Skip to main content
. 2020 May 19;8:178. doi: 10.3389/fpubh.2020.00178

Algorithm 2.

HUSDOS-Boost with AdaBoost.M1

  1: Initialize the boosting weights Dn,1 = 1/N for xnS, and the sampling weights SW1,n=1/Nmaj for xnS maj.
  2: for t = 1, …, T do
  3:     Apply HUS with SWt,n to Smaj to generate Ŝt maj with a size Nu.
  4:     Apply DOS to Smin to generate Ŝt min with a size No, where S minŜt min.
  5:     Ŝt=Ŝt majŜt min.
  6:     Train the tth weak classifier ft from Ŝt so as to minimize Ĵt.
  7:     Get hypothesis of xnS: ht,n = ft(xn).
  8:     Calculate the error of ht,n, εt: εt= n:ht,nynDt,n.
  9:     Set βt = εt/(1 − εt).
10:     Update the boosting weights Dt+1,n by Eq.(2).
11:     Update the sampling weights SWt+1,n by Eq.(4).
12: end for
13: return The final hypothesis H(x).