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Abstract: Electrochemical methods offer the simple characterization of the synthesis of molecularly
imprinted polymers (MIPs) and the readouts of target binding. The binding of electroinactive
analytes can be detected indirectly by their modulating effect on the diffusional permeability of a
redox marker through thin MIP films. However, this process generates an overall signal, which may
include nonspecific interactions with the nonimprinted surface and adsorption at the electrode surface
in addition to (specific) binding to the cavities. Redox-active low-molecular-weight targets and
metalloproteins enable a more specific direct quantification of their binding to MIPs by measuring
the faradaic current. The in situ characterization of enzymes, MIP-based mimics of redox enzymes or
enzyme-labeled targets, is based on the indication of an electroactive product. This approach allows
the determination of both the activity of the bio(mimetic) catalyst and of the substrate concentration.

Keywords: molecularly imprinted polymers; electropolymerization; direct electron transfer; catalysis;
redox marker; gate effect

1. Introduction

Over the past decades, increasing attention has been paid to the fast, selective and cost-effective
detection and determination of analytes in many areas, including clinical diagnostics, pharmaceutical
and environmental analysis, food control and security. Well-established laboratory-based (bio)analytical
methods achieved great breakthroughs due to the highly specific interactions involved in most biological
processes, e.g., the antigen–antibody interaction, substrate conversion by the action of enzymes and
the sequence-specific hybridization of nucleic acids [1].

Nevertheless, biochemical reagents also have some drawbacks, such as stability under harsh
conditions (high temperature, organic solvents, limited pH range), reusability and animal usage in
preparation (antibodies). Starting from supramolecular chemistry, molecularly imprinted polymers
(MIPs) have been created, which potentially overcome these drawbacks [2–8]. They are prepared by
polymerizing functional monomers in the presence of a target analyte (template). The subsequent
removal of the template from the polymer results in the formation of cavities with a molecular memory
mirroring the size and shape of the template (Figure 1). MIPs mimic the binding sites of antibodies by
substituting the amino acid scaffold for synthetic polymers. Furthermore, catalytically active MIPs
containing metal ions or prosthetic groups of oxidoreductases have been developed, which exhibit
enzyme-like activity towards substrates [9,10]. The polymer scaffold of the MIP provides specificity by
substrate binding to the cavities while the metal complex is the reactive center. The performance of
MIPs has also been markedly enhanced by incorporating nanomaterials [11,12] and, as a new trend,
by integration in metal organic frameworks (MOFs) [13,14].
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Figure 1. Schematic representation of MIP preparation. 

For a good analytical performance of the sensor, the MIP should be placed immediately on the 
surface of the electrode. Two different procedures for the preparation of MIP sensors have been 
described in the literature [15]. 

(i) In the first procedure, the MIP is separately synthesized and then immobilized on the 
transducer surface. In the past, MIPs were most frequently synthesized using bulk polymerization. 
As a result, monolithic materials are produced, which are then ground into smaller particles. The 
major disadvantage of bulk polymerization is the bad accessibility and inhomogeneity of the 
binding pockets, which leads to a longer template removal time and slow rebinding. To overcome 
these problems, different forms of MIPs, such as micro- or nanobeads, nanoparticles or nanospheres 
have been prepared [16–19]. 

For the integration of MIPs in the body of the sensor, different methods have been used 
[15,20,21]. The simplest approach is drop coating [22]. Furthermore, spin coating or spray coating 
have been applied [23]. Grafting is another approach used for the incorporation of the MIPs [24]. In 
addition to the described approaches, MIPs can also be integrated via the preparation of composite 
membranes or layer-by-layer assembly [15,20]. 

(ii) In the second procedure, the MIP-based recognition layer is directly formed on the 
transducer. In addition to the formation of an MIP layer by self-polymerization [25] and the 
microcontact imprinting of a soft polymer cover layer [26], electropolymerization is the most 
straightforward way to prepare MIPs directly on the conductive surface of a transducer, e.g., on an 
electrode, QCM or SPR chip [15,20,27]. An advantage of electrosynthesis is that the film thickness 
can be adjusted by varying the charge passed during the polymerization. The selection of the 
solvent and supporting electrolyte and the regime of potential applications influence the 
morphology of the polymer layer [20,28]. Furthermore, the application of potential pulses is a 
simple method for removing the template after the MIP synthesis. 

Molecular recognition by MIPs has been coupled in biomimetic sensors with a whole arsenal of 
transducers [20,28–36]. Among them, electrochemical and optical techniques clearly dominate 
[31,37]. In addition, piezoelectric [38–40], thermal [41,42] and micromechanical [43,44] transducers 
have been applied in MIP sensors. All steps of MIP synthesis, and of the measurement, can be 
analyzed by methods directly indicating the presence of the target molecule in the MIP layer, or by 
indirect methods evaluating the change in the signal of a marker [1,31,45]. The direct detection of 
the template molecules by the redox conversion at an electrode [46], intrinsic fluorescence of the 
target or of a label [47], Raman and FTIR spectroscopy [48] or surface-enhanced infrared absorption 
(SEIRA) spectroscopy [49] specifically indicate the presence of the template in the MIP during the 
removal and rebinding of the target. In contrast, surface plasmon resonance (SPR), quartz crystal 
microbalance (QCM), and capacitor- or thermistor-based sensing systems reflect specific binding, 
nonspecific adsorption to the polymer surface and other types of changes in the chemical 
environment [1,33,42,50,51].  

Figure 1. Schematic representation of MIP preparation.

