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Abstract 

Epilepsy is a serious chronic neurological disorder, can be detected by analyzing the brain signals produced by brain 
neurons. Neurons are connected to each other in a complex way to communicate with human organs and generate 
signals. The monitoring of these brain signals is commonly done using Electroencephalogram (EEG) and Electrocor‑
ticography (ECoG) media. These signals are complex, noisy, non-linear, non-stationary and produce a high volume of 
data. Hence, the detection of seizures and discovery of the brain-related knowledge is a challenging task. Machine 
learning classifiers are able to classify EEG data and detect seizures along with revealing relevant sensible patterns 
without compromising performance. As such, various researchers have developed number of approaches to seizure 
detection using machine learning classifiers and statistical features. The main challenges are selecting appropriate 
classifiers and features. The aim of this paper is to present an overview of the wide varieties of these techniques over 
the last few years based on the taxonomy of statistical features and machine learning classifiers—‘black-box’ and 
‘non-black-box’. The presented state-of-the-art methods and ideas will give a detailed understanding about seizure 
detection and classification, and research directions in the future.
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1  Introduction
The word epilepsy originates from the Latin and Greek 
word ‘epilepsia’ which means ‘seizure’ or ‘to seize upon’. 
It is a serious neurological disorder with unique charac-
teristics, tending of recurrent seizures [1]. The context of 
epilepsy, found in the Babylonian text on medicine, was 
written over 3000 years ago [2, 3]. This disease is not lim-
ited to human beings, but extends to cover all species of 
mammals such as dogs, cats and rats. However, the word 
epilepsy does not give any types of clues about the cause 
or severity of the seizures; it is unremarkable and uni-
formly distributed around the world [1, 4].

Several theories about the cause are already available. 
The main cause is electrical activity disturbance inside 
a brain [1, 5, 6], which could be originated by several 
reasons [7] such as malformations, shortage of oxygen 
during childbirth, and low sugar level in blood [8, 9]. 
Globally, epilepsy affects approximately 50 million peo-
ple, with 100 million being affected at least once in their 
lifetime [5, 10]. Overall, it accounts for 1% of the world’s 
burden of diseases, and the prevalence rate is reported 
at 0.5–1% [4, 11]. The main symptom of epilepsy is to 
experience more than one seizure by a patient. It causes 
a sudden breakdown or unusual activity in the brain that 
impulses an involuntary alteration in a patient’s behav-
iour, sensation, and loss of momentary consciousness. 
Typically, seizures last from seconds to a few minute(s), 
and can happen at any time without any aura. This leads 
to serious injuries including fractures, burns, and some-
times death [12].
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1.1 � Seizure type
Based on the symptoms, seizures are categorized by 
neuro-experts into two main categories—partial and 
generalized [7, 13]—as shown in Fig.  1. Partial seizure, 
also called ‘focal seizure’, causes only a section of the cer-
ebral hemisphere to be affected. There are two types of 
Partial seizure: simple-partial and complex-partial. In the 
simple-partial, a patient does not lose consciousness but 
cannot communicate properly. In the complex-partial, a 
person gets confused about the surroundings and starts 
behaving abnormally like chewing and mumbling; this is 
known as ‘focal impaired awareness seizure’. On the con-
trary, in the generalized seizures, all regions of the brain 
suffer and entire brain networks get affected quickly 
[14]. Generalized seizures are of many types, but they 
are broadly divided into two categories: convulsive and 
non-convulsive.

1.2 � Main contributions of the paper
In brief, the contributions of this paper are as follows: 

1.	 We have done the review according to five main 
dimensions. First, researchers who adopted the 
EEG, ECoG or both for seizure detection; second, 
significant features; third, machine learning classifi-
ers; fourth, the performance of the classifier during 
a seizure, and last, knowledge discovery (e.g., seizure 
localization).

2.	 Through study, it has been explored that an ensemble 
of decision trees (i.e., decision forest–random forest) 
classifier outperforms other classifiers (ANN, KNN, 
SVM, single Decision Tree).

3.	 We also suggest, how decision forest algorithms 
could be more effective for other knowledge discov-
ery tasks besides seizure detection.

4.	 This study will help the researchers with their data 
science backgrounds to identify which statistical and 
machine learning classifiers are more relevant for 
further improvement to the existing methods for sei-
zure detection.

5.	 The study will also help the readers for understand-
ing about the publicly available epilepsy datasets.

6.	 In the end, we have provided our observations by the 
current review and suggestions for future research in 
this area.

The structure of the paper is organized as follows. “Role 
of data scientists in epileptic seizure detection” sec-
tion gives the overview of machine learning experts 
in EEG datasets. The preliminaries requirements are 
provided in “A framework for seizure detection” sec-
tion; it presents a general model of seizure detection 
and explains each step in a subsequent manner. “Pub-
licly available datasets” section provides the details of 
benchmark datasets with their description. “Seizure 
detection based on statistical features and machine 
learning classifiers” section explains the review of lit-
erature work done on seizure detection using different 
machine learning classifiers, with a detailed compari-
son. “Seizure localization” section reviews the work 
done in identifying the affected lobes of the brain using 
machine learning classifiers. In “Problems identified in 
existing literature” section, we have explored the issues 
in the previous work and highlighted the gap. Over-
all, “observation about capable classifiers and statisti-
cal features” section reports our observations from the 

Fig. 1  Types of seizure. Showing types of seizure and its sub-types
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review about a suitable classifier and feature. “Research 
directions in seizure detection” section emphasizes 
the future directions in this research area, followed by 
“Conclusion” section on the summary of the paper.

2 � Role of data scientists in epileptic seizure 
detection

Applications of machine learning are significantly seen 
on health and biological data sets for better outcomes 
[15, 16].  Researchers/scientists on different areas, spe-
cifically, data mining and machine learning, are actively 
involved in proposing solutions for better seizure detec-
tion. Machine learning has been significantly applied to 
discover sensible and meaningful patterns from different 
domain datasets [17, 18]. It plays a significant and poten-
tial role in solving the problems of various disciplines like 
healthcare [17, 19–25]. Applications of machine learn-
ing can also be seen on brain datasets for seizure detec-
tion, epilepsy lateralization, differentiating seizure sates, 
and localization [26–29]. This has been done by various 
machine learning classifiers such as ANN, SVM, decision 
tree, decision forest, and random forest [26, 28].

Certainly, in the past, numerous reviews have been car-
ried out on seizure detection along with applied features, 
classifiers, and claimed accuracy [27, 30–33] without 
focusing on the challenges faced by the data scientists 
whilst doing research on datasets of neurological disor-
ders. Therefore, this article provides a detailed study of 
machine learning applications on epileptic seizure detec-
tion and other related knowledge discovery tasks. In this 
review, the collected articles are from well-known jour-
nals of their relevant field. These references are either 
indexed by SCOPUS or Web of Science (WOS). Besides, 

we also considered some good ranked conference papers. 
Extensive literature is available covering the deep analy-
sis of different features and classifiers applied on EEG 
datasets for seizure detection [31, 34, 35]. Both, feature 
extraction and applying classification techniques are 
challenging tasks. Previous literature reveals that for 
the past few years, interest has been increased in the 
application of machine learning classifiers for extract-
ing meaningful patterns from EEG signals, which helps 
for detecting seizures, its location in the brain, and other 
impressive related knowledge discoveries [28, 36, 37]. 
Three decades ago, Jean Gotman [6, 38–40], analyzed 
and proposed the model for effective usage of EEG sig-
nals by applying different computational and statistical 
techniques for automatic seizure detection. Furthermore, 
the research has been carried out by different signal pro-
cessing methods and data science methods to provide 
better outcomes [27, 34, 41–47].

