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Abstract

An ever-evolving understanding of autism spectrum disorder (ASD) pathophysiology necessitates 

that diagnostic standards also evolve from being observation-based to include quantifiable clinical 

measurements. The multisystem nature of ASD motivates the use of multivariate methods of 

statistical analysis over common univariate approaches for discovering clinical biomarkers relevant 

to this goal. In addition to characterization of important behavioral patterns for improving current 

diagnostic instruments, multivariate analyses to date have allowed for thorough investigation of 

neuroimaging-based, genetic, and metabolic abnormalities in individuals with ASD. This review 

highlights current research using multivariate statistical analyses to quantify the value of these 

behavioral and physiological markers for ASD diagnosis. A detailed discussion of a blood-based 

diagnostic test for ASD using specific metabolite concentrations is also provided. The 

advancement of ASD biomarker research promises to provide earlier and more accurate diagnoses 

of the disorder.

1 Introduction

The diagnosis of autism spectrum disorder (ASD) is based upon its core symptoms of social/

communication deficits and restricted, repetitive behaviors.1 The Centers for Disease 

Control and Prevention recently estimated the prevalence of ASD among eight-year-old 

children in the United States to be 1 in 59 for the year 2014,2 a prevalence that has been on a 

consistent upward trajectory since the 1990s and increasing significantly compared to other 

notable childhood disorders.3 Similarly, work based upon the 2016 National Survey of 
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Children’s Health found the prevalence of parent-reported ASD to be 1 in 40 among 

children and adolescents aged 0–17 years.4 The resulting economic burden of ASD in the 

United States, accounting for medical costs, caretaking, and lost productivity time, is 

estimated at $268 billion annually.5,6 Globally, ASD has the highest burden among all 

mental disorders in children younger than five years of age.7

The current understanding of ASD is that it is caused by a combination of genetic 

predisposition and environmental contributors.8–10 However, specific knowledge of the 

biological factors contributing to ASD etiology is generally lacking. As a result, there are no 

clinically accepted biomarkers for ASD diagnosis and diagnosis is instead made after 

clinical observation of an individual’s behavior. Assessment based solely on behavior 

introduces substantial variation into the timing of ASD diagnosis, which is reflected in the 

median diagnosis age being approximately 52 months in the United States2 despite stable 

diagnoses being possible by as early as 18 months.11 The absence of biomarkers can be at 

least partially attributed to researchers’ focus on searching for individual measurements that 

can identify the disorder; however, due to the heterogeneity and the multisystem nature of 

ASD, such univariate approaches are unlikely to provide satisfactory diagnostic results.12 

The use of multivariate analyses is likely necessary to uncover meaningful biological 

relationships for ASD diagnosis.

This review aims to provide a summary of recent advances towards the development of 

multivariate biomarkers for ASD that hold promise for achieving higher diagnostic accuracy 

and/or lower ages of diagnosis than the current standards for diagnosis. Towards this goal, 

we will present the current social and behavioral standards for ASD diagnosis and their 

shortcomings. We will then discuss progress made in developing multivariate biomarkers 

from several domains of quantitative measurements, including behavioral, neuroimaging, 

genetic, and metabolic measurements, and how these biomarkers can contribute to earlier 

and more accurate ASD diagnosis, risk prediction, and prediction of treatment outcomes. 

This discussion will be made in the context of differentiating individuals with ASD from 

typically developing (TD) individuals as most studies in the literature focus on this 

comparison, although differentiating individuals with ASD from those with developmental 

delay (DD) or siblings with ASD would also represent relevant clinical goals.

2 The Current Standard of ASD Diagnosis

The diagnostic criteria for ASD are defined in the American Psychiatric Association’s 

Diagnostic and Statistical Manual of Mental Disorders (DSM) and the World Health 

Organization’s International Classification of Diseases (ICD), both of which are outlined 

below in further detail. In addition to these definitions, ASD screening tools exist to promote 

awareness and early evaluation. Many of these tools are built off the diagnostic definitions 

and/or documented behavioral characteristics.13

2.1 ASD Diagnostic Definitions

The American Psychiatric Association (APA) maintains diagnostic criteria for ASD in the 

DSM. The current edition of the DSM (DSM-V) was published in 2013 and defines the two 

primary criteria for ASD diagnosis as (1) social communication/interaction deficits and (2) 
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the presentation of restricted and repetitive patterns of behavior.1 In addition, symptoms 

must appear during early development, cause functional impairments, and not be explained 

by other developmental delays/disabilities. By nature of it being a spectrum disorder, a 

diagnosis of ASD encompasses the symptoms of several disorders (autism, Asperger’s 

syndrome, pervasive developmental disorders (PDDs) not otherwise specified, and 

childhood disintegrative disorder) that were considered separate diagnoses under the 

previous edition of the DSM (DSM-IV-TR).14 All individuals previously diagnosed with any 

singular pervasive developmental disorder are considered diagnosed with ASD. It has been 

estimated that ASD prevalence was 4% higher with the DSM-IV-TR definition compared to 

the current definition in the DSM-V.2

Similarly, the World Health Organization (WHO) maintains the ICD, which is currently on 

its 10th revision (ICD-10) and defines/codes all diseases, disorders, and health-related issues. 

Contrasting with the “spectrum” designation of the DSM-V, the ICD-10 does not define 

ASD as its own disorder; instead, its constituent disorders are defined individually and are 

each coded separately.15 However, these disorders are all still characterized by socialization 

and communication deficits as well as repetitive patterns in behavior, with symptoms usually 

presenting before three years of age.

2.2 Diagnostic Assessments for ASD

The Autism Diagnostic Interview-Revised (ADI-R)16 and Autism Diagnostic Observation 

Schedule (ADOS)17 are two gold-standard instruments used to aid with the diagnosis of 

ASD. Many diagnostic instruments for ASD other than the ADI-R and ADOS also exist, but 

a comprehensive discussion of those tools is outside the scope of this review (and we refer 

the reader to other articles for detailed reviews of these instruments18–22). Overall, the 

variety of tools available in addition to the diverse backgrounds of evaluators (e.g., 

developmental pediatrician, psychiatrist, neurologist, etc.) contributes to a highly 

heterogeneous process for ASD diagnosis.

2.3 Trends in Diagnosis Associated with Current Practices

The subjective nature of behavioral diagnoses as well as the heterogeneity of the disorder 

has contributed to significant variation in the age of ASD diagnosis. Studies have shown 

stable diagnoses at 36 months,23 24 months,24,25 and even 18 months.11,26 However, the 

median age of first ASD diagnosis in the United States is currently estimated at 52 months,2 

and is estimated at 55 months in the United Kingdom.27 The presence of comorbid 

conditions introduces variation into the clinical manifestations of ASD, and may affect the 

age at which ASD’s core symptoms are recognized depending on which conditions are 

present (for example, epilepsy may increase the index-of-suspicion for ASD while anxiety 

may lower it).28 Earlier diagnoses are commonly found in boys, in children with an IQ of 70 

or less, and in children with developmental regression.29 Diagnosis age is also affected by a 

child’s individual developmental trajectory30,31 as well as sociodemographic and 

socioeconomic factors.32–35 Lower maternal education and being a racial minority may 

contribute to a delay in age of ASD diagnosis.34 Higher maternal age is associated with 

younger age of first evaluation, although dependent on other sociodemographic variables.35
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2.4 Treatment Impact Due to an Earlier ASD Diagnosis

It is imperative that ASD diagnoses be made as early as possible to expedite the onset of 

treatment. Behavioral therapies36–38 and parent-mediated intervention,39 among other forms 

of intervention,40,41 have been found to offer short- and/or long-term improvement to ASD-

related symptoms. Earlier intervention also provides substantial economic savings in the 

long-term.42,43 Later ASD diagnosis minimizes or eliminates these benefits, prompting the 

development of more reliable tests to improve the early identification of ASD. The timing of 

ASD diagnosis is also critical as it can affect children’s eligibility for certain services such 

as early intervention programs and Individualized Education Plans.44

3 Shifting the Paradigm of ASD Diagnosis

ASD is widely acknowledged across the literature as being a multisystem disorder,45,46 with 

its pathophysiology engaging the central nervous system,47 immune system,48 and digestive 

system,49 among others. However, the current criteria for ASD diagnosis fail to consider 

these far-reaching effects in the body and ignore a large number of potentially valuable 

markers that could be used to aid in diagnosis and/or screening. Attaining more accurate 

tests for identifying ASD will require diagnostic standards to reflect the disorder’s systemic 

nature and consider factors beyond its behavioral presentation. Determination of an 

objective, quantifiable, and biologically-based metric for assessing ASD status, which so far 

has not been achieved with wide agreement, would signify an important step in this 

direction. Biomarker-based diagnoses would also be of particular value for high-risk 

individuals/groups where ASD is more likely to be present, and for populations where ASD 

diagnoses may be missed more frequently (e.g., girls and certain ethnic groups).

3.1 The Opportunity for ASD Biomarkers

The National Institutes of Health Biomarkers Definitions Working Group define a biomarker 

as “a characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention.”50 Examples of biomarkers already commonly used in medical practice are 

glycated hemoglobin levels for diagnosing diabetes,51 blood cholesterol levels for assessing 

heart disease risk,52 and mutations in the BRCA genes that signal increased risk of 

developing breast cancer.53 Biomarkers have use not only for diagnosing individuals that 

currently have a condition or disorder, but also for assessing severity of symptoms, 

predicting future risk of developing the condition before onset of symptoms, evaluating 

outcomes of clinical treatment, and even identifying subgroups of individuals with the 

condition.12 A reliable biomarker or set of biomarkers for ASD, which should be attainable 

given the disorder’s biological origins, would help to fill in existing gaps in the biological 

knowledge needed to achieve these degrees of assessment.

Recent explosions in “big data” and “open data” have granted researchers access to vast 

amounts of information that hold great potential for identifying biomarkers for ASD 

diagnosis.54–56 This has greatly accelerated the collection and sharing of genetic, metabolic, 

and physiological measures (to name a few) that could provide key insights into specific 

factors contributing to ASD’s etiology. However, with these expansive volumes of data also 
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come large amounts of noise that may cloud the interpretation of potentially useful patterns. 

It is therefore necessary for data miners, in close collaboration with clinicians,57 to 

determine methods for filtering out the unimportant data from those that can be useful for 

development of potential biomarkers.

