Skip to main content
. 2020 Apr 29;20(9):2510. doi: 10.3390/s20092510
Algorithm 1: Iterative algorithm for the prediction error optimization.
1 Initialization: Set Lmin := +, (x*,t*,w*,u*) := 0
2 for each k K do {solving subproblem (19)}
3  Generating an initial points: Set k:= 0 and solve (20) to generate (x(0),μm(0),w(0),μn(0)).
4  repeat
5   Solve (21) to obtain (x*,μm*,w*,μn*) and L(k+1).
6   Update (x(k+1),μm(k+1),w(k+1),μn(k+1)):=(x*,μm*,w*,μn*).
7   Set k=k+1.
8  until Convergence
9  if L(k)<Lmin then
10   Update Lmin := L(k) and (x*,μm*,w*,μn*):=(x(k),μm(k),w(k),μn(k)).
11  end if
12 end for