For a good analytical performance of the sensor, the MIP should be placed immediately on the
surface of the electrode. Two different procedures for the preparation of MIP sensors have been
described in the literature [15].

(i) In the first procedure, the MIP is separately synthesized and then immobilized on the
transducer surface. In the past, MIPs were most frequently synthesized using bulk polymerization.
As a result, monolithic materials are produced, which are then ground into smaller particles. The major
disadvantage of bulk polymerization is the bad accessibility and inhomogeneity of the binding
pockets, which leads to a longer template removal time and slow rebinding. To overcome these
problems, different forms of MIPs, such as micro- or nanobeads, nanoparticles or nanospheres have
been prepared [16–19].

For the integration of MIPs in the body of the sensor, different methods have been used [15,20,21].
The simplest approach is drop coating [22]. Furthermore, spin coating or spray coating have been
applied [23]. Grafting is another approach used for the incorporation of the MIPs [24]. In addition to
the described approaches, MIPs can also be integrated via the preparation of composite membranes or
layer-by-layer assembly [15,20].

(ii) In the second procedure, the MIP-based recognition layer is directly formed on the transducer.
In addition to the formation of an MIP layer by self-polymerization [25] and the microcontact imprinting
of a soft polymer cover layer [26], electropolymerization is the most straightforward way to prepare
MIPs directly on the conductive surface of a transducer, e.g., on an electrode, QCM or SPR chip [15,20,27].
An advantage of electrosynthesis is that the film thickness can be adjusted by varying the charge passed
during the polymerization. The selection of the solvent and supporting electrolyte and the regime
of potential applications influence the morphology of the polymer layer [20,28]. Furthermore, the
application of potential pulses is a simple method for removing the template after the MIP synthesis.

Molecular recognition by MIPs has been coupled in biomimetic sensors with a whole arsenal of
transducers [20,28–36]. Among them, electrochemical and optical techniques clearly dominate [31,37].
In addition, piezoelectric [38–40], thermal [41,42] and micromechanical [43,44] transducers have been
applied in MIP sensors. All steps of MIP synthesis, and of the measurement, can be analyzed by
methods directly indicating the presence of the target molecule in the MIP layer, or by indirect methods
evaluating the change in the signal of a marker [1,31,45]. The direct detection of the template molecules
by the redox conversion at an electrode [46], intrinsic fluorescence of the target or of a label [47],
Raman and FTIR spectroscopy [48] or surface-enhanced infrared absorption (SEIRA) spectroscopy [49]
specifically indicate the presence of the template in the MIP during the removal and rebinding
of the target. In contrast, surface plasmon resonance (SPR), quartz crystal microbalance (QCM),
and capacitor- or thermistor-based sensing systems reflect specific binding, nonspecific adsorption to
the polymer surface and other types of changes in the chemical environment [1,33,42,50,51].
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Another important aspect is the assay format. The determination of thermodynamic parameters,
e.g., the binding constant, requires the generation of the measuring signal under equilibrium conditions,
i.e., the affinity sensor is in a target-containing solution. Only for binder–target pairs, with a very low
rate of dissociation, can the measurement be performed in a target-free solution. On the other hand,
for “dynamic” systems, the dissociation rate can be determined by the decay of the signal after the
removal of the target, which is an approach frequently used for SPR and QCM sensors [40,52].

In this review, the focus will be on the electrochemical readout of MIP sensors.

2. Electrochemical Readout

The electrochemical readout of biosensors started in 1962 with the first glucose sensor by Leland
Clark [53]. Enzyme electrodes allow the indirect measurement of an electroinactive analyte by indicating
the concentration change of an electroactive reaction partner, e.g., oxygen, hydrogen peroxide, a redox
marker or the change of the pH. Electrochemical methods have been successfully transferred to
immunosensors [54] and nucleic acid arrays [55]. Electrochemical biomimetic sensors based on MIPs
or aptamers have also been developed [56].

Among the electrochemical approaches, a comparably low number of potentiometric MIP sensors,
capacitors or field effect transistors have been presented, while voltammetric methods are widely
used [28,33,57–59]. The potential window of voltammetric sensors is restricted by anodic oxygen
evolution and cathodic hydrogen generation. This potential region is larger for carbon-based electrodes
as compared with noble metal electrodes. The measuring potential of the electrode is decisive for the
selectivity of the sensor. Any electroactive substance with a lower redox potential is electrochemically
converted, thus contributing to the electrode signal. Pulse methods like differential pulse voltammetry
(DPV) and square wave voltammetry (SWV) are effective methods to suppress electrochemical
interferences and to increase sensitivity by eliminating the charging current. Additionally, a large
spectrum of nanomaterials, including nanoparticles, carbon nanotubes and graphene, has been
successfully applied to improve the analytical performance of electrochemical sensors, including
MIPs [11,12].

Electrochemical methods are especially appropriate for the direct quantification of redox-active
analytes, and for the indication of redox enzymes or enzyme mimics, by measuring the formation of
electroactive products. For the measurement of electroinactive analytes by affinity sensors, redox-active
labels or enzyme “tracers” have been used to generate an electrochemical signal. As a general approach
for all affinity sensors, the modulation of the electrochemical signal of a redox marker has been
introduced. These electrochemical approaches have been adapted for the readout of MIP sensors
(Figure 2) [1,20,31,37].Sensors 2020, 20, x FOR PEER REVIEW 4 of 21 
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Figure 2. The main approaches used in electrochemical readouts of MIP-based sensors. 
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The most specific detection of rebinding to the MIP is the electrochemical conversion of the 
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lack of selectivity may originate from “nonspecific pores” in the polymer layer, but not from the 
insufficient selectivity of the imprinted sites. The MIP film acts as a “molecular filter” on the 
electrode surface, which discriminates the constituents of the sample according to the size and 
shape of the molecules. This “filtering” leads to a marked improvement in the specificity as 
compared with the bare electrode. However, the partial “blockage” of the electrode surface 
decreases the sensitivity as compared with the bare electrode. The integration of nanomaterials such as 
nanoparticles, carbon nanotubes or graphene in the MIP layer increases the active surface area, thus 
enhancing sensitivity [11]. 