3.2 The Role of Multivariate Statistical Modeling in Biomarker Discovery

Historically, many studies have reported biomarker efficacy of a single measurement, such 

as a metabolic concentration, in terms of the difference in population mean or median 

between a group of individuals with ASD and a control group. This difference is usually 

quantified statistically by a p-value or a measure of effect size. While such univariate 

comparisons are useful for identifying biological systems that may be abnormal in ASD, 

they do not provide information on the value that a measurement may have for diagnosing 

individuals with ASD; that is, the amount of separation between the groups is not reflected 

in the univariate statistics. A statistically significant difference between ASD and control 

(e.g., TD, DD, or siblings with ASD) groups does not necessarily reflect a measurement that 

can be used for accurately identifying individuals from the two groups (see Figure 1 for an 

illustration). In this regard, researchers should be cautious when reporting on potential 

biomarkers of ASD from univariate statistics alone.

Analyses aiming to quantify a biomarker’s usefulness for diagnosing individuals with ASD 

should instead focus on individual-level statistics rather than differences at the population 

level.12 In this regard, multivariate statistical modeling offers tremendous potential for 

biomarker discovery as compared to traditional univariate approaches. As the name 

suggests, multivariate methods incorporate the contributions of multiple variables at once 

and model the relationships between these variables to yield an output statistic/score for 

each individual. Given the complex multisystem nature of ASD, a viable biomarker for the 

disorder is unlikely to come from a single measurement alone. Multivariate models are more 

likely to be able to capture relationships, both known and unknown, between systems and 

variables that are abnormal in ASD pathophysiology.58

A subset of multivariate statistical techniques aims to maximize separation between 

individuals in two or more groups. These model types are useful for classification tasks in 

which the goal is to distinguish individuals with ASD from TD individuals (or DD 

individuals or siblings with ASD if desired) and are commonly applied in machine learning 

algorithms. Furthermore, multivariate and machine learning models can typically be 

categorized as either supervised or unsupervised techniques. Supervised techniques are those 

that make use of a priori group assignments (i.e., ASD or TD status) to identify patterns for 

classifying individuals; examples of commonly used supervised techniques include support 

vector machines (SVMs),59 logistic regression,60 discriminant analysis,61 and classification 

and regression trees (CART).62 On the other hand, unsupervised techniques use no a priori 
group information and rely solely on commonalities and differences in the data to assign 

individuals to groups. Principal component analysis,63 k-means clustering,64 and self-

organizing maps65 are some examples of unsupervised learning methods.
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3.3 Reporting of Biomarker Efficacy

In a majority of cases, multivariate models either produce a binary decision for an 

individual’s predicted class membership or output a continuous score or probability of class 

membership that can be used to decide on a threshold for classification. When an individual 

is evaluated by a binary classifier, four outcomes are thus possible. If the individual has ASD 

and is correctly identified as having ASD, the diagnosis is a true positive; however, if the 

same individual is incorrectly identified as being TD, the diagnosis is a false negative. 

Similarly, a diagnosis of a TD individual is either a true negative if they are diagnosed as 

TD, or a false positive if they are diagnosed with ASD. Since adjusting the classification 

threshold requires balancing a trade-off between true and false diagnoses, selection of the 

threshold is usually dependent on the distribution of classifier scores in addition to desired 

clinical goals.

A number of metrics exist for reporting performance of a binary classifier. Perhaps the most 

basic is the percentage accuracy, which is simply the number of true positives plus true 

negatives divided by the total number of individuals. Sensitivity can be calculated as the 

number of true positives divided by the total number of individuals with ASD, while 

specificity is the number of true negatives divided by the total number of TD individuals. 

Positive predictive value (PPV) and negative predictive value (NPV) are calculated as the 

number of true positives divided by the total number of positive diagnoses and the number of 

true negatives divided by the total number of negative diagnoses, respectively. A receiver 

operating characteristic (ROC) curve can also be constructed to graphically represent the 

diagnostic performance of a classifier; this curve plots the sensitivity against one minus the 

specificity for a number of different classification thresholds, where both axes vary from 0 to 

1. The area under the ROC curve (AUROC) is a commonly reported metric to summarize the 

diagnostic value of a medical classifier66 and its possible values typically range from 0.5 to 

1, where a value of 0.5 indicates an uninformative classifier and a value of 1 is associated 

with a perfect classifier. Visual examples of these metrics are provided in Figure 2.

Clinical studies often involve a large number of measurements being recorded for relatively 

few participants. With these types of data, it is easy to develop a model that uses many 

variables to perfectly classify a small number of individuals. However, such a small sample-

to-variable ratio increases the likelihood of overfitting the model to the data set such that its 

generalizability to new data is minimal. Overfitting is a possibility at any sample size but is a 

greater concern when the number of samples is small. It is thus essential when reporting 

results to provide some form of validation of classifier performance on a data set that was 

not used to develop the model. This can be done by implementing a cross-validation 

procedure in which a subset of samples are held out from training and reserved for model 

validation67 or, in the ideal case, by evaluating the classifier on an entirely new set of 

validation data that was not involved in model development. Prediction accuracy on the 

validation set can be expected to be lower than that in the training set but should still be 

sufficiently high to suggest meaningful patterns for further investigation in larger clinical 

data sets.
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4 Multivariate Approaches for Behavioral Biomarkers

Diagnostic instruments such as the ADI-R and ADOS have shown consistent reliability in 

terms of their sensitivity and specificity for identifying individuals with ASD. However, 

being that these types of tools contain a number of questions covering various domains of 

behavior, it is possible that a number of these evaluated behaviors provide information 

unnecessary for ASD diagnosis or even information that could lead to an inaccurate 

diagnosis in some cases.68 There are also complex patterns in behavior that cannot be 

measured by behavioral interviews or observation alone that may contribute to a more 

accurate ASD diagnosis. With these considerations in mind, a number of recent studies in 

the literature have aimed to use multivariate models to reduce the number of behavioral 

screening items needed for ASD diagnosis and/or obtain more advanced measures of 

behavior that can be used to bolster the diagnostic ability of current instruments.69

4.1 Prediction of Future ASD Diagnosis from Early Behavioral Evaluations

One of the primary concerns associated with early ASD diagnoses is their long-term stability 

at older ages,70 as a false positive diagnosis is almost as undesirable as a delayed diagnosis. 

In light of this, it would be of great interest to determine subsets of items from established 

diagnostic instruments that could be used to simplify the process of early ASD diagnosis. 

The potential benefits of such an approach are highlighted in a study of high-risk children 

from the Baby Siblings Research Consortium that reported children with early false positive 

diagnoses to have behavioral test scores that were overall similar to the scores of children 

with early false negative diagnoses, but that might have differed in individual symptoms that 

would have been able to differentiate these two groups.26 Screening for ASD using only the 

most important behavioral items may thus provide a more precise indicator of future ASD 

diagnosis in addition to reducing time and costs associated with screening.

The search for early behavioral markers of ASD has prompted several studies, summarized 

in Table 1, to use multivariate techniques to identify subsets of behavioral symptoms that are 

most predictive of a later ASD diagnosis. In most cases, these studies feature high-risk 

children who have an older sibling with ASD, where the risk of ASD diagnosis in these 

high-risk children is an estimated 18.7%71 and is substantially greater than the overall 

population risk of 1.7%.2 The use of infants in some studies also introduces uncertainty as it 

can be difficult at this age to differentiate behaviors associated with normal development 

from those associated with ASD (this distinction may not become possible until nine 

months30 to twelve months72 of age). Relying on behavioral markers alone to predict a 

future ASD diagnosis thus requires that the child be old enough for parents and/or clinicians 

to make this distinction accurately, making usage of such markers somewhat 

counterproductive when the objective is to identify ASD as early as possible.

4.2 Reducing the Number of Behavioral Measurements Needed for ASD Diagnosis

Identification of a subset of the most important items from instruments such as the ADOS or 

ADI-R has the potential to streamline the ASD diagnosis process and may also increase 

diagnostic accuracy. Such an approach also holds promise for the development of mobile 

ASD screening tools that can assist with diagnosing ASD on a large scale.73–76 Table 2 lists 
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recent studies that have determined the most important items from behavioral evaluations 

and used these items to identify individuals with ASD. The availability of data repositories 

containing behavioral score sheets has allowed for many of these studies to analyze larger 

samples of participants compared to the aforementioned studies aiming to predict future 

ASD diagnoses. In addition to the analyses involving greater numbers of samples, the 

classification results are generally more accurate, which is not unexpected given that the 

most important behaviors chosen for classification are likely those that originally contributed 

to the ASD diagnosis being made. The greater accuracy can also likely be explained by the 

reduced complexity of diagnosis, relatively speaking, compared to predicting a future 

diagnosis from current behavioral symptoms. It would be of interest to evaluate how well the 

behaviors identified by these ASD diagnosis studies could be used to predict future 

diagnoses.

The push to reduce the number of variables required for ASD diagnosis has encouraged the 

development of novel computational techniques for identifying the most important variables. 

One computational intelligence method, known as Variable Analysis, analyzes 

measurements from ASD screening tools and considers correlations between variables and 

classes (ASD or TD) while minimizing correlations between variables. This technique has 

been shown to maintain good accuracy in children, adolescents, and adults assessed with the 

Autism Spectrum Quotient.77 Multilayer fuzzy cognitive maps are another approach that 

offer promise for improving ASD diagnoses based on subsets of ADOS and ADI-R 

measures. This type of model has shown results comparable in accuracy to other machine 

learning algorithms.78 Speech and psychoeducational therapy outcomes in preschoolers with 

ASD have also been successfully predicted by using artificial neural networks to determine 

the behavioral variables most important for assessing treatment response.79

4.3 Motor Skills, Eye Gaze and Vocal Patterns as Diagnostic Markers

Delays in early motor skills may become apparent in children with ASD before the 

stereotypical deficits in behavior and socialization become recognizable,80–83 introducing 

motor skill development as a potential early indicator of the disorder.84 Similarly, 

quantifiable eye gaze and attention patterns in young children may serve as objective 

indicators of ASD85 before the presentation of behavioral symptoms, as early as two to six 

months of age.86,87 Studies recently investigating these behavioral domains for ASD 

diagnosis are summarized in Table 3 and show a wide range of outcomes, both in terms of 

the numbers/types of key features used and the classification accuracies achieved. Other 

studies have performed classification with eye tracking and attention metrics using only 

univariate methods.88,89 Additionally, changes in eye gaze have been found to be accurate 

indicators of improvement in social attention resulting from behavioral intervention90 and 

may be useful for clinical trials,91 thus reinforcing the potential of these patterns as early 

biomarkers of ASD.