3 � A framework for seizure detection
In this section, we present a pictorial framework of the 
model used for seizure detection from an EEG/ECoG 
seizure dataset, illustrated in Fig.  2. The process com-
prises four steps: Data Collection, Data Preparation, 
Applying Machine Learning Classifiers and Performance 
Evaluation.

3.1 � Data collection
The initial requirement is to collect the dataset of brain 
signals. For this, different monitoring tools are used. 
Typically, the mostly used devices are EEG and ECoG, 
because their channels or electrodes are implanted by 
glue on the surface of the scalp as per 10–20 International 

Fig. 2  Basic model of epileptic seizure detection. This explains the basic steps to collect the dataset by EEG medium, display of raw EEG signals, 
transform EEG signals to two-dimensional table, feature selection, prepare the dataset with seizure (S) and non-seizure (NS), apply machine learning 
classifier(s) and seizure detection, or other related tasks
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system [48] at different lobes. Each of them has a wire 
connection to the EEG device, providing timely informa-
tion about the variations in voltage, along with temporal 
and spatial information [49]. As highlighted in Fig. 2, the 
EEG channels are placed on the subject’s scalp, and the 
electrical signals are read by the EEG monitoring tool 
and it displays these raw signals over the screen. Fur-
ther, these raw signals have been carefully monitored by 
the analyst and classified into ‘seizure’ and ‘non-seizure’ 
states.

3.2 � Data transformation
After data collection, the next crucial step is to transform 
the signal data into a 2-D Table format. The reason for 
this is to make it easier for analysis and provide neces-
sary knowledge like seizure detection. This datum is raw 
because it has not been processed yet. Therefore, it will 
not be suitable to give relevant information. To do the 
processing, different feature selection modalities have 
been applied. This step also presents the dataset as super-
vised, which means that it provides the class attribute 
with possible class-values.

3.3 � Dataset preparation
For data transformation, data processing is a decisive step 
to extract meaningful information from the collected raw 
dataset. As such, different feature extraction techniques 
have been used; as shown in Table 1. These methods are 
generally applied to the extracted EEG signal dataset [31, 
34]. The raw dataset becomes rich in terms of different 
statistical measure values.

After feature extraction processing, the dataset 
becomes more informative that it ultimately helps the 
classifier for retrieving better knowledge.

3.4 � Applying machine learning classifiers 
and performance evaluation

To achieve a high accuracy of seizure detection rate and 
explore relevant knowledge from the EEG processed 
dataset, different supervised and unsupervised machine 
learning have been used.

3.4.1 � Classification
In classification, a dataset D has a set of ‘non-class attrib-
utes’, and a ‘class attribute’. They are the principal com-
ponents and their pertinent knowledge is very important, 
as both have a strong association for potential classifica-
tion. The target attribute is defined as the ‘class attrib-
ute’ C, and it comprises more than one class values, 
e.g., seizure and non-seizure. On the contrary, attributes 
A = {A1,A2.A3 . . .An} are known as ‘non-class attributes’ 
or predictors [50, 51]. The following classifiers have been 
popularly used in seizure detection. Common classifiers 
such as SVM [52], decision tree [53] and decision forest 
[54] are applied to the processed EEG dataset for seizure 
detection.

3.4.2 � Performance evaluation
The accuracy of the obtained results is used to evaluate 
different methods. The most popular training approach 
is tenfold cross-validation [55], where each fold, i.e., one 
horizontal segment of the dataset is considered to be the 
testing dataset and the remaining nine segments are used 
as the training dataset [56, 57].

Except for the accuracy, the performance of the classifi-
ers is commonly measured by the following metrics such 
as precision, recall, and f-measure [58]. These are based 
on four possible classification outcomes—True-Positive 
(TP), True-Negative (TN), False-Positive (FP), and False-
Negative (FN) as presented in Table 2.

Precision is the ratio of true-positives to the total 
number of cases that are detected as positive (TP+FP). 

Table 1  Feature extraction methods and features used on EEG signal dataset

Feature extraction methods Relevant features

Time-domain features Mean, variance, mode, median, skewness, kurtosis, max, min, zero crossing, line length, energy, power, 
Shannon entropy, sample entropy, approximate, entropy, fuzzy entropy, hurst exponent, standard devia‑
tion

Frequency-domain features Spectral power, spectral entropy, energy, peak frequency, median frequency

Time–frequency-domain features Line length, min, max, Shannon entropy, approximate entropy, standard deviation, energy, median, root 
mean square

Discrete Wavelet Transformation (DWT) Bounded variation, coefficients, energy, entropy, relative bounded, variation, relative power, relative scale 
energy, variance, standard deviation

Continuous Wavelet Transformation (CWT) Energy’s standard deviation, energy, coefficient z-score, entropy,

Fourier Transformation (FT) Median frequency, power, peak frequency, spectral entropy power, spectral edge frequency, total spectral 
power
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It is the percentage of selected cases that are correct, as 
shown in Eq. 1. High precision means the low false-pos-
itive rate.

Recall is the ratio of true-positive cases to the cases that 
are actually positive. Equation 2 shows the percentage of 
corrected cases that are selected.

Despite getting the high Recall results of the classifier, 
it does not indicate that the classifier performs well in 
terms of precision. As a result, it is mandatory to calcu-
late the weighted harmonic mean of Precision and Recall; 
this measure is known as F-measure score, shown in 
Eq. 3. The false-positives and the false-negatives are taken 
into account. Generally, it is more useful than accuracy, 
especially when the dataset is imbalanced.

4 � Publicly available datasets
For data scientists and researchers, a dataset used is 
important for evaluating the performance of their pro-
posed models. Similarly, in epileptic seizure detection, 
we need to capture the brain signals. EEG recording is 
the most used method for monitoring brain activity. 
These recordings play a vital role in machine learning 
classifiers to explore the novel methods for seizure detec-
tion in different ways such as onset seizure detection, 
quick seizure detection, patient seizure detection, and 
seizure localization. The significance of publicly available 
datasets is that they provide a benchmark to analyze and 
compare the results to others. In the following section, 
we will describe the popular datasets that are widely used 
on epilepsy.

(1)Precision =
TP

TP + FP
× 100%

(2)Recall =
TP

TP + FN
× 100%

(3)F-measure = 2×
(Precision · Recall)

Precision+ Recall

4.1 � Children Hospital Boston, Massachusetts Institute 
of Technology—EEG dataset

This dataset is publicly available on a physionet server 
and prepared at Children Hospital Boston, Massachu-
setts Institute of Technology (CHB-MIT) [59, 60]. It can 
be collected easily via Cygwin tool which interacts with 
the physionet server. It contains the number of seizure 
and non-seizure EEG recordings for each patient of the 
CHB [61]. The dataset comprises 23 patients; 5 males, 
aged 3–22 years, and 17 females aged 1.5–19. Each 
patient contains multiple seizure and non-seizure record-
ing files in European data format (.edf ), representing the 
spikes with seizure start and end time, which is easily 
visible at a browser called an ‘EDFbrowser’. The primary 
datasets are in the 1-D format, containing EEG signals 
that are obtained through the different types of channels 
that were placed on the surface of the brain as per 10-20 
International System. All these signals of the dataset were 
sampled at the frequency of 256Hz.