This measuring principle has been applied to a broad spectrum of low molecular-weight-
substances, such as drugs (tamoxifen, paracetamol and L-DOPA [60–62]), veterinary drugs [63], 
hormones [64], chemicals (pesticides [65,66] and mycotoxins [67]) or drugs of abuse [68].  

As early as 1995, Kriz and Mosbach described an amperometric detection system for morphine 
based on MIPs [69]. MIP particles were immobilized on a Pt electrode via agarose. The 
measurement involved two steps. In the first step, morphine was bound to the MIP, resulting in an 
increase in current. In the next step, after signal stabilization, the electroinactive competitor, 
codeine, was added to the measuring solution, which caused the release of morphine from the MIP, 
resulting in a further increase in current due to the oxidation of morphine. 

Another frequently applied voltammetric method for the detection and determination of 
electroactive analytes is differential pulse voltammetry. In 2007, Ozcan and Sahin developed an 
MIP sensor for the analgesic and antipyretic drug paracetamol [61]. The MIP was prepared by the 
electropolymerization of pyrrole in the presence of the drug on a graphite electrode. They evaluated 
the performance of the MIP by means of DPV. The sensor showed two linear regions: 5 µM–0.5 mM 
and 1.25–4.5 mM. The limit of detection (LOD) was calculated to be 0.79 µM. They also showed that 
the presence of a two-fold excess of potential interferences like glucose, phenacetin, dopamine, 
ascorbic acid and phenol did not influence the paracetamol response.  

Furthermore, different nanomaterials were incorporated into the MIP sensors to enhance the 
signal [11,12]. For example, Li et al. applied Ag/N-doped reduced graphene oxide (Ag/N-RGO) in 
the MIP sensor for the determination of salbutamol, which is an β2-adrenergic agonist [70]. The 
MIP was prepared on the Ag/N-RGO-modified glassy carbon electrode (GCE) via 
electropolymerization. Cyclic voltammetric measurements demonstrated that in a 0.1 mM 
salbutamol solution, the lowest signal was obtained with bare GCE, whereas Ag/N-RGO-MIP-GCE 
showed the highest signal. DPV was applied for the quantitative determination. The linear range 
was found to be 0.03–20 µM with an LOD of 7 nM.  

Figure 2. The main approaches used in electrochemical readouts of MIP-based sensors.
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(i) When the targets are redox-active, the faradaic current is measured, which is based on the direct
electron transfer (DET) between the target and the underlying electrode.

(ii) In the case of enzyme targets, catalytically active MIPs or enzyme-labeled targets, the enzymatic
activity of the MIP layer is detected via the generation of a redox-active product at the
electrode surface.

(iii) Most of the research covers the flux of a redox marker. The signal modulated by the target binding
is detected at the underlying electrode surface.

2.1. Electroactive Analytes

The most specific detection of rebinding to the MIP is the electrochemical conversion of the analyte.
In this case, the signal originates from the template reaching to the electrode surface. The lack of
selectivity may originate from “nonspecific pores” in the polymer layer, but not from the insufficient
selectivity of the imprinted sites. The MIP film acts as a “molecular filter” on the electrode surface,
which discriminates the constituents of the sample according to the size and shape of the molecules.
This “filtering” leads to a marked improvement in the specificity as compared with the bare electrode.
However, the partial “blockage” of the electrode surface decreases the sensitivity as compared with the
bare electrode. The integration of nanomaterials such as nanoparticles, carbon nanotubes or graphene
in the MIP layer increases the active surface area, thus enhancing sensitivity [11].

This measuring principle has been applied to a broad spectrum of low molecular-weight-substances,
such as drugs (tamoxifen, paracetamol and L-DOPA [60–62]), veterinary drugs [63], hormones [64],
chemicals (pesticides [65,66] and mycotoxins [67]) or drugs of abuse [68].

As early as 1995, Kriz and Mosbach described an amperometric detection system for morphine
based on MIPs [69]. MIP particles were immobilized on a Pt electrode via agarose. The measurement
involved two steps. In the first step, morphine was bound to the MIP, resulting in an increase in current.
In the next step, after signal stabilization, the electroinactive competitor, codeine, was added to the
measuring solution, which caused the release of morphine from the MIP, resulting in a further increase
in current due to the oxidation of morphine.

Another frequently applied voltammetric method for the detection and determination of
electroactive analytes is differential pulse voltammetry. In 2007, Ozcan and Sahin developed an
MIP sensor for the analgesic and antipyretic drug paracetamol [61]. The MIP was prepared by the
electropolymerization of pyrrole in the presence of the drug on a graphite electrode. They evaluated
the performance of the MIP by means of DPV. The sensor showed two linear regions: 5 µM–0.5 mM
and 1.25–4.5 mM. The limit of detection (LOD) was calculated to be 0.79 µM. They also showed that the
presence of a two-fold excess of potential interferences like glucose, phenacetin, dopamine, ascorbic
acid and phenol did not influence the paracetamol response.