Given that the diagnostic criteria for ASD include socialization and communication deficits, 

it stands to reason that abnormal vocalization patterns may also serve as early biomarkers for 

the disorder.92 To this end, a number of studies have aimed to use quantified vocalization 

patterns to differentiate individuals with ASD from TD individuals. According to a recent 
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review and meta-analysis,93 however, the methods and features used for multivariate 

analysis vary greatly between such studies, limiting overall interpretation of the predictive 

value of these patterns.

4.4 Behavioral Patterns from Toy Interactions

Technology, in a broad sense, plays a central role in many modalities of potential ASD 

diagnosis beyond those evaluating motor, eye gaze, and vocal patterns. Using technology to 

quantify features that can assist with diagnosis allows for controlled and consistent 

interactions among multiple patients in different environments; this offers value for 

conditions like ASD where guided interactions may be difficult.94,95 Sensors embedded into 

toys, in particular, can provide quantifiable measures of behavior, such as gesture forces and 

kinematic pattern data, that are not offered by parental or clinical evaluation and that are 

easily related to traditional ASD diagnostic criteria. For example, multivariate analysis of 

social and behavioral features taken from the interactions between children and a robotic 

parrot has distinguished ASD from TD with exceptional accuracy.96 Evaluating children’s 

patterns of playing with a toy car97 and smart tablets98 have also shown promise for ASD 

screening. This approach to screening would be feasible for a wide number of smart toys and 

opens the door for creative ways to characterize behaviors associated with ASD.

5 Medical Imaging for ASD Diagnosis

Neuroimaging may hold many avenues for ASD biomarker discovery.99,100 Compared to 

their TD peers, children with ASD have been found to have different features of 

neuroanatomy such as brain morphometry, neurochemical components, and structural and 

functional connectivity, many of which correspond to brain regions associated with socio-

emotional, communication, and restricted repetitive behaviors related to an ASD diagnosis.
99 Socio-emotional areas, also known as the “social brain,” exhibit abnormalities in 

individuals with ASD and include areas for analysis of facial expression and eye gaze, 

emotional processing, theory of mind, and imitation and understanding.101 Restricted 

repetitive behaviors are associated with abnormalities within the default mode network.102 

The advancement of pattern recognition, machine learning, and neuroimaging techniques 

has facilitated the development of novel image-based tools for identifying ASD.103

Although the advancement of neuroimaging has elucidated many mysteries of ASD 

pathophysiology, research is still far from obtaining a coherent and complete picture of 

associated brain anomalies.101 Every neuroimaging technique uses different methodologies 

and relies on unique signal sources, frequency bands, spatial resolutions, neural parameters, 

and analysis techniques accompanied by respective limitation and noise artifacts.101,104 Few 

studies have investigated the use of multimodal neuroimaging strategies, for which improved 

methods of integration are needed.104 Even within the same imaging technique, inconsistent 

findings occur from distinct methodological variables such as field of view and type of data 

set.105 Development of uniform protocols have emerged to ameliorate these disparities, 

which only leads to the constant push for improvement of accepted practices and ever 

changing “best technique.”101 There is also a question as to the cause of brain anomalies and 

whether they can be attributed to comorbid conditions (such as epilepsy) rather than ASD.
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106 While certain imaging and functional techniques such as magnetic resonance imaging 

(MRI), electroencephalography (EEG), and magnetoencephalography (MEG) are universally 

available, some may be restricted to scientific investigations107 and inappropriate for clinical 

use.

5.1 Structural MRI

Structural MRI analysis examines brain connectivity, or the existence of abnormal 

anatomical connections such as axonal or synaptic arrangement. It also provides a non-

invasive measurement of white matter tracts, white and grey matter regions, regional 

thickness, and brain volume. A review on structural MRI noted a common finding of 

increased growth in total cortical volume, as well as subcortical brain regions and 

cerebellum in children with ASD.99 Interestingly, large brain volumes are not noted in adults 

with ASD compared to their TD peers; instead, brain volume growth is suggested to slow 

from child to adulthood.108

Studies using structural features for ASD classification are outlined in Table 4. A significant 

concern with many of these studies is the large number of features required (relative to the 

number of samples) to achieve higher accuracies. As a general rule, the number of samples 

should be several factors greater (typically by a factor of five or ten) than the number of 

features used; however, this ratio is far less in many of the listed studies, and in some cases 

the number of features comes close to exceeding the number of samples. This raises the 

possibility of overfitting to the available data, which is a concern not necessarily alleviated 

by cross-validation or validation on a small independent set, and brings into question the 

reproducibility of some results. Further evaluation of these feature sets on much larger 

cohorts of participants would help to alleviate concerns of overfitting.

Two studies listed utilize multimodal imaging, including both structural and functional MRI; 

for further discussion on functional MRI classifications we direct the reader to these studies.
109,110 Within their methodologies, Libero et al. also used 1H-magnetic resonance 

spectroscopy, a non-invasive imaging technique that estimates specific brain metabolites 

through their chemical composition.110 Another study tested multiple machine learning 

techniques, examining regional thickness-based and volume-based classification through 

SVM, multilayer perceptron, functional trees, and logistic model trees.111 Both thickness- 

and volume-based classifications yielded their best results through the use of logistic model 

trees with overall better separation from using thickness-based classification.

For further review on using neuroimaging to predict brain disorders, we direct the reader to a 

recent summary of MRI-based ASD classification studies that discusses how many studies 

suffer from overfitting, small sample size, non-optimized classifier parameters, and other 

limiting factors.112

5.2 Functional MRI

MRI images that provide information on the functional connectivity of the brain (functional 

MRI, or fMRI) focus on patterns of activity via connective pathways. fMRI experiments 

commonly use structured cognitive tasks, such as social stimuli (faces and bodies).113 

However, these studies show varying results in part due to the many challenges they face, 
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including limited current diagnostic standards, small sample size, and validation results.114 

Diffusion tensor imaging studies local connectivity and white matter tracts, providing details 

on functional features through common methodologies of tractography and voxel-wise 

analysis. The two most common features measured are directionality (quantified by 

functional anisotropy) and diffusion (quantified by mean diffusivity). Studies commonly 

show decreased functional anisotropy99,115 and increased mean diffusivity99 in the brains of 

individuals with ASD compared to their TD peers. Tract-based spatial statistics is an 

emerging diffusion tensor imaging methodology that overcomes voxel-wise dependency on 

smoothing kernels.99

MRI studies focus heavily on individuals without intellectual disability, also referred to as 

high-functioning individuals, who can withstand long, motionless procedures as well as 

receive and follow instructions.116 Resting state functional connectivity MRI (rs-fMRI) 

studies require no conscious thought-process and allow children to be scanned while asleep. 

rs-fMRI measures correlated and anti-correlated signals and, in children with ASD, 

commonly finds altered functional connectivity in the default mode network, hyper-

connectivity in subcortical regions, and under-connectivity between cortical regions.99 In 

addition to recruiting children with ASD able to undergo an MRI scan, sample sizes for 

these studies are negatively affected by the cost of the technique.

A list of fMRI (including rs-fMRI) studies employing multivariate analysis to classify ASD 

can be found in Table 5. The accuracy results achieved in some of these studies are notably 

high, even after cross-validation, while others only showed modest potential for accurate 

ASD diagnosis. However, like with the structural MRI studies, there are legitimate concerns 

of overfitting with several of these fMRI studies due to their low sample-to-feature ratios. In 

addition to these classification studies, the potential of using fMRI with multivariate analysis 

for predicting treatment outcomes in individuals with ASD has been investigated.117,118

5.3 ABIDE Studies

The major limitation of small sample size in neuroimaging studies has been combatted by 

recent research collaboratives. The Autism Brain Imaging Data Exchange (ABIDE),119 

ARIANNA,120 and National Database for Autism Research121 are research data repositories 

dedicated to collecting and sharing data to promote ASD research. Our review of these 

repositories will be limited to ABIDE, which collects rs-fMRI images from multiple 

research sites. However, these data sets are subject to between-site differences in 

experimental procedures,122 and even with increasing training set sizes, many studies report 

accuracies of approximately 60–70%.123–128 Various techniques, including deep learning, 

have been investigated to improve classification accuracy using the ABIDE data sets and are 

listed in Table 6. Despite the greater numbers of samples used in these studies, several rely 

on extremely large numbers of features that bring into question the reproducibility of their 

findings; reducing the sizes of these feature sets is thus essential to assess clinical 

applicability of these approaches.
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5.4 Brain Activity Measures

Functional and effective connectivity can also be measured through EEG and MEG. 

Measurements from EEG have shown differentiating activity for children with ASD, 

specifically beta and theta waves.129 MEG has been used to determine local and long-range 

functional connectivity, analyzed using a multiple regression model, and was found to 

correlate with age in pre-adolescent children with ASD.130 A list of recent ASD 

classification studies using EEG and MEG can be found in Table 7; the classification 

accuracies after cross-validation in several of these studies are notable considering the small 

numbers of features used. Functional near-infrared spectroscopy has also been used to 

observe differentiating visual and auditory brain responses in children later diagnosed with 

ASD.131

While EEG and MEG are less expensive techniques compared to MRI, they have their own 

sets of limitations. Connectivity measures from EEG/MEG are estimated to be proportional 

to the physiological connectivity, and there are also differences in head and brain size 

between children with ASD and their TD peers that may bias results (e.g., producing 

dissimilar distances between sensors and electrical signal propagation); EEG and MEG are 

also limited to short-range connectivity and are unable to evaluate long-range functional 

connectivity.132

6 Genetic and Epigenetic Markers of ASD

Evidence points to ASD having a strong genetic component, with one meta-analysis 

estimating heritability of the disorder to be 52%.8 The increased rate of recurrence in 

younger siblings of affected children71 further indicates a genetic role in ASD etiology. 

Evaluation of genetic variants is a common approach to studying the role of specific genes in 

ASD,133 but this approach only provides a statistical indicator of ASD risk134 and yields no 

diagnostic information about the disorder. More physiologically dynamic measures of ASD 

status can be found by analyzing gene expression patterns via transcriptomics,135–137 which 

measures RNA levels and is more indicative of the functional consequences of genetic 

variation in ASD. Potential contributions from a wide array of environmental factors in 

ASD9 are also suggestive of a role for epigenetic regulation whereby the expression of 

certain genes is influenced by external triggers. It naturally follows that such genetic and 

epigenetic information may provide value for screening and diagnosis of ASD.

