV reactivation and
tumorigenesis and exhibiting low cytotoxicity.

Experimental procedures

Cell culture

P3HR-1 cells, an EBV-positive Burkitt’s lymphoma cell line,
were maintained in RPMI 1640 medium supplemented with 5%
fetal bovine serum (FBS, Gibco-BRL). Akata-BX1 cells that carry a
recombinant EBV were cultured in RPMI 1640 medium supple-
mented with 10% FBS. PBMCs were cultured in RPMI 1640
medium supplemented with 10% FBS. The PBMCs were isolated
from human peripheral blood buffy coat samples of healthy volun-
teers, obtained from Guangzhou Blood Centre. Human embry-
onic kidney HEK293T cells were purchased from American Type
Culture Collection (ATCC) and cultured in Dulbecco’s modified
Eagle’s medium supplemented with 10% FBS. All cultures con-
tained penicillin/streptomycin (100 units/ml).

Chemicals and reagents

Manassantin B (CSC27) was isolated from the roots of S. chi-
nensis (33). LY294002, HS173, TGX211, AS252424, CAL101,
AT7867, and BEZ235 were purchased from Medchem Express.
These compounds were dissolved in dimethyl sulfoxide
(DMSO) and diluted to different concentrations before being
added to P3HR-1, 293T cell cultures. The final DMSO concen-
tration in the culture medium was maintained below 0.5%. TPA
and NaB were purchased from Sigma-Aldrich. Goat anti-hu-
man IgG was purchased from Hua Yang Zheng Long. mTOR
pathway antibody sampler kit, phospho-Akt pathway antibody
sampler kit, and antibodies against phospho-p44/42 MAPK
(ERK1/2) (Thr-202/Tyr-204), p44/42 MAPK (ERK1/2), phos-
pho-MEK1/2 (Ser-217/221), phospho-p70S6K (Thr-389),
p70S6K, and phospho-PKC� (Ser-643) were obtained from Cell
Signaling Technology. Antibody against �-actin was purchased
from Sigma-Aldrich. Antibodies against PKC�, phospho-
PKC� (Ser-657), phospho-PKC� (Ser-638), EBV ZTA, and
EBV EA–D were obtained from Santa Cruz Biotechnology.

Quantification of intracellular EBV genomic DNA

P3HR-1 cells were induced with 20 ng/ml TPA and 0.3 mM

NaB for EBV reactivation. Akata–BX1 cells were induced with 8
�g/ml IgG. Three hours post-induction, CSC27 or other com-
pounds in dilutions were added to cells. Cells were harvested at
48 h post-induction, and total DNAs were purified using Qia-
gen DNeasy kit. EBV genomic DNA copy number was quanti-
fied by real-time PCR on a LightCycler 480 instrument (Roche

6 N. Zhu and Y. Yuan, unpublished data.
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Applied Science) using primers specified for EBNA1 (forward
primer 5�-CATTGAGTCGTCTCCCCTTTGGAAT-3� and
reverse primer 5�-TCATAACAAGGTCCTTAATCGCATC-
3�). The intracellular viral genomic DNA in each sample was
normalized to GAPDH using primers directed to GAPDH
(forward 5�-ACATCATCCCTGCCTCTAC-3� and reverse 5�-
TCAAAGGTGGAGGAGTGG-3�). The half-maximal inhibi-
tory concentration (IC50) values of compounds were deter-
mined from a dose-response curve of EBV DNA content values
from TPA-induced and chemically-treated cells. The viral
DNA contents with those of uninduced cells subtracted were
divided by those of the control cells with no drug treatment and
then represented on the y axes of dose-response curves: y axis
value � (TPAX � noTPAX)/(TPA0 � noTPA0), where X is any
concentration of the drug, and 0 represents nondrug treatment.
The IC50 on viral DNA synthesis for each compound was cal-
culated with the aid of GraphPad Prism software.

Quantification of extracellular EBV genomic DNA

Five days post-induction, P3HR-1 and Akata-BX1 culture
media were collected, and extracellular virions were pelleted
from the medium supernatant. To remove contaminating DNA
outside viral particles, the concentrated viruses were treated
with turbo DNase I (Ambion) at 37 °C for 1 h, followed by pro-
teinase K digestion. Virion DNA was extracted with phenol/
chloroform, precipitated with ice-cold ethanol, and then dis-
solved in Tris-EDTA (TE) buffer. The EBV genomic copy
numbers were determined by real-time PCR, and the values
were corrected as described above. The half-maximal antiviral
effective concentration (EC50) values were calculated from
dose-response curves with GraphPad Prism software.