Furthermore, different nanomaterials were incorporated into the MIP sensors to enhance the
signal [11,12]. For example, Li et al. applied Ag/N-doped reduced graphene oxide (Ag/N-RGO) in the
MIP sensor for the determination of salbutamol, which is an β2-adrenergic agonist [70]. The MIP was
prepared on the Ag/N-RGO-modified glassy carbon electrode (GCE) via electropolymerization. Cyclic
voltammetric measurements demonstrated that in a 0.1 mM salbutamol solution, the lowest signal was
obtained with bare GCE, whereas Ag/N-RGO-MIP-GCE showed the highest signal. DPV was applied
for the quantitative determination. The linear range was found to be 0.03–20 µM with an LOD of 7 nM.

In addition to disk or wire electrodes, screen-printed electrodes have also widely been applied
in MIP sensors. Couto et al. have recently presented an MIP sensor for the direct detection of
ecstasy (MDMA: 3,4-methylenedioxymethamphetamine), which is one of the most common narcotics
(Figure 3) [68]. The sensor was prepared on a screen-printed carbon electrode by electropolymerization
in a solution of o-phenylenediamine and MDMA. The binding of MDMA was detected by square
wave voltammetry. The sensor exhibited a linear response of up to 0.2 mM with an LOD of 0.79 µM.
Moreover, selectivity studies have been performed with structurally similar substances. The selectivity
factor, which is the ratio of the MDMA peak current and the interfering substances, has been calculated
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to be 5.6 and 2.8 for dopamine and tyramine, respectively. They further applied the sensor in
biological fluids.
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Figure 3. Schema of ecstasy-imprinted polymer on a screen-printed electrode and direct electrochemical
detection of ecstasy (MDMA: 3,4-methylenedioxymethamphetamine) binding. Reprinted by permission
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Moghadam et al. prepared an MIP sensor on a screen-printed carbon electrode for the determination
of the antibiotic oxacillin (OXC) [71]. Prior to the electropolymerization of aniline, gold nanourchin
and graphene oxide were immobilized on the electrode. The linear response obtained by means of
DPV was in the concentration range of 0.7–575 nM and the LOD was determined to be 0.2 nM.

Moro et al. developed an MIP sensor for theβ-lactam antibiotic cefquinome (CFQ) on a multi-walled
carbon nanotube-modified graphite screen-printed electrode [63]. The sensor showed a linear response
(50 nM–50 µM) only after applying two steps, i.e., incubation in CFQ and measurement in fresh
CFQ-free solution.

Recently, Amatatongchai et al. exploited screen-printing technology on a paper-based system for
the detection of serotonin [22]. Nanosized MIP particles were prepared by encapsulating Fe3O4@Au
nanoparticles with silica, which was imprinted by the sol-gel method. These particles were then
drop-casted onto the graphite electrode of the paper-based device. Serotonin was quantified by linear
sweep voltammetry. The linear range and LOD were determined to be 0.01–1000 µM and 0.002 µM,
respectively. Furthermore, the device showed no interference for ascorbic acid, uric acid, dopamine,
glucose norepinephrine or ions like Mg2+ and Ca2+.

The simultaneous determination of several analytes is of great interest in some areas, such as
clinical and pharmaceutical analysis. MIPs have been applied in the simultaneous determination of
different analytes as well [72–74]. Zheng et al. developed an electrochemical MIP sensor for the direct
detection of uric acid and tyrosine [72]. The MIP was prepared on a reduced graphine oxide-modified
electrode using a novel monomer of 2-amino-5-mercapto-1,3,4-thiadiazole and a dual template via
electropolymerization. DPV was applied to characterize the analytical performance of the sensor.
The MIP exhibited two linear regions for uric acid, i.e., 0.01–1 µM and 4–100 µM with an LOD of
0.0032 µM. Two linear regions were also observed for tyrosine, i.e., 0.1–10 µM and 40–400 µM with
an LOD of 0.046 µM. In addition, a 50-fold concentration of the potential interferences dopamine,
epinephrine, adenine, xanthine, ascorbic acid and glucose had a negligible effect on uric acid and
tyrosine sensing by the MIP sensor, whereas with a reduced graphene oxide-modified glassy carbon
electrode, pronounced interferences were found. In another work, an MIP sensor for rifampicin (RIF)
and isoniazid (INZ) was developed [74]. Prior to the electropolymerization of pyrrole, the glassy
carbon electrode was modified with a copper metal organic framework/mesoporous carbon composite.
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This modification enhanced the sensitivity of the sensor. Adsorptive stripping differential pulse
voltammetry showed that the sensor’s response was linearly dependent for both RIF and INZ on the
concentration in the range of 0.08–85 µM and the LODs were determined to be 0.28 nM and 0.37 nM
for RIF and INZ, respectively. Moreover, simultaneous determinations of the drugs were realized in
serum, urine and pharmaceutical dosages as well as in aqueous solutions.

It is known that the anodic oxidation of phenolic substances generates a polymer film, which causes
a decrease in sensitivity by the “fouling” of the electrode surface. In order to prevent this adverse effect,
the analyte was converted in a preceding enzymatic reaction into a product, which was indicated at a
lower potential at the electrode than the polymer formation [75,76]. Yarman and Scheller have applied
this approach for an electrochemical MIP sensor for the analgesic drug aminopyrine, which is converted
by horseradish peroxidase to aminoantipyrine in a layer on the top of an aminoantipyrine MIP [75].
Therefore, aminoantipyrine was used as the target of the electrosynthesized MIP. The rebinding of
aminoantipyrine to the aminoantipyrine-imprinted electropolymer was measured using the oxidation
current at 0.5 V. The amperometric current response of the MIP-covered glassy carbon electrode
was linearly dependent on the concentration up to 110 µM. The imprinting factor was calculated to
be 6.67. The highest signal was observed for the template as compared to ascorbic acid, uric acid and
caffeine. Furthermore, an HRP-catalyzed reaction allowed a measurement at a lower potential, i.e., 0 V,
which led to the complete elimination of interfering substances.

