Skip to main content
. 2020 May 2;20(9):2602. doi: 10.3390/s20092602
Algorithm 2. SIRA
Input:
    Measurement vector y; M × N matrix A; signal sparsity K
  • Set desired probability (e.g., P0.99)

  • Calculate variance—variance is calculated by using one of the relations, depending on the chosen transformation domain. The corresponding equations are in the following table:
    Transformation domain DFT DCT HT
    Variance σMS2==MNMN1i=1My(i)2M σMS2==MNMN2(N1)i=1KAi2, σMS2==(NM)M(NM)2M2(M1)i=1KAi2
    i=1KAi2=NMnMs2(n),s(n)available samples
  • For a given P calculate threshold according to relation (13);

  • Calculate the initial transform domain vector X0: X0=A1y;

  • Find positions of components in X higher than normalized threshold T, k=arg{|X0|>T/N};

  • Form CS matrix by using only k columns from A, ACSA(k)

  • Calculate XR=(ACSTACS)1ACSTy;


Output: XR