4.2 � ECoG Dataset, Epilepsy Centre, University of California
This is a publicly available dataset of electrocorticogram 
(ECoG) signals from an epileptic patient, which was col-
lected from the Epilepsy Center, University of California, 
San Francisco (UCSF) [62]. It was originally collected 
by implanting 76 electrodes on the scalp in both inva-
sive (12-electrodes) and non-invasive manner (64-elec-
trodes). It comprises 16 files altogether. Out of these, 
eight files ( F1, F2, · · · F8 ) are classified as ‘pre-ictal’ 
meaning the stage before the seizure. The rest of the files 
( F9, F10, F11, · · · F16 ) represent the ‘ictal’ stage data. 
The collected data are sampled at the frequency of 400 
Hz (i.e., 400 cycles/s) and the total duration is 10 s. As a 
result, there are (400 cycles/s × 10 s) 4000 cycles in each 
file [63].

4.3 � The Freiburg—EEG dataset
This dataset was collected from the invasive EEG record-
ings of 21 patients (8 males aged 13–47 years, 13 females 
aged 10–50 years) suffering from medically intractable 
focal epilepsy. It was recorded during an invasive pre-
surgical epilepsy monitoring at the Epilepsy Centre of 

Table 2  Classification outcomes

This table describes each parameter metric considering seizure and non-seizure case

Acronym Detection type Real-world scenario

TP True-positive If a person suffers to ‘seizure’ and also correctly detected as a ‘seizure’

TN True-negative The person is actually normal and the classifier also detected as a ‘non-seizure’

FP False-positive Incorrect detection, when the classifier detects the normal patient as a ‘seizure’ 
case

FN False-negative Incorrect detection, when the classifier detects the person with ‘seizure(s)’ as a 
normal person. This is a severe problem in health informatics research
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the University Hospital of Freiburg, Germany [64]. Out 
of 21 patients, 13 patients had 24 h of recordings, and 8 
patients had less than 24 h. These recordings are inter-
ictal, and together they provide 88 seizures.

4.4 � Bonn University—EEG dataset
The dataset comprises five subsets, where each one 
denoted as (A–E) contains 100 single-channels record-
ing, and each of them has a 23.6 s duration, captured by 
the international 10–20 electrode placement scheme. 
All the signals are recorded with the same 128-channel 
amplifier system channel [65].

4.5 � BERN‑BARCELONA—EEG dataset
This dataset comprised EEG recordings derived from five 
pharmacoresistant temporal lobe epilepsy patients with 
3750 focal and 3750 non-focal bivariate EEG files. Three 
patients were seizure-free, with two patients only having 
auras but no other seizures following surgery. The multi-
channel EEG signals were recorded with an intracranial 
strip and depth electrodes. The 10–20 positioning was 
used for the electrodes’ implantation. EEG signals were 
either sampled at 512 or 1024 Hz, depending on whether 
they were recorded with more or less than 64 channels. 
According to the intracranial EEG recordings, they were 
able to localize the brain areas where seizures started for 
all five patients [66]. This dataset is good for the seizure 
localization purpose.

5 � Seizure detection based on statistical features 
and machine learning classifiers

This section explains the comprehensive detail of work 
on seizure detection using statistical features, classifi-
ers—‘black-box’ and ‘non-black-box’. They are illustrated 
in Table  3. In brief, the ‘black-box’ classifiers are those 
which provide the accuracy without mentioning the rea-
sons behind the results such as ANN and SVM [67]. They 
are unable to explain their classification steps. Whereas, 
‘non-black-box’ classifiers such as decision forest and 
random forest can able to explain each step of the pro-
cessing, which is human-understandable. As a result, it 
helps in human-interpretable knowledge with high accu-
racy [68].

5.1 � Seizure detection based on statistical features
If we apply machine learning classifier(s) directly to raw 
EEG/ECoG datasets, it may not produce enough sensible 
patterns. Therefore, selecting significant and capable sta-
tistical features from EEG and ECoG raw datasets is one 
of the challenges and a crucial task. The nature of EEG 
and ECoG signals is very complex, non-stationary and 
time-dependent [105–107]. As such, we can apply the 

machine learning classifier(s) to the processed datasets, 
which will ultimately assist to solve various neurological 
problems; for example, identifying seizure’s stages, accu-
rate seizure detection, fast detection, etc. In Table 3, we 
summarize a review of several studies.

The significant statistical features were extracted by 
different types of transformation techniques; discrete 
wavelet transformations (DWT), continuous wavelet 
transformation (CWT), Fourier transformation (FT), 
discrete cosine transformation (DCT), singular value 
decomposition (SVD), intrinsic mode function (IMF), 
and time–frequency domain from EEG datasets [34, 
71, 79, 108]. Logesparan et  al. [34] used different types 
of feature extraction methods for seizure detection, but 
they reported that two features—‘line length’ and ‘relative 
power’—are the good performers for seizure detection. 
Guerrero-Mosquera [109] applied three time-domain 
features—line length, frequency, and energy on the raw 
EEG dataset. These features claim to be suitable for sei-
zure detection and other brain-related applications such 
as computer interface (BCI). The claimed performance 
was evaluated using the following metrics such as sen-
sitivity, specificity, F-score, receiver operating character-
istics (ROC) curve, and percentile bootstrap measures. 
Duo Chen [84] used DWT with the SVM classifier on 
two benchmark datasets—CHB-MIT and Bonn Univer-
sity, achieved seizure detection accuracies of 92.30% and 
99.33%, respectively. Ramy Hussein et al. [100] proposed 
a new featured L1-penalized robust regression (L1PRR) 
for seizure detection, the issue with their approach is 
computational complexity. Zavid and Paul [99] focused 
on classifying the ‘ictal’ and ‘inter-ictal’ states, where they 
used four features DCT, DCT-DWT, SVD, and IMF; the 
obtained signals are further classified by LS-SVM due to 
less computational cost.

Several researchers have contributed to seizure detec-
tion using a single feature [108, 110]. The feature ‘line 
length’ [108, 110] was applied to an EEG dataset; approx-
imately 4.1 s of mean detection latency is recorded at a 
false alarm rate of 0.051 Fp/h. Further, Guo et al. [69] also 
used ‘line length’ but with the ANN for classifying the 
records obtained by EEG signals. Their automated seizure 
detection accuracy is 99.6%. A system was proposed by 
Koolen et al. [70] to detect seizures from EEG recordings. 
This detection system uses a single feature—‘line length’. 
The performance of this system shows 84.27% accuracy, 
84.00% sensitivity and 85.70% specificity, which are com-
paratively lower than the results of Guo et al. [69].