6.1 Gene Expression

Transcriptomics studies involve measuring levels of RNA, typically messenger RNA, to 

quantify gene expression in body tissues. These measurements are commonly taken from 

blood, providing a straightforward path for clinical translation to an ASD biomarker. Table 8 

summarizes recent studies that use multivariate analyses to distinguish individuals with ASD 

from TD individuals on the basis of their transcriptomics patterns. Classification accuracies 

in these studies are generally high and the sources of study data are diverse, with some 

studies making use of data repositories while others take their own measurements from 

specific cell types. Like with the neuroimaging studies, however, there are concerns here 

about small sample-to-variable ratios in several studies.
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6.2 Epigenetic Activity

Epigenetic mechanisms reflect environmental contributions to a disorder/disease state and 

may offer further potential for ASD biomarkers.138 One particular focus of research in this 

area is microRNAs, which interact with messenger RNA to provide post-transcriptional 

regulation of gene expression.139–141 Although microRNA is not as widely analyzed as gene 

expression, quantification of microRNA provides a unique aspect to studying how genetic 

factors can be leveraged for ASD diagnosis. Recent papers looking at the use of microRNA 

for diagnosis are reviewed in Table 8, with blood and saliva samples having both been used 

with varying levels of success. Everything else equal, a saliva-based test would be preferred 

as it would be less invasive than a blood test and would likely be more appealing for younger 

patients. The investigation by Hicks et al.142 using salivary RNA levels (including, but not 

limited to, microRNAs) for identification of ASD obtained good accuracy in a validation set 

with a relatively large number of participants; these results are encouraging for the use of 

epigenetic markers in diagnostic testing.

7 Metabolic Markers

Abnormalities in metabolism may underlie the etiology of ASD40 and have become a 

popular focal point of ASD biomarker research. Metabolite studies measured through 

peripheral tissue are relatively inexpensive, allow large sample sizes and time-dependent 

sampling, and are well-suited for a clinical setting.143 However, a barrier to effective 

implementation is the need to control for environmental/external factors such as diet. The 

following subsections discuss metabolite studies collected from peripheral tissues and their 

roles in the development of ASD biomarkers.

7.1 Blood Metabolites

Analysis of blood is minimally invasive and can provide information on various types of 

cellular components. While DNA, RNA, and proteins have unique structural compositions, 

metabolite structure and physical properties vary and no single technique exists to 

comprehensively measure them.144 Concentrations of blood metabolites are also closely 

influenced by diet, medication, metabolite solubility, and possible hemolysis during sample 

processing, necessitating a level of rigor in controlling for these factors. Some studies have 

looked at discrimination of ASD and TD individuals from blood metabolites using univariate 

approaches145–147 with varying degrees of success. Studies using multivariate analysis to 

further characterize blood-based metabolic patterns for ASD classification are listed in Table 

9. There is clearly substantial variation in the types of metabolites measured and the 

classification accuracies offered by analysis of these metabolites. Plasma markers from two 

particular metabolic pathways, the folate-dependent one-carbon metabolism and 

transsulfuration pathways, have shown exceptional promise as potential ASD biomarkers 

and are discussed in further detail later in this review.

In a retrospective immunoassay study, logistic regression was able to differentiate children 

diagnosed with ASD using 15 serum biomarkers measured from newborn blood spot 

specimens.148 Although newborn blood spot analysis represents an opportunity at birth for 

predicting a future ASD diagnosis, it also faces many sources of uncertainty spanning from 
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the pre-analytical stage of blood collection to the actual analysis of the blood. Among these 

are the quality of the dried blood spots, choice of collection card, variation in sample quality 

due to biological factors (such as viscosity and hematocrit level), and contamination.149 

Additionally, metabolic profiles at birth may not necessarily be reflective of abnormal 

metabolism/pathophysiology that manifest later in life and a future ASD diagnosis may also 

depend upon environmental factors during early childhood that an analysis at birth cannot 

take into account. If all or even some of these factors can be accounted for, however, then 

newborn blood spots may be a promising route for early identification of ASD cases.

Plasma amino acids150 and erythrocyte fatty acids151 have frequently been suggested as 

possible biomarkers of ASD. However, methodological variation across studies raises 

uncertainty regarding the conclusions of these investigations. In addition, previous studies by 

the authors employing multivariate analyses152,153 have reported little diagnostic value from 

these measures. Therefore, specific discussions of these measurements have been excluded 

from this review.

7.2 Excretory Metabolites

Metabolomics studies may also analyze the composition of the body’s excreted waste 

products. Compared to other discussed approaches, the collection of urinary and fecal 

samples is relatively easy and noninvasive. However, the compositions of these samples are 

mostly reflective of compounds leaving the body, and can be difficult to interpret with 

respect to abnormal metabolic processes in the body. For example, it may not always be 

clear whether an elevated concentration of a fecal metabolite indicates increased bodily 

intake and/or production of this metabolite, overactive excretion of this metabolite, or a 

combination of factors. Similar to blood metabolites, excretory measures are also influenced 

by dietary and lifestyle factors that should be controlled for to aid interpretability. The 

results of studies using multivariate analysis to study urinary and fecal metabolites indicate a 

reasonable ability to classify ASD from these measurements (Table 10), albeit in small 

samples of participants and with a limited range of multivariate techniques used.

8 Diagnostics Involving Folate-Dependent One-Carbon Metabolism 

(FOCM)

Folate, not naturally synthesized in animals, activates folate-dependent one-carbon 

metabolism (FOCM). Folate is important for biosynthesis of purine and thymidine, 

maintaining amino acid homeostasis by converting glycine to serine and synthesizing 

methionine, maintaining epigenetics through homocysteine re-methylation, and producing 

and consuming redox species.154 The transsulfuration (TS) pathway is intertwined with 

FOCM and is responsible for the production of glutathione, a primary antioxidant that 

assists with maintaining intracellular redox status and removal of toxins from the body.155 

Abnormalities within these pathways, specifically a reduced ratio of S-adenosylmethionine 

to S-adenosylhomocysteine (suggesting decreased capacity for DNA methylation) and an 

increased ratio of oxidized to reduced glutathione (indicating greater levels of intracellular 

oxidative stress), have been closely associated with ASD pathophysiology and also may 

offer value towards a diagnostic marker.156
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8.1 Discovery of Folate-Dependent One-Carbon Metabolism (FOCM) Biomarkers

One of the most promising candidates to date for a clinical ASD biomarker is a blood-based 

test using FOCM/TS measurements. In a previous study by the authors, seven FOCM/TS 

measures from the Integrated Metabolic and Genomic Endeavor study157 related to 

methylation and redox status were used to distinguish 83 children with ASD from 76 TD 

children (age 3–10) with 97% classification accuracy, 98% sensitivity, and 96% specificity 

via discriminant analysis with leave-one-out cross-validation.158 This work also uncovered 

significant correlations between FOCM/TS metabolites and measures of adaptive behavior, 

suggesting a connection between metabolic abnormalities and observed symptoms. An 

independent investigation analyzed the same data set while implementing a more advanced 

method of selecting measurements for classification and achieved similar classification 

results, providing validation of the initial findings.159

A follow-up study using baseline FOCM/TS data for 154 children/adolescents with ASD 

(age 2–17) from three clinical trials160–162 was able to validate a trained classifier with up to 

88% sensitivity163; measures of specificity were not evaluated since this validation set did 

not include TD participants. Using the same sets of clinical trial data, it was further found 

that multivariate analysis of changes in FOCM/TS measurements could be used to 

characterize changes in adaptive behavior resulting from three metabolic interventions 

(methylcobalamin with low-dose folinic acid, tetrahydrobiopterin, or high-dose folinic acid).
164 Multivariate analysis of folate-related markers collected from a separate study in China 

also showed promise for diagnosing ASD.165 Measurements from FOCM and TS describing 

DNA methylation and redox status may thus offer value not just as diagnostic markers, but 

also as indicators of treatment outcome. Despite the success of these studies, it still remains 

to be determined whether these measurements would be able to predict a future ASD 

diagnosis in infants and toddlers, which should be the true goal of any biomarker for the 

disorder. Furthermore, it needs to be investigated how results hold up for classifying children 

with ASD from children who have non-ASD related developmental delays. A current barrier 

to clinical translation of a FOCM/TS blood test is that certain measurements require 

specialized equipment and/or methods to quantify that are currently not widely available in 

clinics. It would be desirable to identify a subset of these measurements that yield 

reasonable diagnostic value while being easily measured by a standard blood panel.

8.2 Accounting for Epidemiological Prevalence

To successfully translate a classifier’s performance in a study cohort to its clinical potential 

in the population at large, the epidemiological prevalence of the investigated disorder or 

disease must be accounted for.166 In studies of psychiatric disorders, such as ASD, where 

the prevalence in the study population is often much greater than the true epidemiological 

prevalence, a classifier will likely underestimate the number of false positives and yield a 

relatively inflated number of false negatives. While this will have no effect on classifier 

sensitivity and specificity, it will provide an inaccurate representation of the positive and 

negative predictive values for the proposed diagnostic test. Obtaining a more accurate 

estimate of a classifier’s clinical utility requires that the Bayes’ adjusted positive and 

negative predictive values (PPVadj and NPVadj, respectively) be calculated166 by 

incorporating the true population prevalence:
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PPV adj = sensitivity×prevalence
sensitivity × prevalence + 1 − specificity × 1 − prevalence (1)

NPV adj = specificity × 1 − prevalence
1 − sensitivity × prevalence + specificity × 1 − prevalence (2)

Most studies do not account for epidemiological prevalence and instead limit their 

calculation of PPV and NPV to the study population, thus introducing the aforementioned 

uncertainty regarding applicability of the classifier to the overall population. Including only 

a population of individuals at high risk for the disorder in the study can help to alleviate this 

concern, as the study prevalence is likely to be more reflective of the epidemiological 

prevalence in a high-risk population. Furthermore, in a clinical setting it would likely be 

impractical, both logistically and economically, to test everyone from the overall population 

for a disorder; thus, limiting the classifier’s scope to just high-risk individuals or individuals 

where there are already concerns regarding their development would improve overall 

translation potential. That being said, there would still be value in understanding the 

prevalence of the disorder in the high-risk study population compared to the high-risk 

population at large.

For classifiers with exceptional separation between ASD and TD study cohorts, lack of 

adjustment for epidemiological prevalence will likely have a less noticeable impact when 

translated to a clinical setting. Introducing a greater proportion of participants without the 

disorder when the two groups are already well-separated may yield relatively minor changes 

to the positive and negative predictive values. In cases where this does not hold, however, the 

threshold for classification can be moved to optimize the trade-off between these two values. 