Only a limited number of MIPs for redox enzymes and metalloproteins exploiting DET have been
published. This measuring principle is restricted to “extrinsic” redox enzymes with surface-exposed
redox centers, which exchange electrons with electrodes without soluble mediators [77]. The first
MIP exhibiting DET was developed for the hemeprotein cytochrome c by Scheller’s group [46].
The target protein was pre-adsorbed at a negatively charged self-assembled monolayer (SAM) of
mercaptoundecanoic acid (MUA) prior to the polymer deposition (Figure 4). The surface concentration
of cytochrome c, which was calculated from cyclic voltammetric measurements, increased linearly up
to 4 µM. Furthermore, competition experiments with other proteins (bovine serum albumin, myoglobin
and lysozyme) demonstrated that the MIP had preferential binding to its target, cytochrome c. Following
this procedure, an MIP was synthesized around a more complex protein, hexameric tyrosine-coordinated
heme protein (HTHP), which was also immobilized electrostatically on a negatively charged SAM
prior to electopolymerization [78]. The MIP-bound enzyme showed both DET and enzymatic substrate
conversion. On the other hand, reports about MIPs for the hemeprotein hemoglobin (Hb) with the
readout by DET are questionable since the formal potential reported is far too negative as compared
with the value of the native protein [79,80].Sensors 2020, 20, x FOR PEER REVIEW 7 of 21 
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2.2. Catalytically Active Analytes

2.2.1. Enzymes and Enzyme-Labeled Analytes

For biocatalysts, MIP synthesis, template removal and the rebinding of the analyte can be
quantified by evaluating the biocatalytic activity of the MIP sensor. The formation of a colored reaction
product was indicated for trypsin, human Hb and cytochrome P450 BM3 using optical methods [81–83].
Furthermore, the indication of a redox-active reaction product at the electrode has been applied for the
characterization of template removal and rebinding for electrochemical MIP sensors. This principle has
been successfully applied for acetylcholinesterase (AChE), laccase, tyrosinase, butyrylcholinesterase
(BuChE), and horseradish peroxidase (HRP) [84–88]. The indication of the surface activity of enzymes
brought about measuring ranges of the respective MIP sensors in the picomolar to micromolar
range. For the highly active BuChE, the enzymatic activity was measured via the anodic oxidation of
thiocholine, which is the reaction product of butyrylthiocholine [87]. The sensor exhibited a linear
response between 50 pM and 2 nM concentrations of BuChE with an LOD of 14.7 pM.

The surface activity sums up the substrate conversion by the enzyme molecules within the
binding cavities and that of the nonspecifically adsorbed enzyme at the non-imprinted polymer surface.
On the other hand, the generation of a catalytic current upon addition of the (co)substrate proves that
the protein approaches the electrode surface with a “productive orientation” for DET. This approach
was introduced by Reddy et al. for catalytic oxygen reduction in the presence of Hb [89] and was
further adapted to myoglobin (Figure 5) [90] and bioelectrocatalytic peroxide reduction by MIP-bound
HTHP [78].
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Moreover, the coupling of MIPs with enzymes can enhance the analytical performance of
biomimetic sensors. Signal generation by enzyme-labeled “tracers” has been applied analogously to
competitive immunoassays in MIP sensors, e.g., for oxytetracycline (OTC) [91,92]. Glucose oxidase
(GOD)-labeled OTC was used as tracer in a competitive assay format and the enzymatic activity was
electrochemically evaluated (Figure 6). DPVs showed a concentration-dependent signal between 0 and
0.4 µM with an LOD of 0.33 nM [92].
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The same group further enhanced the sensitivity of the MIP sensor for OTC by combining their
approach with Prussian Blue (PB) [93], which reduces in neutral solutions hydrogen peroxide [94].
The MIP was prepared by electropolymerization in a solution containing OTC, polypyrrole, FeCl3,
K3[Fe(CN)6] and KCl. It was demonstrated by DPVs that an increasing amount of OTC resulted in a
decreased formation of H2O2, which is caused by the reduced amount of bound OTC-GOD. The sensor
showed two linear ranges, i.e., 0–0.1 µM and 0.1–1 µM with an LOD of 230 fM.

An enzyme-labeled tracer has been further applied in an MIP sensor for the detection of
streptomycin (STR), which has been used for the treatment of various bacterial infections [95].
The MIP sensor was prepared electrochemically on a gold electrode by copolymerizing aniline
and o-phenylenediamine in the presence of STR. In comparison to the OTC-MIP, the measuring
procedure does not include a separation step, but GOD–STR and STR mixtures were incubated for
rebinding together. The hydrogen peroxide current was measured by DPV. The sensor had a linear
response in the concentration range between 0.01 and 10 ng/mL STR and an LOD of 7.0 pg/mL was
determined. The application of enzyme-labeled tracers in competitive formats allows for the extension
to electroinactive analytes. However, the reagent costs are higher than for “direct” electrochemical
sensors and the enzyme can hinder the interaction of the analyte with the MIP cavities and it may
interact with the polymer surface.