After 3 years of study on several of statistical features 
[34], Logesparan et al. [71] proposed the ‘line length’ fea-
ture for normalization and discrimination of class values 
from EEG datasets. It is noted that ‘line length’ could be 
taken as the strongest feature and provides considerable 
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Table 3  Overview of  existing work on  seizure detection using—machine learning classifiers, features, performance 
score, performance metrics, datasets, and Authors

Classifier(s) Feature(s) Performance (%) Performance metrics Dataset Authors

SVM Vector 96 Sensitivity (Sen) CHB-MIT Shoeb and Guttag [41]

Random forest Time and frequency 93.8 Senstivity EPILEPSIAE Donos et al. [44]

ANN Line length 99.6 Classification accuracy 
(Class Acc)

BONN Guo et al. [69]

Burst detection algo Line length 84.27, 84,85.7 Acc, Sen, Specificity 
(Spec)

NICU, Belgium Koolen et al. [70]

Normalization Line length 52 ROC CHB-MIT Logesparan et al. [71]

ELM and BPNN SE 95.6 Class Accuracy BONN Song and Lio [72]

SVM and ELM AE and SE 95.58 Class Accuracy BCI Lab, Colarodo Zhang et al. [73]

SVM DWT 94.8 Avg Accuracy CHB-MIT Ahmad et al. [74]

GMM Spectral, hybrid, 
temporal

87.58 Avg Accuracy CHB-MIT Gill et al. [75]

Random forest PCA, STF, Moving Max 97.12, 99.29, 0.77/h Sen, Spec, FPR CHB-MIT Orellana and Cerqueira 
[76]

Random forest and 
k-NN

Spectral power 80.87, 47.45, 2.5/h, 
56.23

Sen, Prec, FPR, F-meas CHB-MIT Birjandtalab et al. [77]

Boosting Stockwell 94.26, 96.34 Sen, Spec Freiburg Yan et al. [78]

SVM, MLP, KNN, Naïve 
bayes

Energy 98.75 Class Acc EPILEPSIAE Amin et al. [79]

Random forest Entropy and DWT 98.45 Class Acc BONN Mursalin et al. [80]

SVM Time–Frequency 90.62, 99.32 Sen, Spec CHB-MIT Zabihi et al. [81]

Random forest Time-domain 96.94 ROC curve Kaggle Truong et al. [82]

SVM, LDA, QDA, LC,PC, 
DT, KNN, UDC, 
PARZEN

Time–frequency 84, 85 Sen, Spec CHB-MIT Fergus et al. [83]

SVM DWT 86.83 Confusion Matrix CHB-MIT Chen et al. [84]

SVM and neural 
network

DWT and CWT​ 99.1 Overall Acc BONN Satapathy et al. [85]

ELM Time–frequency 97.73, 0.37/h Sen, false alarm rate Freiburg Yuan et al. [86]

SVM DWT 99.38 Class Acc BONN Subasi et al. [87]

LS-SVM FFT and DWT 100 Class Acc BONN Al Ghayab et al. [88]

SVM and Naïve bayes Entropy, RMS, variance, 
energy

96.55, 95.63, 95.7 Sen, Spec, Acc CHB-MIT Selvakumari et al. [89]

LS-SVM 8 types of Entropies 100, 99.4, 99.5 Sen, Spec, Acc BONN Chen S et al. [90]

ANN Spectral power 86 F-meas CHB-MIT Birjandtalab et al. [91]

KNN and GHE - 100 Class Acc BONN Lahmiri and shumel [92]

Random forest DWT 99.74, 0.21/h Sen, FPR BONN and Freiburg Tzimourta et al. [93]

Random forest STFT, mean, energy and 
std dev

96.7 Class Acc BONN Wang et al. [94]

Random forest, SVM, 
KNN, and Adaboost

28 statistical and time–
frequency features

97.6, 94.4, 96.1, 92.9, 
98.8, 0.96

Sen, Spec, Acc, PPR, 
NPR, ROC

Bern-Barcelona Raghu and Sriraam [95]

ANN,KNN,SVM, and 
Random forest

Mean, std dev, power, 
skewness, kurtosis, 
absolute mean

100 Overall Accuracy Freiburg and CHB-MIT Alickovic et al. [96]

SVM Energy 99.5 Class Acc BONN and Barcelona Fasil and Rajesh [97]

SVM and Random 
forest

10-time and frequency 0.98 ROC(AUC) EPILEPSIAE Manzouri et al. [98]

LS-SVM DCT, SVD, IMF, DCT-
DWT,

91.36 Acc, Sen, Spec Freiburg Parvez and Paul [99]

SysFor and Forest CERN 9 statistical features 100 Class Acc Epilepsy Centre UCSF Siddiqui et al. [63]

Random forest L1-penalized robust 
regression (L1PRR)

100 Class Acc BONN Hussein et al. [100]
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output. Based on previous studies, the ‘line length’ can 
be taken with other features, and the result would be 
more promising, specifically in machine learning. This is 
because the dataset dimension would also increase with 
meaningful statistical information in the attributes.

Some other studies on seizure detection based on a sin-
gle feature, i.e., entropy and its sub-types such as approx-
imate entropy (AE) and sample entropy (SE), have also 
been done [45, 72, 73, 111]. The entropy feature helps 
to find the random behaviour of EEG signals and takes 
depth benefits in measuring the impurity of the signals 
[112, 113]. The entropy feature has been used widely 
where data are in the form of signals such as ECG, [114], 
EEG, and ECoG [36]. This helps in further steps of the 
detection model.

Acharya et  al. [111] used four different types of 
entropy-based features: sample entropy, approximate 
entropy, phase entropy (S1), and phase entropy (S2) 
of the EEG datasets. The processed dataset from these 
entropy features was used for seizure detection. In 
another study, Chen et al. [90] used eight different kinds 
of entropy feature—approximate, sample, spectral, fuzzy, 
permutation, Shannon, conditional and correction condi-
tional on a raw EEG dataset; further, the processed data 
were classified into three class values: ‘ictal’, ‘inter-ictal’ 
and ‘normal stage’, and their accuracy is 99.50%. A tool 
was proposed by Selvakumari et  al. [89] using four fea-
tures—entropy, root mean square (RMS), variance, and 
energy. Based on these features, the detection was done 
using SVM and naïve Bayesian classifiers with a reported 
accuracy of 95.63%. The tool is also able to find the sei-
zure region in the brain; however, they did not mention 
the exact percentage of seizure location. Song and Li [72] 
built classification models by two classifiers—Extreme 
Learner Machine (ELM) and the back-propagation neu-
ral network (BPNN). Overall, their findings show 95.6% 
of classification accuracy with less execution time. Yong 
Zhang et  al. [73] applied two entropy features—AE and 
SE on two different classifiers—ELM and SVM for pro-
cessing EEG dataset. The SE features with ELM provide 
good classification accuracy compared to the AE feature 
whilst detecting the seizure.

The energy feature has been significantly used in sei-
zure detection [115]. It plays a vital role particularly when 
the seizure is detected by the epoch- or windows-based 
method. This means that the EEG signals are divided into 
various segments [79, 94]. An exponential energy feature 
has been introduced by Fasil and Rajesh [97], which helps 
in identifying the irregularities in amplitude EEG signals.

Observations This section has provided an overview of 
the contributions of statistical features to seizure detec-
tion and their importance. Some researchers detect sei-
zures using multiple sets of features, whilst others select 
a single feature such as ‘line length’. We recommend the 
‘line length’ feature to be in the list of the set of suit-
able features for seizure detection because it is helpful in 
measuring the EEG signals complexity. It plays a sensi-
tive role in the changes at the frequency and amplitude 
of signals. As a result, it helps to discriminate against the 
‘seizure’ and ‘non-seizure’ cases. However, from the data 
science point of view, it is very important to see the vari-
ous perspectives of each brain signals by observing other 
statistical features. Furthermore, we also suggest not to 
use the irrelevant feature(s) as they will unnecessarily 
increase the dataset size which results in an increase in 
computational time and gives insensible patterns too. As 
a result, it becomes a hassle to machine learning classi-
fiers and users rather than providing the benefit. Some 
researchers [95, 98, 101] used a large number of features, 
which increases the attribute size, and results in more 
computational time and less accuracy. So, if we take the 
fewer features as previous researchers have done [71, 73, 
79] this will give the low-dimensional dataset, which will 
not be fruitful for the knowledge discovery process. The 
next section illustrates the seizure detection by ‘black-
box’ classifiers. As far as the classification purpose is con-
cerned, it would be better to take more relevant statistical 
features, which can be integrated into knowledge discov-
ery and a good performance rate.