To help demonstrate this point, Figure 3A shows the result of classification (with leave-one-

out cross-validation) from FOCM/TS measurements presented by Howsmon et al.158 At the 

original classification threshold, the sensitivity, sensitivity, PPV, and NPV are all high 

(Figure 3B); however, with a 1.7% overall prevalence of ASD, the PPVadj and NPVadj 

become 30.0% and 99.9%, respectively. Clearly such a low PPVadj is unsatisfactory, but by a 

slight adjustment of the classification threshold a more optimal PPVadj and NPVadj can be 

obtained while maintaining good sensitivity and specificity (Figure 3C). At this new 

adjusted threshold, which correctly classifies all TD participants, the PPVadj is 100% and the 

NPVadj is 99.9% (with 95% sensitivity and 100% specificity, compared to 98% sensitivity 

and 96% specificity with the original threshold). As can be seen from these numbers, 

adjusting the threshold is a viable approach for trading off classification accuracy with 

desired clinical outcomes such as higher PPVadj.

8.3 Heterogeneous Presentation of ASD and Biomarker Discovery

One of the points often brought up in the context of discussions of biomarkers and 

diagnostic tests for ASD is the very heterogeneous presentation of the disorder. It is 

becoming widely-acknowledged that there is no one underlying cause for all the different 

presentations of ASD and that a variety of different, often still unknown, gene-

environmental interactions are responsible for ASD. However, identifying biomarkers does 
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not require identification of one or more root causes of ASD. Instead, biomarkers and 

diagnostic tests rely on correlations of measured quantities with the disorder and 

understanding causation, while highly desirable, is not required. Developing diagnostic 

procedures based upon biomarkers is thus a much weaker condition than determining one of 

the root causes underlying ASD. For example, it is conceivable that most of the children 

diagnosed with ASD have certain abnormalities in their metabolic function even if they 

show very different presentations of ASD, which may also result from different underlying 

causes; the data from the papers cited in this section certainly indicate that this seems to be 

the case.

Another point to consider for future work in this field is that children with ASD may show 

certain abnormalities in their metabolic function that are similar to those exhibited by 

children with other non-ASD-related conditions. To address this point, it is essential to not 

just perform comparisons of a cohort diagnosed with ASD against their TD peers, but also to 

perform comparison of children with ASD against children who have non-ASD-related 

developmental delays. Only such a comparison will be able to determine if the metabolic 

abnormality found when investigating ASD versus TD cohorts are indeed unique to ASD or 

may be indicative of a more general developmental delay (that may or may not be related to 

ASD).

9 Prediction of ASD Risk based on Maternal Factors

Maternal factors affect the risk of having a child with ASD. As previously discussed, the 

sibling recurrence rate of ASD is approximately 11-fold greater than the general population 

risk.71 Therefore, already having a child with ASD is an indicator for being at higher risk of 

having another child with ASD (high-risk mothers) compared to their peers who have TD 

children (low-risk mothers). An emerging area of ASD biomarker research involves the 

application of multivariate analysis to maternal measures, such as metabolite concentrations 

and medical history, to predict the risk of the child being diagnosed with ASD. The number 

of studies in this area are limited, but warrant discussion. It should be noted that the timing 

of the maternal assessment (prenatal versus postnatal, for example) would likely affect the 

findings of these types of assessments.

9.1 Maternal Blood Metabolites

The Markers of Autism Risk in Babies — Learning Early Signs (MARBLES) study is a 

prospective study investigating environmental factors in high-risk pregnant mothers that 

contribute to a child being eventually diagnosed with ASD.167 A recent study compared 

twenty FOCM/TS measurements of pregnant high- and low-risk mothers from blood 

samples at each trimester using multivariate analysis168 with the goal of identifying stronger 

predictors of child ASD risk. In this study, a single set of metabolites was found to predict if 

a mother belonged to the high- or low-risk category with 80–90% accuracy. These results 

present a step towards determining a maternal blood test for ASD risk in a child, and 

emphasize the importance of the FOCM and TS pathways in ASD pathophysiology. 

However, further validation of these findings is required.
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In another study, maternal serum levels of vitamin D were found to be moderately predictive 

of the risk of a pregnant mother having a child with ASD.169 Among several serum 

measurements evaluated at the first trimester of pregnancy, decreased 25 hydroxyvitamin D3 

was the strongest indicator of whether the child would later be diagnosed with ASD (on a 

univariate basis), yielding a sensitivity of 76% and specificity of 74%.

9.2 Maternal Medical History

The application of multivariate analysis to health surveys and interviews may allow for 

further probing of individuals’ medical characteristics. One study interviewed mothers of 

children with ASD and TD children to investigate various risk factors for ASD, such as 

parental ages at conception or chemical exposures during pregnancy, and used these data to 

train an artificial neural network for differentiating ASD and TD children.170 Employing an 

optimized form of two-fold cross-validation, this study attained a mean overall accuracy of 

80% for classifying the two groups. Such analysis can also provide insight into the maternal 

factors that contribute to the risk of ASD.

10 Conclusions

Despite the many promising advances being made towards a viable multivariate biomarker 

for ASD, there still remain several barriers that need to be carefully considered. One of these 

is cost; although state-of-the-art screening tools may offer the greatest opportunity for early 

identification of ASD, these tools must also be affordable if they are to be successfully 

implemented on a large scale. Second, the heterogeneous, “spectrum” nature of ASD means 

that limiting classifier/biomarker designations to “having ASD” or “not having ASD” leaves 

a large grey area where the unique risk profiles of different children are not accurately 

represented171; different subtypes of ASD172 may have different biomarkers, limiting the 

utility of a one-size-fits-all approach to diagnostic testing. Factors such as gender 

differences, the presence of comorbid conditions, and changes in brain function throughout 

life, and how these affect biomarker interpretation, also need to be eventually addressed.142 

For the majority of the reviewed studies, their findings also still require validation in 

independent cohorts, which would ideally come from separate research groups. 

Governmental approval of these approaches and assessing their feasibility in a clinical 

setting, not just a research setting, also pose significant challenges to successful 

implementation.

Although each of the approaches covered in this review have their individual advantages, 

they also have their individual disadvantages. For example, behavioral assessments are 

established, inexpensive, and the least invasive but are the most subjective and require 

specialized training. Neuroimaging approaches provide arguably the most complete picture 

of brain structure/function but are expensive and especially reliant on patient compliance; 

the link of brain structure to behavior will also need to be better understood. Transcriptomic 

and metabolic blood tests are fast and inexpensive but may require specialized laboratory 

tests and may be difficult to interpret without behavioral context. Implementing a 

multimodal approach to diagnosis may help to alleviate some of the respective concerns with 

these approaches while still capitalizing on their unique advantages.
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Fig 1. 
Example data for an arbitrary quantity measured in 25 individuals with autism spectrum 

disorder (ASD) and 25 typically developing (TD) individuals. Values for both groups are 

sampled from normal distributions with equal variances. Comparison of group means 

(denoted by the solid horizontal lines) with Student’s t-test yields a p-value of 0.033, 

indicating a statistically significant difference at a significance level of α = 0.05. However, 

the difference in group means is not sufficient for meaningful classification due to the 

overlap in the distributions of the measurements of the ASD and TD groups.
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Fig 2. 
Accuracy metrics for the example data provided in Figure 1. (A) Confusion matrix yielded 

by classifying any sample/individual with a value less than 1.6 as having autism spectrum 

disorder (ASD). The number of true positives (TP), true negatives (TN), false positives (FP), 

and false negatives (FN) are used to calculate the sensitivity/true positive rate (TPR=TP/[TP

+FN]), specificity/true negative rate (TNR=TN/[TN+FP]), positive predictive value 

(PPV=TP/[TP+FP]), and negative predictive value (NPV=TN/[TN+FN]). The overall 

classification accuracy is (TP+TN)/(TP+TN+FP+FN) = 62%. (B) Receiver operating 

characteristic (ROC) curve (solid line) plotting the false positive rate (1 – specificity) against 

the true positive rate (sensitivity) as the threshold for classification is varied. The area under 

this ROC curve (AUROC) is 0.68. An AUROC of 0.5 indicates a completely uninformative 

classifier and would be associated with a curve like the dashed line pictured.
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Fig 3. 
Classification with leave-one-out cross-validation using seven measurements from the 

folate-dependent one-carbon metabolism (FOCM) and transsulfuration (TS) pathways as 

reported by Howsmon et al.158 (A) Classifier scores for participants in the autism spectrum 

disorder (ASD) and typically developing (TD) cohorts. (B) Confusion matrix when 

individuals having a classifier score less than 0.26 (the original classification threshold) are 

predicted as having ASD. Assuming a 1.7% prevalence of ASD in the general population, 

the Bayes’ adjusted positive and negative predictive values, indicated in parentheses, are 

30.0% and 99.9%, respectively. (C) Confusion matrix when individuals having a classifier 

score less than 0 (the adjusted classification threshold) are predicted as having ASD. The 

Bayes’ adjusted positive and negative predictive values using this threshold, indicated in 

parentheses, are 100% and 99.9%, respectively.
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Table 1.

Summary of recent and representative studies predicting future ASD diagnosis through multivariate analysis of 

early behavioral evaluations. Reported sample sizes are the numbers used for classification and do not 

necessarily reflect the study’s total sample size.

Reference Study Participants Experimental Methods Key Features Multivariate 
Technique Key Results

Macari et al. 
(2012)173

13 infants that were 
later diagnosed with 
ASD and 71 that were 
not

Evaluated behaviors at 12 
months that would be 
predictive of ASD diagnosis 
at 24 months

Seven individual 
items from the 
ADOS-Toddler

Classification 
tree

Classified ASD versus 
non-ASD with 85% 
sensitivity and 96% 
specificity

Chawarska et al. 
(2014)174

157 high-risk infants 
that were later 
diagnosed with ASD 
and 562 that were not

Assessed behaviors at 18 
months that would be 
predictive of ASD diagnosis 
at 36 months

Six individual 
items from the 
ADOS

CART Classified ASD versus 
non-ASD with 83% 
training accuracy and 
predicted with 77% 
validation accuracy

Barbaro and 
Dissanayake 
(2017)24

77 children at risk for 
ASD identified from a 
community-based 
sample

At 24 months, assessed 
ASD status and behavior 
that would predict retention 
or loss of ASD diagnosis at 
48 months

Four items total 
from the ADOS 
and Mullen 
Scales of Early 
Learning

Logistic 
regression

Classified the stable 
group 96% correctly and 
the crossover group 
44% correctly

Bussu et al. 
(2018)175

32 high-risk infants that 
were later diagnosed 
with ASD and 129 that 
were not

Examined behavior and 
developmental measures at 
8 and 14 months to predict 
ASD status at 36 months

Motor scores at 8 
months and daily 
living score at 14 
months

Least-squares 
SVM

Best AUROCs for 
classifying ASD versus 
non-ASD at 36 months 
were 0.65 and 0.71 
using the 8-month and 
14-month measures, 
respectively
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Table 2.

