Skip to main content
. 2020 May 3;20(9):2605. doi: 10.3390/s20092605

Table 1.

Comparison table for highlighted DCGAN architectures. The lower the DTW and FFT MSE metric values, the better is the generated signal. The lower the discriminator loss, the better it is at distinguishing fake from real samples. The lower the generator loss, the better it is at generating fake samples closer to real samples. Model number 6 (4CNN-MBD-MA) shows the best overall results.

# Model Latent
Space (z)
Disc.
Loss
Gen.
Loss
DTW FFT MSE EMG Envelope
Cross-Correlation
1. 3CNN-NOISE Rand (100) 0.000002 16.118095 405.038863 130.188808 0.373913
2. 3CNN Sample (400) 0.005163 3.084711 132.185279 13.093062 0.205428
3. WAVELET Sample (400) 0.066975 2.680009 100.145536 16.564078 0.223018
4. 4CNN Sample (400) 0.035544 7.006461 93.439412 9.675622 0.624258
5. 4CNN-MBD Sample (400) 0.000203 10.275796 100.786512 18.916364 0.739453
6. 4CNN-MBD-MA Sample (400) 0.004439 10.636311 98.532786 13.531477 0.791920