5.2 � Seizure detection based on black‑box classifiers
The classifiers such as SVM, ANN, and KNN are consid-
ered as prominent ones due to their remarkable perfor-
mances in different domains [67, 116]. Each technique 

Table 3  (continued)

Classifier(s) Feature(s) Performance (%) Performance metrics Dataset Authors

SVM, NB, KNN, random 
forest, logistic model 
Trees (LMT)

15-features 97.40, 97.40,97.50 Acc, Sen, Spec BONN Mursalin et al. [101]

Random forest IMF 98.4,98.6,96.4 Sen, Spec, Acc BONN Sharma et al. [102]

ANN Time–frequency 100 Overall Acc BONN Tzallas et al. [103]

Decision forest–Ran‑
dom forest, Boosting

9 statistical features 96.67,74.36, 84.06 Pre, Rec, F-measure CHB-MIT Siddiqui et al. [104]
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has its pros and cons, and ‘black-box’ methods are not an 
exception to this [104]. Even though these classifiers con-
tribute well to brain datasets, some of the relevant works 
on seizure detection using these classifiers are reported 
here.

The study of Satapathy et  al. [85] was based on two 
‘black-box’ approaches—SVM and Neural networks 
using different kernel methods for seizure detection 
against a large EEG dataset. The performance of each 
classifier is measured independently by the majority vot-
ing system, and it was found that SVM was more capable 
than other neural networks. Subasi et  al. [87] proposed 
the solution to detect seizure using a hybrid approach of 
SVM, genetic algorithm (GA), and particle swarm opti-
mization (PSO). The method achieved impressive accu-
racy, i.e., 99.38%, but the problem is that the classifier 
trains the dataset twice, one for SVM-GA and another for 
SVM-PSO. This could be a time-consuming.

Shoeb and Guttag [41] performed seizure detection 
on their arranged dataset of Child Hospital Bostan, 
MIT (CHB-MIT) [60] using SVM with the vector fea-
ture and achieved the estimated accuracy of 96%. Dorai 
and Ponnambalam [42] came with an idea of the epoch, 
which means dividing the dataset into smaller time 
frames. Further, they applied an ensemble of four ‘black-
box’ approaches—LDA, KNN, CVE, and SVM on these 
epoch EEG datasets. This approach provides the predic-
tion of onset seizures 65 s earlier. Classifying the EEG 
data into two class ‘ ‘seizure” and ‘non-seizure’, Birjand-
talab et al. [117] used a Gaussian mixture model (GMM) 
before detecting the seizure, and obtained 90% accu-
racy with 85.1% F-measure. They also raised the issue of 
class imbalance in their dataset. Tzallas et al. [103] used 
time–frequency-domain features with ANN for the EEG 
dataset and obtained 100% accuracy for the ‘seizure’ and 
‘non-seizure’ classification problem; with epochs’ data-
sets the accuracy is 97.7% from (A, B, C, and D) for ‘non-
seizure’ and set E for ‘seizure’ epoch classes. Amin et al. 
[79] extracted relative energy features from the DWT 
method, and four classifiers—SVM, MLP, KNN, and 
Naïve Bayes—were applied for the classification purpose, 
the result shows 98% of SVM accuracy, which outper-
forms remaining classifiers. A framework had been pro-
posed by K. Abualsaud et al. [118] using the ensemble of 
‘black-box’ classifiers for automated seizure detection on 
noisy EEG signals, and the reported classification accu-
racy is 95%. However, the ensemble approach did not 
provide good accuracy as desired because all four classi-
fiers were ‘black-box’.

In 2018, Lahmiri et  al. [92] used generalized Hurst 
exponent (GHE) and KNN, to propose a system for 
identifying the ‘seizure’ and ‘non-seizure’ classes from 
intracranial EEG recordings, detection rate, with 100% 

accuracy rate. Further, Lahmiri et al. [43] exploited GHE 
with SVM, to classify the ‘seizure’ and ‘non-seizure’, and 
also they found 100% accuracy in less time. Here, the 
good indication is that authors claim the good accuracy 
in less time for seizure detection. But, the authors did 
not clearly define how many times the seizure can be 
detected. In another study by Al Ghayab et  al. [88], the 
obtained accuracy is 100% as a result of using the con-
cept of Information gain theory, to extract and rank the 
meaningful features from EEG signal dataset. The least 
square-support vector machine (LS-SVM) is then applied 
to classify the seizure cases. Moreover, due to the ‘black-
box’’s nature of applied classifiers, the authors could not 
explore any other related aspects in terms of Knowledge 
discovery. Zabihi et  al. [81] did patient-specific seizure 
detection using SVM classifier on the processed dataset 
with a good set of features, comprising time-domain, fre-
quency-domain, time–frequency domain, and non-linear 
feature. The performance of their model has achieved an 
average of 93.78% sensitivity and a specificity of 99.05%. 
Here, it is noteworthy that they skip an important fea-
ture—‘line length’, from the available literature, which 
is prominently used in seizure detection. We also argue 
that CHB-MIT dataset [60] is imbalanced because, in 
an hour(s) of recording, a seizure time span is for a few 
seconds.

Observations
The main issue with ‘black-box’ classifiers is that they 

only make prediction without providing logic rules or 
patterns. That is why, they are not recommended for 
extracting sensible knowledge. For example, for class 
imbalance issues in EEG datasets, insufficient related lit-
erature is found, and the researchers who attempted to 
work on this problem did not provide a conceivable solu-
tion as to how to solve the class imbalance issue whilst 
detecting the seizure.

5.3 � Seizure detection based on non‑black‑box classifiers
‘Black-box’ classifiers are unable to express their classifi-
cation procedure for human interpretation [67, 104, 116]. 
Consequently, there are fewer chances for knowledge dis-
covery and better accuracy performance. Therefore, the 
concept of ‘non-black-box’ classifiers such as decision 
trees, and decision forests came into practice.

Chen et  al. [119] first introduced the decision tree to 
the EEG dataset for seizure detection. Kemal and Saleh 
[120] used a C5.0 decision tree [121] algorithm to explore 
the logic rules for seizure detection, with an average 
accuracy of 75%. When the same C5.0 was applied to the 
same dataset processed by Fourier transformation the 
obtained accuracy with cross-validation was, however, 
98.62%. A few related works are been available, where 
only a decision tree method is applied seizure detection 
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because of less accuracy and a limited number of patterns 
obtained from the logic rules of a decision tree [122]. As 
a result, both the knowledge discovery and accuracy suf-
fer. However, this gap can be filled by applying decision 
forest approaches instead [51, 57, 123].

Through the literature, it is found that the decision for-
est approaches are more effective than the single decision 
tree [57, 124], because the decision tree often gives a con-
fined set of rules and overfitting issue is also raised [68]. 
The rules are extracted from training data by a decision 
tree that generates either limited or a single set of logic 
rules (Say, wherever C2_Entropy value ≤ 101.01 then 
Class_value = seizure ) and stops growing the tree further 
records in the training dataset once the rule is accepted. 
However, if we generate a decision forest on the train-
ing data, we can achieve multiple sets of decision trees 
with the combination of sensible logic rules and a higher 
accuracy rate due to the majority voting method [57]. 
Decision forest classifiers [54, 68] are the type of ensem-
ble methods that are used frequently. These are also used 
in seizure detection as they provide a high accuracy rate 
which depends on the majority voting method from the 
ensemble of decision trees. Moreover, they produce more 
logic rules as multiple decision trees from the training 
data (D) [123]. These logic rules are humanly interpret-
able, and data scientists can easily interrelate them with 
other seizure-related information from EEG datasets.