Summary of recent and representative studies aiming to reduce the number of behavioral measures needed for 

ASD diagnosis through multivariate analysis. Reported sample sizes are the numbers used for classification 

and do not necessarily reflect the study’s total sample size.

Reference Study Participants Experimental Methods Key Features Multivariate 
Technique Key Results

Wall et al. 
(2012)176

891 ASD and 75 non-
spectrum children for 
training; 1976 ASD 
and 1000 simulated 
controls for validation

Used ADI-R data from three 
ASD data repositories

7 of 93 items from 
the ADI-R

Alternating 
decision tree, 
chosen from 15 
algorithms

99.9% training 
accuracy, with both 
99.9% sensitivity and 
specificity when 
predicting the 
validation set

Wall et al. 
(2012)177

612 ASD and 15 non-
spectrum children for 
training; 446 ASD and 
1000 simulated 
controls for validation

Used ADOS data from three 
ASD data repositories; pilot 
study for Duda et al. 
(2014)178

8 of 29 items from 
ADOS Module 1

Alternating 
decision tree, 
chosen from 16 
algorithms

100% training 
accuracy, with 99.7% 
sensitivity and 94% 
specificity when 
predicting the 
validation set

Duda et al. 
(2014)178

2333 ASD and 283 
non-spectrum children

Used ADOS data from five 
ASD data repositories

ADOS Module 1 
feature set from 
Wall et al. (2012)177

Alternating 
decision tree

Validated with 98% 
sensitivity and 77% 
specificity against the 
original ADOS

Wilson et al. 
(2014)179

58 male adults with 
ASD and 66 TD 
controls

Administered three ASD 
evaluations and nine 
neuropsychological tests/
tasks

Ten variables from 
performed tasks, 
plus verbal IQ and 
performance IQ

SVM Achieved 81% 
accuracy, 78% 
sensitivity, and 85% 
specificity with leave-
two-out cross-
validation

Kosmicki et 
al. (2015)180

362 (510) ASD and 
282 (93) non-spectrum 
individuals for 
training; 1089 (1924) 
ASD and 66 (214) 
non-spectrum for 

validation
†

Used data from five ASD 
data repositories; evaluated 
score sheets separately for 
ADOS Module 2 and 
Module 3

9 of 28 behaviors 
from Module 2 and 
12 of 28 behaviors 
from Module 3

Logistic 
regression 
(Module 2); 
radial kernel 
SVM (Module 
3)

99% sensitivity and 
89% specificity for 
Module 2 validation; 
98% sensitivity and 
97% specificity for 
Module 3 validation

Bone et al. 
(2016)181

1264 verbal 
individuals with ASD 
and 462 verbal 
individuals without 
ASD

ADI-R and Social 
Responsiveness Scale items 
taken from a data repository

Five behavioral 
codes total from the 
two assessments

SVM Classified individuals 
below (above) age 10 
with 89% (87%) 
sensitivity and 59% 
(53%) specificity

Cohen et al. 
(2016)182

535 children with 
ASD and 125 children 
without ASD

PDD Behavior Inventory 
forms collected from five 
sites

Six domain scores 
of PDD Behavior 
Inventory, parent-
reported

CART 82%/83%/86% 
sensitivity and 
88%/87%/93% 
specificity for training/
testing/validation

Levy et al. 
(2017)183

1319 (2870) ASD and 
70 (273) non-ASD 

children
†

ADOS Module 2 and 
Module 3 score sheets from 
four ASD data repositories

Nine items from 
Module 2 and nine 
from Module 3

Logistic 
regression; 
SVM

Classified with 
89%/95% sensitivity 
and 90%/87% 
specificity for Module 
2/3

Feczko et al. 
(2018)184

47 children with ASD 
and 58 TD children

Had children perform seven 
tasks related to information 
processing

34 behavioral 
variables related to 
performed tasks

Random forest Achieved 73% 
classification accuracy, 
63% sensitivity, and 
81% specificity

†
Numbers outside (inside) parentheses indicate sample sizes for analyzing ADOS Module 2 (Module 3).
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Table 3.

Summary of recent and representative studies aiming to distinguish individuals with ASD from TD individuals 

using multivariate analysis of motor skill development and eye gaze/tracking patterns. Reported sample sizes 

are the numbers used for classification and do not necessarily reflect the study’s total sample size.

Reference Study Participants Experimental Methods Key Features Multivariate 
Technique Key Results

Motor Patterns

Crippa et al. 
(2015)185

15 children with ASD 
and 15 TD children

Recorded kinematics data 
while children performed 
a reach-to-drop task

Seven kinematic 
features

SVM Mean sensitivity/
specificity of 
82%/89% with leave-
one-out cross-
validation

Dehkordi et al. 
(2015)96

35 children with ASD 
and 16 TD children

Evaluated children’s 
social and behavioral 
interactions with a robotic 
parrot

Six behavioral 
features

Random forest Classified with a 
maximum of 90% 
accuracy using seven-
fold cross-validation

Anzulewicz et 
al. (2016)98

35 children with ASD 
and 45 TD children

Recorded kinematic and 
gesture data from children 
playing with tablet 
computers

262 motor features 
derived from the 
tablet sensor data

Regularized 
greedy forest, 
among other 
techniques

Achieved a maximum 
average AUROC of 
0.93 with ten 
repetitions of ten-fold 
cross-validation

Li et al. 
(2017)186

14 adults with ASD 
and 16 TD controls

Derived kinematic 
parameters from a hand 
movement imitation task

Nine kinematic 
parameters (from two 
imitation conditions)

SVM, among 
others

Achieved 87% 
accuracy, 86% 
sensitivity, and 88% 
specificity using a 
two-step cross-
validation method

Moradi et al. 
(2017)97

25 children with ASD 
and 25 TD children

Evaluated movement 
characteristics of children 
playing with a smart toy 
car

Five movement 
characteristics

Polynomial 
kernel SVM

Averaged 93% 
sensitivity and 76% 
specificity with five-
fold cross-validation

Eye Gaze/Tracking

Stahl et al. 
(2012)187

19 high-risk infants 
with a sibling with 
ASD, 17 control 
infants with no ASD 
in family

Recorded EEG and 
measured event-related 
potentials associated with 
eye gaze processing

36 event-related 
potential (18 direct 
gaze, 18 averted 
gaze) metrics

SVM Classified high-risk 
versus control with 
64% sensitivity and 
64% specificity

Fujioka et al. 
(2016)188

21 adolescents and 
adults with ASD and 
35 TD controls

Measured percentage of 
eye fixation time on 
objects displayed on a 
screen

Discrimination 
parameters from 
three visual areas of 
interest

Discriminant 
analysis

Classified with 81% 
sensitivity and 80% 
specificity

Liu et al. 
(2016)189

29 children with ASD 
and 58 TD children

Analyzed children’s eye 
movements during a 
facial recognition task

Histograms of visual 
attention to 
partitioned facial 
regions

Radial basis 
function kernel 
SVM

With leave-one-out 
cross-validation, 
achieved 89% 
accuracy, 93% 
sensitivity, and 86% 
specificity

Frazier et al. 
(2018)190

91 youth diagnosed 
with ASD and 110 
non-ASD youth

Recorded eye tracking 
patterns of participants 
while viewing a video 
containing 44 visual 
stimuli

Gaze metrics 
correlating 
significantly with 
ASD diagnosis

Multiple linear 
regression with 
ROC analysis

Achieved AUROC of 
0.92 and 0.86 in the 
training set (75% of 
samples) and 
validation set (25%)

Wan et al. 
(2018)191

37 children with ASD 
and 37 TD children

Measured children’s 
fixation time on ten areas 
of interest while watching 
a short video of a young 
female speaking

Fixation time on the 
body and mouth

SVM Classified with 85% 
accuracy, 87% 
sensitivity, and 84% 
specificity
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Table 4.

Summary of recent and representative studies aiming to distinguish individuals with ASD from TD individuals 

using multivariate analysis of structural MRI. Reported sample sizes are the numbers used for classification 

and do not necessarily reflect the study’s total sample size.

Reference Study Participants Experimental Methods Key Features Multivariate 
Technique Key Results

Ecker et al. 
(2010)192

22 adults with ASD 
and 22 TD adults

Used structural MRI to 
obtain images of grey and 
white matter regions

Voxels from grey 
matter images

SVM Classified with 77% 
sensitivity and 86% 
specificity using leave-
two-out cross-validation

Jiao et al. 
(2010)111

22 children with 
ASD and 16 TD 
children

Measured regional 
thickness and volumetric 
morphometry of 66 brain 
structures via MRI

7 thickness-based 
features and, 
separately, 16 
volume-based 
features

Logistic model 
tree, among 
others

Attained 95%/77% 
sensitivity and 75%/69% 
specificity for best 
thickness-/volume-based 
classification with ten-
fold cross-validation

Ingalhalikar et 
al. (2011)193

45 children and 
adolescents with 
ASD and 30 TD 
controls

Computed region-based 
fractional anisotropy and 
mean diffusivity maps for 
diffusion tensor imaging 
data

18 out of 352 
fractional 
anisotropy/mean 
diffusivity features

Radial basis 
function kernel 
SVM

Achieved 80% accuracy, 
74% sensitivity, and 
84% specificity with 
leave-one-out cross-
validation

Ingalhalikar et 
al. (2014)109

75 children with 
ASD and 37 TD 
children

Evaluated two functional 
tasks using MEG and 74 
structural white matter 
features using diffusion 
tensor imaging

Two MEG features 
and 12 diffusion 
tensor imaging 
features

Ensemble of 
classifiers fused 
with weighted 
aggregation

Averaged 73% 
sensitivity and 86% 
specificity with five-fold 
cross-validation; 87% 
accuracy on testing set

Wee et al. 
(2014)194

58 children and 
adolescents with 
ASD and 59 TD 
controls

Used structural MRI to 
evaluate cortical-related 
morphology (regional and 
interregional features)

Combination of 
regional and 
interregional 
features

Multi-kernel 
SVM

Achieved an average of 
96% sensitivity and 97% 
specificity with two-fold 
cross-validation

Gori et al. 
(2015)195

21 children with 
ASD and 20 TD 
children

Calculated brain features 
and global volumes of 
brain compartments from 
structural MRI data

314 region of 
interest features 
from the grey 
matter sub-region

SVM Averaged 0.74 AUROC 
with leave-pair-out 
cross-validation

Jin et al. 
(2015)196

40 infants at high 
risk for ASD and 40 
low-risk infants

Derived connectivity 
features from multiscale 
connectivity networks 
measured through MRI; 
compared high- and low-
risk participants