2.2.2. Catalytically Active MIPs

In addition to binding MIPs, which mimic the function of antibodies, enzyme mimics based on
MIPs have also been developed. This field was pioneered by Wulff in 1972 [2]. By analogy with
catalytically active antibodies, an analog of the transition state of the catalyzed reaction is applied
as the template [96–99]. Efficient catalysis has been realized for splitting esters, carbonates and
carbamates. These MIPs mimic catalysis by hydrolases. On the other hand, oxidoreductase mimics
have been synthesized by integrating metal ions or metal complexes into the polymer matrix of
MIPs [9,100]. As described for enzyme electrodes, the measuring signal is generated by the indication
of an electroactive product or the consumption of a cosubstrate-like oxygen or peroxide.

Lakshmi et al. presented an electrochemical MIP sensor for catechol and dopamine using
a Cu2+-containing layer of poly(N-phenylethylene diamine methacrylamide), which oxidized the
template by ambient oxygen [101]. The polymer mimics the activity of the enzyme tyrosinase.
The sensor’s response to catechol was linear up to 144 µM with an LOD of 228 nM. Furthermore,
resorcinol, hydroquinone and serotonin did not interfere. However, for the regeneration of the sensor,
reloading with Cu2+ was required. In another work, the enzyme nitroreductase was mimicked by a
copper–melanin complex, which was used as the functional monomer. The MIP was prepared by
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electropolymerization on a chitosan capped AuNP-modified glassy carbon electrode in the presence of
the drug metronidazole. The MIP sensor generated a concentration-dependent electrocatalytic current
for the reduction of the nitro groups.

A mimic of the selenoenzyme glutathione peroxidase was built up by polymerizable amino acid
derivatives as functional monomers and acryloyloxypropyl 3-hydroxypropyl telluride as the catalytic
center [102]. The polymerization was performed in the presence of glutathione as a template. The MIP
showed both specific substrate binding and peroxidase-like activity.

The integration of redox-active groups of enzymes into the polymer scaffold is more straightforward
than the application of simple metal complexes for the synthesis of enzyme mimics based on MIPs.
Especially hemin, the active site of peroxidases and cytochrome P450 enzymes, has frequently been
used (Figure 7). An MIP for homovalinic acid (HVA) which shows peroxidatic activity, was prepared
by the copolymerization of hemin and HVA as a template [103]. It specifically bound to HVA
and catalyzed its oxidation by hydrogen peroxide with a higher activity than towards
(p-hydroxyphenyl)acetic acid and (p-hydroxyphenyl)propionic acid. Similar peroxidase mimics
for the oxidation of p-aminophenol, serotonin or epinephrine were prepared by the bulk
polymerization of methacrylic acid and integrated in a flow injection analysis (FIA) system
with electrochemical detection [104–106]. Moreover, the FIA system has been applied for the
measurement of serotonin in blood serum. In another work, chloroperoxidase-like activity towards
2,4,6-trichlorophenol (TCP) was demonstrated by Díaz-Díaz et al. for an MIP, which consisted of
hemin as the catalytic center, TCP as the template and 4-viniylpyridine as a functional
monomer [107]. Structurally similar substances did not influence the peroxide-dependent oxidation
of TCP. Zhang et al. developed a hemin-containing dehalogenase-mimicking MIP, which indicated
the formation of o-chlorobenzoquinone, the product of the peroxide-dependent reaction of
2,4-dichlorophenol, with an LOD of 1.6 µM [108]. Additionally, a peroxidase-mimicking MIP was
prepared by using hemin as the catalytic center and 5-hydroxyindole-3-acetamide (5-HIAA) as a
template [109]. It exhibited high activity towards the tumor marker 5-hydroxyindole-3-acetic acid.
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Phenazine methosulfate (PMS) was used as mimic of flavine adenine dinucleotide in an
amperometric MIP sensor for fructosylvaline, which is the most important long-term parameter
of diabetes [110]. The signal was generated by the electrochemical reoxidation of PMS which acts as
a mediator.

The catalytic function in an enzyme-mimicking MIP has also been performed by metallic
nanoparticles. Pt/Cu nanoparticles catalyzed the peroxide-dependent oxidation of MIP-bound puerarin
in parallel with 3,3’,5,5’-tetramethylbenzidine (TMB) [111]. Lie et al. fabricated an MIP sensor for
chlortoluron on the surface of magnetic NiO nanoparticles, which catalyzed the oxidation of H2O2 [112].
Chlortoluron was detected indirectly by the effect of target binding on the H2O2 oxidation current.
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Recently, the integration of an MIP structure into the pores of a catalytically active Cu-based MOF
has been successfully demonstrated [113]. This approach realized the specific binding of the endogeneous
disruptor tetrabromobisphenol A to the MIP with an imprinting factor of 7.6. The consumption of
peroxide in the MOF-catalyzed oxidation was (colorimetric) indicated. In another work, the high
potential of a catalytically active framework was exemplified for the hydrolysis of highly toxic
organophosphorous compounds [114]. The porous aromatic framework was 14 times more effective
than the natural enzyme organophosphorous hydrolase.

The integration of the catalytically active MIPs in electrochemical sensors demonstrate that this
approach has a high potential in respect to sensitivity, robustness and simple preparation.

2.3. Redox-Inactive Analytes

The most frequently applied method for the characterization of MIP sensors evaluates the
diffusional permeability of the polymer layer to a redox marker, such as ferri/ferrocyanide, by cyclic
voltammetry, differential pulse voltammetry, square wave voltammetry or electrochemical impedance
spectroscopy (Figure 8) [49,56,60,115–121]. This approach is simple, cost-effective and highly sensitive.
Furthermore, it provides characterization of each step of the MIP synthesis and the measurement of
target rebinding to the MIP for low-molecular-weight targets, (bio)macromolecular and (nano)particles.