Siddiqui and Islam [125] used Systematic Forest (SyS-
For) to detect the seizure on ECoG without epoch reduc-
tion. Further, Siddiqui et  al. [63] applied two decision 
forests—Systematic Forest (SysFor) [123] and Forest 
CERN [51] on nine statistical features for quick seizure 
detection using the concept of epoch length reduction. 
It is based on dividing the size of training dataset D into 
D1,D2 , ...Dn and testing the accuracy at every epoch of 
the dataset. These sub-datasets are in descending order 
in terms of time duration. If the seizure can be detected 
in a shorter epoch length without a decline in accuracy, 
then we can use the same one, which results in fast sei-
zure detection. They achieved 100% accuracy. The limita-
tion of this work is that authors have taken the dataset 
of a single patient, this could be tested for more patients. 
Several researchers have taken the advantages of ran-
dom forest classifier for detecting the seizures [76, 78, 
82, 126]. Because researchers/data scientists are able to 
see the logic rules and interpret them correspondingly. 
Moreover, it also provides good accuracy [44, 76–78, 80, 
82]. Donos et al. [44] applied decision forest classifier—
random forest, on time and frequency domains’ feature, 
which was extracted from an IEEG (Intra-cranial EEG) 
dataset. It helped in selecting the intra-cranial channels 
for early seizure detection in a closed-loop circuit. The 
results claimed that the system can detect the seizure 

with 93.8% sensitivity. Wang et  al. [94] developed the 
greedy approach of random forest, i.e., forest-grid search 
optimization (RF-GSO), with this method and they found 
96.7% accuracy. The shortcoming of this technique is 
that the performance could decline if EEG signals are 
too noisy. Tzimourta et al. [93] applied random forest to 
monitor seizure activities on the two benchmark epilepsy 
datasets [64, 65], the reported performance is 99.74%. 
Pinto-Orellana and Fábio R. Cerqueira [76] also used the 
random forest on the processed CHB-MIT dataset by a 
Spectro-temporal feature, and 70s, and the accuracy of 
each block is 98.30%.

Truong ND et  al. [82] had carried out novel work of 
channel selection whilst detecting the seizure. Their key 
contribution is that they also focus on channels contrib-
uting mostly to automatic seizure detection. They used 
the random forest to solve channel selection and sei-
zure detection, and which achieving 96.94% area under 
the curve (AUC). In another work, Mursalin et  al. [80] 
proposed a method for seizure detection by selecting 
features with an Improved Correlation-based Feature 
Selection(ICFS). Basically it is a fusion of time and fre-
quency domain. Then, a random forest classifier was 
applied for the seizure detection model. The obtained 
average classification accuracy by this approach was 
98.75%.

Some other works have used an ensemble of ‘non-
black-box’ classifiers such as boosting, bagging and ran-
dom subspace [78, 127]. Yan et al. [78] applied a boosting 
classifier achieving 94.26% of accuracy, although the 
results were not as impressive as the ones obtained by 
[44], which used a random forest classifier. Hosseini [128] 
used Random subspace classifier along with an SVM clas-
sifier, to classify and detect seizures. Here, the benefit of 
applying a subspace on big datasets is to divide them into 
sub-datasets based on the random subspace concept, and 
then the SVM classifier was applied to each sub-dataset. 
Ensemble accuracy (EA) was calculated by the majority 
voting method, which was 95%. Apart from this study, 
the same authors of Hosseini et  al. [126] recently did 
another research using an ensemble of classifiers. First, 
they created bootstrap samples using a random subspace 
method, and then applied classifiers such as SVM, KNN, 
extended nearest neighbor (ENN), and multilayer per-
ceptron (MLP) obtaining 97% accuracy. Hussein et  al. 
[100], proposed a novel feature extraction method, i.e., 
L1-penalized robust regression (L1PRR), which uses 
three common symptoms during seizures—muscles arti-
facts, eyes movement, and white noise. Inputting these 
features help the random forest classifier to obtain 100% 
accuracy.

Observations In comparison to decision trees, decision 
forest classifiers are tremendously used on brain datasets 
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for exploring different research goals. It is difficult to 
suggest a particular classifier whilst dealing with a high-
dimensional dataset, but a random forest classifier can 
be a capable classifier. However, it also criticizes that not 
all the ‘non-black-box’ classifiers are peculiar to detect 
seizures and have also pointed out the objection on the 
drawback of using a single decision tree classifier.

5.4 � Seizure detection based on black‑box 
and non‑black‑box machine learning classifiers

From the literature, it is found that just a single machine 
learning classifier is not sufficient. Therefore, to take 
advantage of both ‘black-box’ and ‘non-black-box’ clas-
sifiers, some researchers utilized them in their experi-
ments. This section provides a comprehensive review of 
classifiers applied together to detect the seizure.

Acharya et  al. [111] used the ensemble of seven dif-
ferent classifiers—Fuzzy surgeon classifier (FSC), SVM, 
KNN, Probabilistic neural network, GMM, decision tree 
and Naïve Bayes for distinguishing the three states of a 
patient as ‘normal, ‘pre-ictal’ and ‘ictal’. The overall accu-
racy is 98.1%. Fergus et al. [83] also used distinct classifi-
ers such as linear discriminant analysis (LDA), quadratic 
discriminant classifier (QDC), logistic classifier, uncorre-
lated normal density-based classifier (UDC), polynomial 
classifier, KNN, PARZEN, SVM, and decision tree on 
the processed data with seven features such as entropy, 
RMS, skewness, and variance. They contributed that 
the detected patient is suffering from a ‘Generalize sei-
zure’ (means affecting whole brain region) across differ-
ent patients without prior information about the seizure 
focal points. Mursalin et al. [101] proposed a method to 
reduce the data size, statistical sampling technique called 
optimum sample allocation technique, and to reduce the 
features they develop a feature selection algorithm. The 
analysis was done on the combination of five classifiers—
SVM, KNN, NB, Logistic Model Trees (LMT) and Ran-
dom forest.

Rand and Sriram [95] used four classifiers such as 
SVM, KNN, random forest, and Adaboost on a high-
dimensional dataset prepared by 28 features. Their result 
shows that SVM outperforms on the cubic kernel. In 
another study, Manzouri et  al. [98] used SVM and ran-
dom forest on the dataset produced by 10-time and fre-
quency features. In comparison to SVM-based detector, 
random forest classifier outperforms. Subasi et  al. [96] 
achieved 100% of accuracy using four machine learning 
classifiers such as ANN, KNN, SVM, and random for-
est on two popular datasets—Freiburg and CHB-MIT 
to classify the three different states of seizures ‘pre-ictal’, 
‘ictal’, and ‘inter-ictal’. Sharma et  al. [102] proposed an 
automated system using iterative filtering and random 
forest for classifying the EEG signals. This work achieved 

classification accuracies of 99.5% on BONN dataset 
(A-E), for A versus E subsets, 96% for D versus E sub-
sets, and 98.4% for ABCD versus E classes of EEG signals. 
Birjandtalab et  al. [77] used two classifiers for different 
purposes; KNN is used to discriminate the ‘seizure’ and 
‘non-seizure’ classes, whereas random forest is used to 
explore the significant channels. Here, the random forest 
also helps in the dimension reduction problem. The main 
benefit of selecting suitable channels is that it helps in 
providing relevant required information from the chosen 
channels, and reduces the computational cost of a classi-
fier too. However, the authors did not mention here the 
important information from channel selection like find-
ing the seizure location from the brain scalp. The main 
critic in [95, 98, 101] is that because of a large number of 
features, the attribute size of dataset will increases, and 
as a result the accuracy and computation time suffer.