Multiscale regions 
of interest and 
diffusion statistics

Multi-kernel 
SVM

Used nested five-fold 
cross-validation to 
obtain averages of 76% 
accuracy and 0.80 
AUROC

Libero et al. 
(2015)110

19 adults with ASD 
and 18 TD adults

Analyzed brain 
morphometry from 
structural MRI, diffusion 
tensor imaging, and proton 
magnetic resonance 
spectroscopy data

Fractional 
anisotropy, radial 
diffusivity, and 
cortical thickness

Decision tree Classified participants 
with 92% accuracy after 
leave-one-out cross 
validation

Hazlett et al. 
(2017)197

34 (145) infants at 
high risk for ASD 
with (without) a later 
diagnosis of ASD

Evaluated brain volume 
and surface area metrics 
from MRI at 6 and 12 
months to predict ASD at 
24 months

Regional surface 
area, intracranial 
volume, cortical 
thickness, and sex

Three-stage 
deep neural 
network

With ten-fold cross-
validation, predicted 
ASD with 88% 
sensitivity and 95% 
specificity

Shen et al. 
(2017)198

47 (174) infants at 
high risk for ASD 
with (without) a later 
diagnosis of ASD

Quantified cerebrospinal 
fluid and lateral ventricle 
volume from MRI data 
collected at 6, 12, and 24 
months to predict ASD 
diagnosis at 24 months

Extra-axial 
cerebrospinal fluid 
volume

Balance-boosted 
trees ensemble 
algorithm

Predicted ASD with 
66% sensitivity and 68% 
specificity after 25-fold 
cross-validation; similar 
results on a validation 
set
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Table 5.

Summary of recent and representative studies aiming to distinguish individuals with ASD from TD individuals 

using multivariate analysis of functional MRI data. Reported sample sizes are the numbers used for 

classification and do not necessarily reflect the study’s total sample size.

Reference Study Participants Experimental Methods Key Features Multivariate 
Technique Key Results

Deshpande et 
al. (2013)199

15 adolescents and 
young adults with ASD 
and 15 TD controls

Gathered fMRI data to study 
causal connectivity among 
different brain regions 
relating to Theory of Mind

19 features 
related to 
effective 
connectivity 
paths

SVM Classified participants 
with maximum 96% 
accuracy, 97% 
sensitivity, and 95% 
specificity

Uddin et al. 
(2013)200

20 children with ASD 
and 20 TD children

Collected rs-fMRI and 
structural MRI data, then 
identified ten connectivity 
components associated with 
functional brain networks

Salience network 
connectivity 
features

Logistic 
regression

Achieved 75% 
sensitivity and 80% 
specificity with leave-
one-out cross-validation; 
also validated on an 
independent cohort

Plitt et al. 
(2015)201

59 young adults with 
ASD and 59 TD 
controls; replication set 
with 89 ASD and 89 
TD controls

Collected rs-fMRI data and 
defined three sets of regions 
of interest to create three 
unique correlation matrices 
for participants’ time series

Destrieux atlas 
set describing 162 
regions

Radial basis 
function kernel 
SVM, among 
others

Observed a maximum 
77% accuracy with 
leave-one-out cross-
validation (among other 
methods); results did not 
improve in replication 
set

Chanel et al. 
(2016)113

15 adults with ASD and 
14 TD adults

Gathered fMRI data to study 
attention/emotions of 
participants during static 
faces and dynamic bodies 
tasks

Features from 
dynamic body 
experiment

SVM Classified with 
maximum 92% 
sensitivity and 92% 
specificity with leave-
one-out cross-validation

Yahata et al. 
(2016)202

74 adults with ASD and 
107 TD adults; 44/27 
individuals with ASD 
and 44/27 TD controls 
in validation sets 1/2

Evaluated functional 
connectivity from rs-fMRI; 
also examined 
generalizability to other 
disorders

16 out of 9730 
functional 
connections

Logistic 
regression

Achieved 85% accuracy 
with leave-one-out cross-
validation; validated with 
75% and 70% accuracies 
in independent cohorts

Emerson et al. 
(2017)203

11 (48) infants at high 
risk for ASD with 
(without) a later 
diagnosis of ASD

Computed features of 
functional connectivity from 
rs-fMRI at 6 months to 
predict ASD diagnosis at 24 
months

59 sets of features 
(one for each fold 
of leave-one-out 
cross-validation)

SVM Predicted future 
diagnosis with 82% 
sensitivity and 100% 
specificity using leave-
one-out cross-validation
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Table 6.

Summary of recent and representative studies aiming to distinguish individuals with ASD from TD individuals 

using multivariate analysis of ABIDE imaging data. Reported sample sizes are the numbers used for 

classification and do not necessarily reflect the study’s total sample size.

Reference Study Participants Experimental Methods Key Features Multivariate 
Technique Key Results

Zhou et al. 
(2014)204

127 children with 
ASD and 153 TD 
children

Obtained rs-fMRI data from 
ABIDE repository and used 
a multi-parametric analytic 
approach, including 
network analysis to study 
connectivity

4 of 22 
quantitative 
imaging features

Random decision 
tree

Classified with 98% 
accuracy for the full data 
set and 68% accuracy 
when using ten-fold cross 
validation

lidaka 
(2015)205

312 children and 
adolescents with ASD 
and 328 TD controls

Examined rs-fMRI data 
taken from ABIDE to 
analyze functional 
connectivity through 
correlation matrices

632 cells from the 
correlation matrix

Probabilistic 
neural network

Achieved 89% accuracy, 
92% sensitivity, and 87% 
specificity using leave-
one-out cross-validation

Kam et al. 
(2017)206

61 individuals with 
ASD and 72 TD 
individuals, all under 
20 years old

Acquired rs-fMRI data 
from ABIDE data site to 
distinguish functional 
networks through 
hierarchical clustering

Connectivity 
features from five 
clusters

Discriminative 
restricted 
Boltzmann 
machine

Using ten-fold cross-
validation, classified with 
75% sensitivity and 85% 
specificity

Sadeghi et al. 
(2017)207

29 adolescents and 
adults with ASD and 
31 TD controls

Analyzed properties of 
functional networks 
constructed from MRI 
images in the ABIDE data 
set

17 features from 
nodal metrics

SVM Averaged 92% 
classification accuracy 
with five-fold cross-
validation; 68% accuracy 
in independent set

Syed et al. 
(2017)208

392 individuals with 
ASD and 407 age- 
and sex-matched TD 
controls

Identified reproducible 
independent components of 
functional networks from 
ABIDE rs-fMRI data

Regions from the 
default mode 
network

k-means 
clustering

Clustering yielded 89% 
sensitivity and 90% 
specificity

Bi et al. 
(2018)209

45 individuals with 
ASD and 39 TD 
individuals

Evaluated connectivity from 
ABIDE rs-fMRI data 
through application of 
graph theory

272 graph metrics Random SVM 
cluster

Obtained accuracies as 
high as 96% on the 
testing subset (26 
samples, or 30% of total)

Heinsfeld et 
al. (2018)210

505 individuals with 
ASD and 530 TD 
individuals

Constructed connectivity 
matrices using correlations 
for regions’ time series 
averages using ABIDE rs-
fMRI data

19900 functional 
connectivity 
features

Deep neural 
network

Achieved 70% accuracy, 
74% sensitivity and 63% 
specificity with ten-fold 
cross-validation

Kong et al. 
(2019)211

78 individuals with 
ASD and 104 TD 
individuals

Analyzed brain connectivity 
through networks based on 
cortical regions constructed 
from ABIDE MRI data

3000 of the top 
cortical grey 
matter volume 
features

Deep neural 
network

Classified with up to 90% 
accuracy, 84% sensitivity, 
and 96% specificity using 
ten-fold cross-validation
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Table 7.

Summary of recent and representative studies aiming to distinguish individuals with ASD from TD individuals 

using multivariate analysis of EEG and MEG data. Reported sample sizes are the numbers used for 

classification and do not necessarily reflect the study’s total sample size.

Reference Study Participants Experimental Methods Key Features Multivariate 
Technique Key Results

Bosl et al. 
(2011)212

46 infants at high risk 
for ASD, and 33 low-
risk controls

Collected EEG data and 
computed modified 
multiscale entropy as an 
indicator of normal brain 
development

Low, high, and mean 
multiscale entropy 
values for each of 64 
channels

k-nearest 
neighbors, 
SVM, naive 
Bayes

Classified with 
accuracies between 
72% and 77% in 9-
month-olds using ten-
fold cross-validation

Duffy and Als 
(2012)213

430 children with 
ASD and 554 TD 
children

Calculated spectral 
coherence variables 
from EEG 
measurements

40 spectral coherence 
factors

Discriminant 
analysis

Averaged 86% 
sensitivity and 89% 
specificity across ten 
split-half analyses and 
including all age 
groups

Khan et al. 
(2013)214

17 adolescents and 
young adults with 
ASD and 20 TD 
controls

Measured task-related 
local and long-range 
functional connectivity 
from MEG data

Four functional 
connectivity metrics

Quadratic 
discriminant 
analysis

Classified with 90% 
accuracy, 87% 
sensitivity, and 95% 
specificity

Jamal et al. 
(2014)215

12 children with ASD 
and 12 TD children

Extracted brain 
connectivity features 
from EEG 
measurements

4 of 36 brain 
connectivity features

Polynomial 
kernel SVM

With leave-one-out 
cross-validation, 
achieved 95% 
accuracy, 86% 
sensitivity, and 100% 
specificity

Khan et al. 
(2015)216

15 children and 
adolescents with ASD 
and 20 TD controls

Evaluated functional 
connectivity using tactile 
and resting state MEG 
recordings

Local functional 
connectivity index, 
Granger causality

Discriminant 
analysis

Achieved 87% 
sensitivity and 90% 
specificity using ten-
fold cross-validation

Khan et al. 
(2016)217

15 children and 
adolescents with ASD 
and 20 TD controls

Used MEG and 
structural MRI to 
investigate abnormal 
functional connectivity

Three 
neurophysiological 
measures

Discriminant 
analysis

Averaged 90% 
sensitivity and 95% 
specificity with ten-
fold cross-validation

Bosl et al. 
(2018)171

35 infants later 
diagnosed with ASD 
and 153 infants with 
no ASD diagnosis

Collected EEG 
measurements from 3 to 
36 months of age to 
predict ASD diagnosis 
by 36 months of age

Subset of nonlinear 
invariant signal features 
selected from 1026 total

Radial basis 
function kernel 
SVM

Predicted ASD with 
82–100% sensitivity 
and 88–99% 
specificity, depending 
on age, using leave-
one-out cross-
validation
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Table 8.