For low-molecular-weight molecules, the cavities after template removal have diameters
comparable with that of the redox marker. Different mechanisms have been proposed for the
influence of target binding on the current signal of the redox marker, including changes in the porosity
of the MIP film or of the diffusion rate of the marker, doping–dedoping effects and changes in the
electric double layer. The gate effect was, for the first time, described by Yoshimi et al. for a theophylline
imprinted polymer, which was prepared by copolymerization of methacrylic acid and ethylene glycol
dimethacrylate on an indium tin oxide electrode [122]. The model for macromolecules predicts that
pores will be formed by the removal of the protein template in the tight MIP layer, which increase
the permeation of the redox marker to the electrode surface. Rebinding of the target shrinks these
pores, thus causing a concentration-dependent decrease in the permeation of the redox marker [37].
However, the exact mechanism of the “gate effect” is still not fully understood [122,123].

Metal organic frameworks have been applied in MIP sensors for the detection of redox-inactive
analytes as well. Jiang et al. described an MIP sensor for the detection of aflatoxin B1 (AFB1),
which was formed by electropolymerization of p-aminothiophenol-functionalized gold nanoparticles
in the presence of the template [124]. The binding of AFB1 was indicated by linear sweep voltammetry
of ferricyanide as a redox probe. The electron transfer rate increased when the concentration of AFB1
increased, due to a p-doping effect. The molecularly imprinted sensor exhibited a linear range, between
3.2 fM and 3.2 µM. Recently, a polypyrrole-based MIP for 17β-estradiol has been integrated into an
MOF, which was modified with Prussian Blue [125]. Together with carbon nanotubes, PB increased the
electrical conductivity, which resulted in an extremely high sensitivity with an LOD of 6.19 fM.
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Figure 8. (a) Preparation of a carbamazepine MIP, reprinted by permission from [126]; (b) schematic
representation of salbutamol MIP preparation and DPVs showing salbutamol binding to the MIP,
reprinted by permission from [119]; (c) CA-125 MIP preparation by electropolymerization and SWV-
and SPR-based measurements, reprinted by permission from [120] and (d) testosterone MIP preparation
and EIS-based determination of testosterone, reprinted by permission from [121].
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Enhancement of the sensitivity was further achieved by electro-enzymatic recycling for an MIP
for kanamycin (Figure 9) [127]. The reduced redox marker, ferrocyanide, which was formed at the
electrode, was subsequently reoxidized by horseradish peroxidase (HRP) in the presence of peroxide.
The enzymatic recycling brought about an eight-fold higher signal and shifted the lower limit of
detection by two orders of magnitude.
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However, the analytical quality of the aforementioned approaches is problematic, since the
rebinding of the target causes only small decreases in the large signal after template removal.
Furthermore, the formation of “nonspecific” pores during template removal may influence the current
signal. Different ionic strengths and/or pH during the rebinding and evaluation of the redox marker
can falsify the measurement by structural changes of the polymer film. Nonspecific adsorption of
surface-active constituents from the “real” sample may also influence the current. In addition, for the
majority of redox marker-based MIP sensors, the signal of the redox marker is measured in a target-free
solution, whereas rebinding occurs in ferricyanide-free solution. This procedure is, in principle, only
applicable for MIP target systems with very low dissociation rates, which is a precondition and has
been frequently ignored. Despite the inherent problems of the method, several papers describe MIP
sensors for both small targets and macromolecules with lower limits of detection in the picomolar
and even attomolar concentration range (Table 1). These publications evaluate either the relative or
the absolute decrease in signal suppression in linear or semilogarithmic scales and frequently report
two-phasic concentration dependencies without presenting a theoretical model for the binding.
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Table 1. MIPs prepared by electropolymerization with electrochemical readout.

Template Monomer Electrode Detection Method Measuring Range and LOD Reference

Tamoxifen o-PD/Resorcinol GCE CV 1–100 nM [60]

Lorazepam Pyrrole Sol-gel-AuNP-Graphite SWV
0.2–2 nM
and 2–20 nM;
LOD: 0.09 nM

[128]

Kanamycin o-PD SWCNH-GCE LSV 0.1–50 µM;
LOD: 0.1 µM [129]

2,4-dichlorophenol o-PD PDA-rGO-GCE DPV
2–10 nM
and 10–100 nM;
LOD: 0.8 nM

[130]

p-Synephrine Functionalized thiophene Pt electrode EIS 0.1–0.99 µM;
LOD: 5.69 nM [115]

Artemisinin o-PD Au electrode CV, SWV 0.01–1.36 µM;
LOD: 0.01 µM [131]

Gemcitabine PATP AuNP-Au electrode LSV 3.8 fM–38 nM;
LOD: 3 fM [132]

Sofosbuvir PATP N,S@GQDs-AuNP-PGE DPV 0.1–40.0 × 10−8 M;
LOD: 0.036 × 10−8 M

[133]

Sulfamethoxazole o-PD GCE SWV 0.2–1.4 µM;
LOD: 0.05 µM [134]

Lidocaine Resorcinol Porous C-GCE CV 0.2 pM–8 nM;
LOD: 67 fM [135]

Carbamazepine Resorcinol hAgNS-Au electrode CV 8.0 × 10−11–6.0 × 10−8 M;
LOD: 3.2 × 10−11 M

[126]