5.4.1 � Observations
We observe that some work used an ensemble of dis-
tinguished classifiers to take the benefits separately. For 
example, influential channel selection can be indepen-
dently done using decision forest classifiers like a random 
forest. But authors used other classifiers such as SVM 
and KNN for classifying the seizure records with good 
accuracy.

6 � Seizure localization
After a successful seizure detection, localization is an 
essential task for epileptic surgery [129–131]. Typi-
cally, localized seizures can be cured by surgery which 
arises either from the left or right region of the brain. 
The seizure monitoring tools such as ECoG and EEG 
are prominently helpful to identify the seizure location. 
The electrodes/channels are implanted in a non-invasive 
(for EEG) and an invasive manner (for ECoG). Their 
positioning is based on the 10/20 (10–20) International 
system, which helps in identifying the seizure location 
[132]. The concept of seizure localization means identify-
ing the region of the brain affected by a seizure. Though 
some types of seizures such as ‘tonic-clonic’ are cured by 
anti-epileptic drugs (AED), patients with partial seizures 
in some cases might go for surgery [13]. To solve this 
problem, finding the seizure location is an essential and 
challenging task for neurologists and neurosurgeon [129, 
130]. The surgical target is to find a point/location/focal 
area from where a seizure is originating. The 10–20 posi-
tioning system gives some clues for identifying the loca-
tion of a seizure. Recently, computational and machine 
learning methods have been applied to identify a seizure 
location [130, 133].

Acar et al. [133] used trucker and non-linear multi-way 
Trucker kernels, and claimed that other classifiers such as 
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SVD and principal component analysis (PCA) were una-
ble to localize a seizure. Ghannad-Rezaie [134] applied 
an advanced swarm intelligence algorithm to seizure data 
for finding seizure location. Their study produced some 
appreciable results, and explored whether the patient’s 
temporal lobe was affected by a seizure or not. They also 
suggested that SVM might be able to detect the seizure 
location. Moreover, they also focused on the reduction of 
ECoG electrodes. Mansouri et al. [135] proposed an algo-
rithm for Seizure localization, which was tested on 10 sec 
of EEG dataset from Karuniya University. Here, they have 
taken the small-size dataset, because recording usually 
takes several hours. If they had tested on a big dataset, it 
would have been much better. Fakhraei et al. [130] calcu-
lated the sensitivity of each region of the brain. The confi-
dent prediction rate (CPR) was compared with the AUC of 
ROC plots obtained by six classifiers from the dataset of 79 
patients (31 males, 48 females) with 197 medical features. 
The study found that CPR was more suitable than ROC. 
They also explored that 43 patients had the temporal lobe 
epilepsy (TLE) on their left sides whilst 36 patients had it 
on the right sides of their brains. Likewise, Rai et al. [136] 
proposed a method for identifying the focal points of the 
seizure by applying two entropy-based features—‘renyi 
entropy’ and ‘negentropy’ with the neural network classi-
fier. Siddiqui et al. [63] localize the seizure using two deci-
sion forest classifiers, and their results showed that the left 
hemisphere of a brain was more affected by the seizures.

Observation
It is found that compared to seizure detection, machine 

learning classifiers have not been extensively applied 
for seizure localization. But some literature exist on this 
problem. In these reported works, authors did not men-
tion the percentage of the affected region of the brain 
by a seizure, and they were not able to identify the exact 
location at the lobes such as occipital, frontal, parietal left 
and parietal right. Although, it is not our primary objec-
tive in this review paper, whilst discussing the related 
published research, we found some interesting clues for 
seizure localization.

7 � Problems identified in existing literature
One of the most significant and decisive steps is to select 
suitable statistical features because each channel or elec-
trode implanted on the brain provides different statisti-
cal measures. Undoubtedly, earlier researchers made 
their consistent efforts to find the best features. Whilst 
some researchers used many features [34, 79], the others 
applied a few features [31, 36, 108, 112, 137] for detect-
ing the seizure. As a data scientist, it is very important to 
see the different statistical perspectives of each brain sig-
nal by analyzing the statistical properties of the features 
such as entropy, energy, and skewness. And we must not 

focus on taking irrelevant feature(s) as such since it will 
unnecessarily increase the dataset size. Consequently, 
it will be more a burden to machine learning classifiers 
than a benefit, and if we take few features as previous 
researchers did [71, 73, 79], this will give the low-dimen-
sional dataset and it will not be beneficial for an effec-
tive knowledge discovery process. Therefore, we should 
select those potential features that can to provide logical 
results. Hence, it is advisable to select a group of features 
to avoid a burden to the machine learning classifiers and 
to get help in related knowledge discovery.

Each classifier has its own merits and demerits, 
depending on the dataset attributes and requirements 
[138]. In general, it is very difficult to point out which 
classifier was the most effective for brain datasets. To 
identify the capable classifier, several classifiers have 
been tested on EEG datasets and their performance has 
been evaluated, and the one which performs well is to 
be considered in solving seizure detection and imparting 
knowledge discovery. The literature reveals that previ-
ous researchers had applied different approaches, most 
of which were from ‘black-box’ such as ANN, KNN and 
SVM. The biggest shortcoming in them is that they are 
unable to provide the appropriate explanations for pat-
terns and the logic rules hidden inside the models. That 
is why, they are not suggested for remarkable knowl-
edge discovery process. Data scientists may not explore 
the internal processing of patterns [51, 104]. However, 
from the literature, it is noted that the ‘non-black-box’ 
approach, especially, random forest, is widely used for 
seizure detection [44, 76, 77], because of its nature of 
generating bootstrap samples [124, 139] whilst building 
a decision forest. An analysis has been done to estimate 
the performance of machine learning classifiers on EEG 
datasets and has been found that ensemble non-black-
classifiers performs effectively [104]. We argue that 
the random forest is based on bootstrap samples and it 
misses some influential attributes, because it randomly 
selects the attribute and sometimes generates the same 
set of logic rules also. As a result, sometimes, it creates 
irrelevant information too. To overcome this issue, we 
also suggest some other decision forest algorithms such 
as SysFor [123] and Forest CERN [51] methods in seizure 
detection.

