Skip to main content
. 2020 Apr 29;20(9):2513. doi: 10.3390/s20092513
Algorithm 13 computeInterClusters.
   Input: (P1s,Pzs),(T1s,Tzs),(c^1s,c^zs)      Output: P1s,T1s,c^1s
  • 1:

    fora1 to z do

  • 2:

      compute cluster centroids for Pas and Tas as in Equation (11)

  • 3:

    end for

  • 4:

    fora2 to z do

  • 5:

      S^,Z^=computeSimilarity(P1s,T1s,c^1s,Pas,Tas,c^as,Ts,N+2) // Algorithm 8

  • 6:

      k^=computeAverageRow(S^) //Algorithm 9

  • 7:

      Z^,c^1s=sortClusters(Z^,c^1s,k^) //Algorithm 10

  • 8:

      Z^=removeDuplicateEntries(Z^) //Algorithm 11

  • 9:

      P1s,T1s,c^1s=mergeClusters(Z^,P1s,T1s,c^1s,Pas,Tas,c^as) //Algorithm 12

  • 10:

      compute merged cluster centroids for P1s and T1s as in Equation (11)

  • 11:

    end for