Summary of recent and representative studies aiming to distinguish individuals with ASD from TD individuals 

using multivariate analysis of patterns in gene expression and epigenetic activity. Reported sample sizes are 

the numbers used for classification and do not necessarily reflect the study’s total sample size.

Reference Study Participants Experimental Methods Key Features Multivariate 
Technique Key Results

Gene Expression

Glatt et al. 
(2012)218

60 infants and toddlers 
at risk for ASD and 68 
TD controls

Evaluated children’s 
profiles of messenger 
RNA expression in 
peripheral blood 
mononuclear cells

Expression 
intensities of 48 
probes

Radial basis 
function SVM

Predicted a replication 
sample (half of samples) 
with 93% sensitivity, 88% 
specificity, and 0.91 
AUROC

Kong et al. 
(2012)219

66 (104) children with 
ASD and 33 (82) non-
ASD controls for 
training (validation)

Profiling of blood gene 
expression levels in 
participants

55 genes Partial least 
squares

Obtained 0.98 AUROC in 
the training set and 0.70 
AUROC (68% accuracy) 
in the validation set

Hu and Lai 
(2013)220

87 individuals with 
ASD and 29 non-ASD 
individuals

Gene expression 
profiling of 
lymphoblastoid cell lines 
using DNA microarrays

74 genes SVM Achieved 91% sensitivity 
and 61% specificity with 
leave-one-out cross-
validation

Latkowski and 
Osowski 
(2015)221

82 children with ASD 
and 64 TD children

Used gene expression 
data from a publicly 
available database

Unspecified 
number of genes 
used in ensemble 
classifier

Gaussian kernel 
SVM with 
ensemble of 
classifiers

Classified with 96% 
sensitivity and 83% 
specificity with ten-fold 
cross-validation

Pramparo et al. 
(2015)222

87 (44) toddlers with 
ASD and 55 (29) non-
ASD toddlers for 
discovery (replication)

Profiling of leukocyte 
RNA expression in 
participants

Four co-
expression 
modules 
containing 762 
unique genes

Logistic 
regression

Achieved 75% accuracy, 
77% sensitivity, and 72% 
specificity in replication 
set

Guan et al. 
(2016)223

104 children with 
ASD and 82 non-ASD 
controls

Used data on peripheral 
blood gene expression 
from Kong et al. (2012)

Three unique sets 
of five genes

Distance from 
multivariate 
centroid

In the validation set (half 
of samples), classified 
with 72%−76% accuracy

Nazeen et al. 
(2016)224

671 total samples from 
human ASD studies

Used high-throughput 
gene expression data 
from data repositories 
for conditions that co-
occur with ASD

Genes 
overlapping the 
chemokine and 
Toll-like receptor 
signaling 
pathways

SVM, among 
others

Classified ASD versus 
non-ASD with average 
70% classification 
accuracy with three-fold 
cross-validation

Oh et al. 
(2017)225

21 young adults with 
ASD and 21 TD 
controls

Used a microarray data 
set publicly available 
from a database

19 differentially 
expressed probes

SVM, k-nearest 
neighbors, 
discriminant 
analysis

Achieved up to 94% 
accuracy, 100% sensitivity, 
and 87.5% specificity on 
the validation set (16 
samples)

Epigenetic Activity

Mundalil Vasu 
et al. (2014)226

55 individuals with 
ASD and 55 TD 
controls

Measured microRNA 
profiles in serum of 
participants

Five differentially 
expressed 
microRNAs

ROC analysis
† Classified with AUROC 

up to 0.91, with associated 
85% sensitivity, 87% 
specificity

Hicks et al. 
(2016)227

24 children with ASD 
and 21 TD children

Measured salivary 
microRNA levels

14 top-ranked 
microRNAs

Partial least 
squares

Classified with 100% 
sensitivity and 96% 
specificity (AUROC = 
0.97).

Cirnigliaro et al. 
(2017)228

30 children with ASD 
and 25 TD children

Profiled serum 
expression of 
microRNAs

One microRNA, 
miR-140–3p

Logistic 
regression

Averaged 63% sensitivity 
and 68% specificity with 
100-random subsampling 
cross-validation

Hicks et al. 
(2018)142

238 children with 
ASD and 218 non-
ASD children

Measured salivary levels 
of five subtypes of RNA, 
including microRNA

32 RNAs Radial kernel 
SVM

Predicted the test set (84 
total samples) with 82% 
sensitivity and 88% 
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Reference Study Participants Experimental Methods Key Features Multivariate 
Technique Key Results

specificity (AUROC = 
0.88)

†
Study performs classification, but only through univariate approaches.
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Table 9.

Summary of recent and representative studies aiming to distinguish individuals with ASD from TD individuals 

using multivariate analysis of potential blood-based metabolite biomarkers. Reported sample sizes are the 

numbers used for classification and do not necessarily reflect the study’s total sample size.

Reference Study Participants Experimental Methods Key Features Multivariate 
Technique Key Results

Momeni et al. 
(2012)229

22 children with 
ASD and 27 TD 
children

Analyzed plasma protein/
peptide concentrations 
using mass spectrometry

Three differentially 
expressed peptides

Discriminant 
analysis

Classification of samples 
without hemolysis 
yielded 95% sensitivity 
and 85% specificity

West et al. 
(2014)230

52 children with 
ASD and 30 TD 
children

Measured concentrations 
of plasma metabolites 
through various mass 
spectrometry-based 
techniques

80 or 160 metabolites 
depending on 
classifier

SVM, partial 
least squares 
discriminant 
analysis

Predicted 21-sample 
validation set with 
AUROC of 0.84 (SVM) 
and 0.81 (partial least 
squares)

Wang et al. 
(2016)231

73 (100) children 
with ASD and 63 
(100) TD children in 
discovery 
(validation) sets

Quantified serum 
metabolites with ultra-
performance liquid 
chromatography and mass 
spectrometry

Docosahexaenoic 
acid and sphingosine 
1-phosphate

Logistic 
regression

Achieved 90% 
sensitivity and 74% 
specificity for predicting 
the validation set

Howsmon et 
al. (2017)158

83 children with 
ASD and 76 TD 
children

Analyzed levels of plasma 
markers related to DNA 
methylation and oxidative 
stress

Seven 
transmethylation/
transsulfuration 
measurements

Discriminant 
analysis

Classified with 98% 
sensitivity and 96% 
specificity using leave-
one-out cross-validation

Anwar et al. 
(2018)232

38 children with 
ASD and 31 TD 
children

Investigated protein 
damage through 
quantification of glycation 
end-products in plasma 
and urine analysis

Four plasma protein 
adduct residues and 
two amino acids

SVM, among 
several other 
techniques

Observed 89% accuracy, 
90% sensitivity, and 
87% specificity using 
two-fold cross-validation

Barone et al. 
(2018)233

83 children with 
ASD and 79 TD 
children

Quantified acyl-carnitine 
and amino acid levels from 
dried blood spot 
specimens collected at 
time of the study

Eight acyl-carnitines Naive Bayes Predicted a 38-sample 
holdout set with 73% 
sensitivity and 63% 
specificity

Chen et al. 
(2018)234

32 children with 
ASD and 20 TD 
children

Profiled the serum 
proteome using 
fractionation and mass 
spectrometry techniques

Eight differentially 
expressed protein 
peaks

k-nearest 
neighbors

Achieved 99% 
sensitivity and 87% 
specificity using cross-
validation

Shen et al. 
(2018)235

30 children with 
ASD and 30 TD 
children

Used isobaric tags for 
relative and absolute 
quantitation to measure 
medium- and low-
abundance plasma proteins

Five plasma proteins Combined ROC 
analysis

Classified with 0.98 
AUROC, better than the 
AUROCs of the 
individual proteins

Howsmon et 
al. (2018)163

154 children and 
adolescents with 
ASD, compiled from 
three clinical trials

Validated classification 
with DNA methylation/
oxidative stress markers 
presented by Howsmon et 
al. (2017)158

Five 
transmethylation/
transsulfuration 
measurements

Discriminant 
analysis, among 
other techniques

Predicted an 
independent validation 
set of individuals with 
ASD with up to 88% 
sensitivity

Smith et al. 
(2019)236

253 (263) infants 
with ASD and 85 
(79) TD infants in 
training (testing) set

Examined amino acid 
dysregulation metabotypes 
(AADMs) in blood plasma

Six AADMs Ratios of 
AADMs to 
different amino 
acids

In the test set, 
sensitivities ranged from 
8–14% and specificities 
ranged from 92100%

Zou et al. 
(2019)165

89 children with 
ASD and 89 TD 
children

Measured serum 
concentrations of folate-
related metabolites

Six folate-related 
markers

Discriminant 
analysis

Correctly classified 84% 
of participants using 
leave-one-out cross-
validation (87% 
sensitivity, 85% 
specificity)
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Table 10.

Summary of recent and representative studies aiming to distinguish individuals with ASD from TD individuals 

using multivariate analysis of potential excretory (urinary and fecal) metabolite biomarkers. Reported sample 

sizes are the numbers used for classification and do not necessarily reflect the study’s total sample size.

Reference Study Participants Experimental Methods Key Features Multivariate 
Technique Key Results

Nadal-Desbarats 
et al. (2014)237

30 children with ASD 
and 28 TD children

Measured urinary metabolite 
profiles combined from two 
nuclear magnetic 
spectroscopy techniques

Minimum 
number of 
metabolites 
combined from 
both techniques

Partial least 
squares 
discriminant 
analysis

Achieved a prediction 
accuracy of 83% with 
0.92 AUROC

Diémé et al. 
(2015)238

30 children with ASD 
and 32 TD children

Evaluated urine metabolite 
levels using nuclear 
magnetic spectroscopy and 
mass spectrometry 
techniques

46 metabolites 
combined across 
techniques

Partial least 
squares 
discriminant 
analysis

Predicted a 16-sample 
validation set with 
0.91 AUROC, 100% 
sensitivity, and 75% 
specificity

Gevi et al. 
(2016)239

30 children with ASD 
and 30 TD children

Quantified urinary 
metabolite concentrations 
through liquid 
chromatography and mass 
spectrometry

25 urinary 
metabolites

Partial least 
squares 
discriminant 
analysis

Classified individuals 
with 0.89 AUROC

Kang et al. 
(2018)240

21 children with ASD 
and 23 TD children

Assess metabolite profiles 
and microbial compositions 
in participants’ fecal 
samples

Five fecal 
metabolites

Discriminant 
analysis

With leave-one-out 
cross-validation, 
obtained 78% 
sensitivity and 81% 
specificity
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