Cytotoxicity assay

P3HR-1, Akata-BX1, and PBMCs were treated with CSC27
in a wide range of concentration for 2 days. The viability of cells
was assessed by counting trypan blue–stained cells using a
Countstar instrument. The half-maximal CC50 was calculated
from dose-response curves with Graph-Pad Prism software.

Western blotting assay

Cells were lysed with lysis buffer (50 mM Tris-HCl, pH 7.4,
150 mM NaCl, 1% NP-40, 10% glycerol, 40 mM �-glycerophos-
phate, 30 mM sodium fluoride, 5 mM EDTA, protease inhibitor
mixture (Roche Applied Science), 1 mM sodium orthovana-
date). Lysates were subsequently denatured, resolved by SDS-
PAGE, and transferred to nitrocellulose membranes. Mem-
branes were reacted with the primary antibodies. Anti-IR Dye
800 or Dye 680 anti-rabbit or anti-mouse IgGs were used as the
secondary antibodies. The images were visualized using the LI-
COR Odyssey system. All immunoblottings were repeated at
least twice, and representative images are shown.

EMSA

Two double-stranded oligonucleotides were synthesized,
one containing consensus AP-1– binding site (5�-CGCTTGA-
TGACTCAGCCGGAA-3�) and the other harboring the ZII
region of the ZTA promoter (5�-ACGTCCCAAACCATGAC-
ATCACAGAGGAGGCT-3�). Oligonucleotides were end-la-

beled with 3�Cy5 before being annealed to form dsDNA frag-
ments. Nuclear protein extracts were prepared using low-salt
buffer (10 mM HEPES-KOH, pH 7.5, 0.05% NP40, 10 mM KCl,
1.5 mM MgCl2, 0.1 mM EDTA, 0.5 mM DTT, 1 mM PMSF, pro-
tease inhibitor mixture, 1 mM NaF, 1 mM NaNO3) and high-salt
extraction buffer (20 mM HEPES-KOH pH 7.5, 500 mM KCl, 1.5
mM MgCl2, 0.2 mM EDTA, 10% glycerol, 0.5 mM DTT, 1 mM

PMSF, protease inhibitor mixture, 1 mM NaF, 1 mM NaNO3).
EMSAs were carried out in EMSA reaction buffer (10 mM Tris-
HCl, pH 7.5, 50 mM KCl, 0.5 mM MgCl2, 1 mM DTT, 2.5% glyc-
erol) for 30 min at 15 °C. The DNA–protein complexes were
resolved on 5.5% native polyacrylamide gels at 4 °C, 120 V for
1 h, and then scanned with an Odyssey imager (LI-COR). Unla-
beled DNA fragments of ZII and AP-1 were used to determine
binding specificity.

Luciferase assay

The promoter–reporter plasmid pAP-1-luc was provided by
Dr. Ersheng Kuang at Sun Yat-sen University. 293T cells grown
in 48-well plates were co-transfected with 50 ng of pAP-1-luc
and 5 ng of pRL-TK using Lipofectamine 2000 reagent (Life
Technologies, Inc.). 6 h after transfection, cells were treated
with TPA. The pRL-TK plasmid expressing Renilla luciferase
was used as an internal control. 36 h post-induction, the lucif-
erase assay was performed with Promega’s dual-luciferase assay
kit. Each sample was duplicated, and each experiment was
repeated at least three times.

shRNA-mediated gene silencing

The shRNA lentiviral vectors targeting mTOR (Clone ID:
NM_004958.2-5477s1c1; NM_004858.2-7897s1c1), Raptor
(Clone ID: NM_020761.1-4689s1c1; NM_020761.1-4325s1c1),
and Rictor (Clone ID: NM_152756.2-2620s1c1; NM_152756.3-
5273s21c1) were purchased from Sigma-Aldrich. Lentiviral
particles were prepared by transfecting HEK293T cells with
pLKO.1-shRNA plasmid (or pLKO.1-shControl plasmid),
miR8.2 packing plasmid, and pCMV–VSV-G plasmid in the
ratio of 4:3:1. Media containing lentiviruses were harvested at
48 and 72 h and subjected to ultracentrifugation to concentrate
the lentiviruses. Then the concentrated lentiviruses were used
to transduce P3HR-1 cells, followed by selection under 2 �g/ml
puromycin for a week. The knockdown efficiencies were veri-
fied by Western blot analysis.
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