All these findings on seizure detection raise few inter-
esting research questions such as selecting suitable statis-
tical features and machine learning classifiers to take less 
computation time as dataset has a high volume with high 
dimension, and the most significant missing information 
from machine learning classifiers is locating the accurate 
point of seizure at the brain lobe(s).
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7.1 � Class imbalance issue in seizure detection
Class imbalance is one of the serious problems [140] in 
machine learning and the majority is seen in medical 
datasets [141], particularly in EEG signals. This is because 
the duration of EEG recording is long, time-consuming 
and seizure duration is for a few seconds, which results 
in being prone to errors [91]. As a result, the dataset 
becomes highly imbalanced. Previous researchers have 
focused on seizure detection. Over the last few years, 
researchers have been focusing on the class imbalance 
challenge whilst detecting the seizures, and attempting 
to solve it by applying different conventional approaches 
with some novelties. Javad Birjandtalab et  al. [91] used 
ANN with a weighted cost function to imbalanced EEG 
dataset, by achieving 86% F-measure. El Saadi et  al. 
[142] obtained 97.3% accuracy using the under-sampling 
method with the SVM classifier. In another work by 
Saadullah and Awais [143], they used a combination of 
SMOTE and RUSTBOST techniques for detecting sei-
zure to imbalance seizure data with 97% accuracy. How-
ever, the research done by Yuan Qi et  al. [86] was very 
close to the satisfactory result as they assigned the heavy 
weights to a minority class of the data to maintain the 
effective balance and solved the biasing issue. The main 
critique of this work is that the authors did not men-
tioned what weights were assigned and what was their 
threshold level? Here, we argue that despite of EEG data 
are highly imbalanced as a result of their long-hour EEG 
recordings, the recordings continue until the seizure is 
detected. The seizure(s) time spans from only seconds to 
minute(s). Although researchers [76, 86, 117, 143] made 
their efforts in addressing this issue using both ‘black-
box’ and ‘non-black-box’ classifiers, they did not propose 
any justifiable solutions, in terms of how big weights 
should be assigned to the minority (seizure) classes.

8 � Overall observation about capable classifiers 
and statistical features

It is challenging to suggest that a specific classifier 
should be capable for seizure detection. If we discuss 
classifiers, three constraints are very important whilst 
selecting a classifier—able to handle the high-dimen-
sional dataset, high accuracy of the model, and able to 
retrieve the sensible knowledge. Not all machine learn-
ing classifiers are suitable for seizure detection and 
knowledge discovery tasks, mainly because of their 
black-box nature. This means that the logic rules/pat-
terns are not visible and understandable to data scien-
tists. In ‘non-black-box’ classifiers amongst decision 
trees [53] and decision forests [54], only decision for-
est algorithms are more capable, because the logic rules 
and knowledge discovered by a single decision tree are 

often limited and insufficient. For example, if we build 
a decision tree on a training dataset—it provides a lim-
ited or single set of logic rules and stops growing the 
tree further as all the data points in the training set 
accept that rule. On the other hand, if we build a deci-
sion forest on the same training set, we get multiple 
decision trees with more sensible logic rules. Siddiqui 
et  al. [104] have done the analysis on CHB-MIT data-
set to know which classifier performs better. For this, 
they applied two black-box (SVM and KNN) and two 
non-black-box (decision tree and ensemble of trees 
i.e., bagging, random subspace, boosting); they found 
non-black box classifier (ensemble) outperforms com-
pared to other classifiers of black-box. Even ensemble 
also performs better than a single decision tree which 
is a non-black box classifier. Siddiqui et al. [63] applied 
two decision forests—Systematic Forest (SysFor) and 
Forest CERN for quick seizure detection using the con-
cept of epoch length reduction. They achieved 100% of 
accuracy. Similarly, Hussein et  al. [100] also achieved 
100% accuracy using decision forest–random forest 
approach.

The literature reveals that in the last few years, ‘non-
black-box’ classifiers, particularly decision forest 
approach, were widely used on brain datasets of EEG and 
ECoG for different research goals [76, 82, 94, 144]. The 
reasons for using the decision forest for seizure detection 
are as follows: 

1.	 A decision forest overcomes some of the disadvan-
tages of a decision tree. A decision tree discovers 
only a single set of logic rules from an input dataset. 
The logic rules that are discovered by a single deci-
sion tree may fail to correctly predict and classify the 
class values;

2.	 A decision forest can produce more set of logic rules/
patterns compared to a single decision tree and there 
is a high chance of good prediction/classification 
compared to a single decision tree;

3.	 Able to handle high-dimensional sets;
4.	 Due to its ensemble nature a decision forest mostly 

produces a high accuracy compared to a single tree 
and other classifiers [54];

5.	 Less computational time (specifically for Random 
forest);

6.	 Logic rules are clear and humanly interpretable such 
as analysts/domain experts can easily understand 
and suggest best opinions. For example, affected 
brain lobe by seizure, identifying suitable statistical 
features, etc.

Furthermore, many statistical features have been used for 
seizure detection. However, a comparison between them 
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is difficult because of their heterogeneous nature. Some 
researchers used a single feature such as energy and 
entropy. On the other hand, a combination of statistical 
features such as energy, kurtosis, line length, entropy, 
skewness, max, standard deviation, and min may pro-
duce promising outcomes. Most research [34, 46, 92, 100, 
109, 145] have achieved better results using these fea-
tures. The novelty of [29, 63, 104, 125] is the selected nine 
statistical features are able to assist in seizure detection 
with high accuracy, i.e., 100%. This also provides the clue 
about seizure localization with the help of sensible logical 
rules. Hence, the selected group of features will not be a 
burden to the machine learning classifier but it will assist 
in related knowledge discovery.

9 � Research directions in seizure detection
In this research analysis, we surveyed different machine 
learning classifiers used for seizure detection. No doubt, 
the progress of the persistent attempt has been found in 
this topic but few interesting research questions are also 
raised. In this section, we identify significant challenges 
which can uplift the future research in this area. 

1.	 Selecting suitable statistical features and machine 
learning classifiers to take less computation time as 
the dataset has a high volume with a high dimension.

2.	 Accurate seizure detection on imbalanced datasets of 
long duration EEG recording datasets.

3.	 Quick seizure detection on long-hour EEG record-
ing.

4.	 Whilst selecting the machine classifier it should be 
kept in mind that the classifier does not miss any 
necessary EEG channel/electrode.

5.	 Knowledge discovery from machine learning classi-
fiers such as seizure localization which exactly points 
affected brain lobe(s), channel importance, and based 
on participating channels in seizure a knowledge 
could be provided to neurologist or neurosurgeon for 
suggesting epilepsy category.

10 � Conclusion
With the increase of epilepsy, its accurate detection 
becomes increasingly important. A major challenge is 
to detect seizures correctly from a large volume of data. 
Due to the complexity of EEG signals in such datasets, 
machine learning classifiers are suitable for accurate sei-
zure detection. Selecting suitable classifiers and features 
are, however, crucial.

As such, this paper has comprehensively reviewed 
machine learning approaches for seizure detec-
tion. As a result, we conclude that ‘non-black-box’ 

classifiers—decision forest (ensemble of decision trees)—
is most effective. This is because it can produce multiple 
sensible, explanatory logic rules with high accuracy of 
prediction. Further, it can help discover some relevant 
information such as seizure localization and exploring 
seizure types. On the contrary, ‘black-box’ classifiers can-
not generate logic rules, although they can achieve high 
predictive accuracy. As for selecting suitable features, we 
should select those that can provide logical results. By 
the review of the literature, the use of the features such 
as entropy, line length, energy, skewness, kurtosis, and 
standard deviation can achieve 100% accuracy in the 
classifiers. We suggest not to use the irrelevant features 
as the dimension of the data increases. This is because 
the computation cost of a classifier will grow high, and 
it may also produce insensible patterns. If we use just 
one or two features such as line length and energy, the 
low-dimensional dataset will be generated. However, this 
dataset will not be fruitful for the knowledge discovery 
process.

This review paper has provided new perspectives to 
data scientists who are working on epileptic seizure 
detection using EEG signals. In summary, this paper 
focuses on the review of selecting machine learning clas-
sifiers and suitable features.
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