Cholesterol PATP AuNP-MWCNT-GCE DPV 1 × 10−13–1 × 10−9 M;
LOD: 3.3 × 10−14 M

[136]

Thyronamine 4-ABA Carbon-SPE SWV up to 10 µM;
LOD: 0.081 µM [137]

17-β-estradiol 3,6-diamino-9-ethylcarbazole GCE EIS 1 aM–10 µM;
LOD: 0.36 aM [138]

Hexahydrofarnesol o-PD GCE DPV
4.0 × 10−8–1.5 × 10−7 M and
1.5 × 10−7–1.5 × 10−6 M;
LOD: 1.2 × 10−8 M

[139]

Nitrofurantoin m-Dihydroxy-benzene/o-Aminophenol GCE EIS
0.001–0.05 µM
and 0.1–1 µM;
LOD: 0.3 nM

[140]

Dibutyl phthalate Pyrrole PGE EIS 0.01–1.0 µM;
LOD: 4.5 nM [141]
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Table 1. Cont.

Template Monomer Electrode Detection Method Measuring Range and LOD Reference

Chlorpyrifos Pyrrole PGE EIS 20–300 µg/L;
LOD: 4.5 µg/L [142]

Transferrin Scopoletin Au electrode SWV 0.1–1 µM [49]

HSA Scopoletin Au electrode CV 20–100 mg/dm3;
LOD: 3.7 mg/dm3 [143]

HSA Bithiophene derivatives Au electrode DPV 12–300 pM;
LOD: 0.25 pM [144]

Ferritin Phenol Nanotube arrays EIS 1 × 10−12
× 10−7 g/L [116]

Annexin A3 Caffeic acid Carbon-SPE SWV 0.1–200 ng/mL;
LOD: 0.095 ng/mL [145]

Tyrosinase o-PD GCE DPV up to 50 nM;
LOD: 3.97 nM [86]

PSA Pyrrole Au-SPE DPV 0.01–4 ng/mL
LOD: 2 pg/mL [146]

CA-125 Pyrrole Au-SPE SWV 0.01–500 U/mL;
LOD: 0.01 U/mL [120]

IL-1β Eriochrome black T EDOT-PATP-Carbon-SPE EIS 60 pM–600 nM
LOD: 1.5 pM [147]

Protein A 3-aminophenol SWCNT-SPE EIS LOD: 0.60 nM [148]

HER2-ECD Phenol Au-SPE DPV 10–70 ng/mL;
LOD: 1.6 ng/L [149]

cTnT Aniline/Carboxylated aniline rGO/C-SPE DPV 0.02–0.09 ng/mL;
LOD: 0.008 ng/mL [150]

o-PD: o-Phenylenediamine; GCE: Glassy carbon electrode; AuNP: Gold nanoparticle; SWCNH: Single-walled carbon nanohorn; LSV: Linear sweep voltammetry; PDA-rGO:
Polydopamine-reduced graphene oxide; 4-ABA: 4-Aminobenzoic acid; PATP: p-Aminothiophenol; N,S@GQDs: N,S co-doped graphene quantum dots; PGE: Pencil graphite electrode;
hAgNS: Hollow silver nanospheres; SPE: Screen-printed electrode; MWCNT: Multi-walled carbon nanotubes; HSA: Human serum albumin; PSA: Prostate-specific antigen; CA-125:
Carbohydrate antigen 125, IL-1β: Interleukin-1beta; EDOT: 3,4-Ethylenedioxythiophene; SWCNT: Single-walled carbon nanotubes; HER2-ECD: Human epidermal growth factor receptor 2;
cTnT: Cardiac troponin T (cTnT).
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3. Conclusions

Electrochemical methods allow not only the straightforward synthesis of MIPs, including polymer
formation and template removal, but also the characterization of each step and a highly sensitive readout
with simple devices. MIPs are highly effective for the suppression of interferences in the electrochemical
indication of low-molecular-weight analytes by acting as shape-selective filters. The indication of
the “gating effect” of target binding on a redox marker, which is widely used in electrochemical MIP
sensors, has the disadvantage of generating an “indirect” measuring signal. It reflects not only the
presence of the target but also changes in the polymer during the interaction with the sample. On the
other hand, a highly specific approach is the evaluation of an electrocatalytic current for enzymes,
since it couples enzymatic activity and DET in the cavities. Until now, this principle has only been
demonstrated for heme proteins. The evaluation of catalytic currents may be applied in competitive
assays, which use hemin and its derivatives as the catalytic component of the tracer. The integration of
catalytically active MIPs into electrochemical sensors is promising in respect to robustness, stability
and costs as compared with natural enzymes.

Fully electronic MIP sensors are more common than sensors using spectroscopic methods, surface
plasmon resonance or quartz crystal microbalance. In future, binding MIPs, so-called plastibodies, have
the potential to substitute antibodies in affinity assays and sensors. MIP-based pocket-sized devices for
critical analytes in medical emergencies and environmental supervision will adapt technologies from
blood glucose meters, including self-powering by a fuel cell. Measurements by MIP sensors in real
biological samples, e.g., blood, are still complicated by the presence of highly abundant proteins in the
g/L region, e.g., serum albumin and immunoglobulin, while protein markers for cancer, diabetes or heart
failure are typically in the mg/L to ng/L range. The required sensitivity has been reported in the literature
for several MIP sensors based on the readout of redox markers (Table 1). However, the majority
of tests have been carried out in “artificial” urine or spiked semi-synthetic plasma. Since MIP
sensors represent only one “separation plate”, it is challenging to reach the required selectivity.
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