Table 8.
Performances comparison of the proposed method with previous methods on the diabetes dataset.
| Reference | Method | Accuracy (%) | p-Value |
|---|---|---|---|
| [9] | LANFIS | 88.05 | 0.87 |
| [26] | SM-Rule-Miner | 89.87 | 0.92 |
| [10] | TSHDE | 91.91 | 0.21 |
| [11] | C4.5 algorithm | 92.38 | 0.69 |
| [12] | Modified K-Means Clustering +SVM (10-FC) | 96.71 | 0.07 |
| [56] | Support Vector Machine | 97.14 | 0.06 |
| [57] | Artificial Neural Network (ANN) | 82.35 | 1.23 |
| [58] | SBNN + PSO + ALR | 88.75 | 0.31 |
| [59] | DPM | 96.74 | 0.08 |
| [60] | DNN | 95.6 | 0.09 |
| [13] | BN | 99.51 | 0.06 |
| DT(ID3) + DT | 99 (Hold out) | 0.04 | |
| Our study | DT(ID3) + DT | 99.8 (K-fold) | |
| DT(ID3) + DT | 99.9 (LOSO) |