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Abstract: Unobtrusive in-vehicle health monitoring has the potential to use the driving time to perform
regular medical check-ups. This work intends to provide a guide to currently proposed sensor systems
for in-vehicle monitoring and to answer, in particular, the questions: (1) Which sensors are suitable
for in-vehicle data collection? (2) Where should the sensors be placed? (3) Which biosignals or vital signs
can be monitored in the vehicle? (4) Which purposes can be supported with the health data? We reviewed
retrospective literature systematically and summarized the up-to-date research on leveraging sensor
technology for unobtrusive in-vehicle health monitoring. PubMed, IEEE Xplore, and Scopus
delivered 959 articles. We firstly screened titles and abstracts for relevance. Thereafter, we assessed
the entire articles. Finally, 46 papers were included and analyzed. A guide is provided to the currently
proposed sensor systems. Through this guide, potential sensor information can be derived from
the biomedical data needed for respective purposes. The suggested locations for the corresponding
sensors are also linked. Fifteen types of sensors were found. Driver-centered locations, such as
steering wheel, car seat, and windscreen, are frequently used for mounting unobtrusive sensors,
through which some typical biosignals like heart rate and respiration rate are measured. To date,
most research focuses on sensor technology development, and most application-driven research
aims at driving safety. Health-oriented research on the medical use of sensor-derived physiological
parameters is still of interest.

Keywords: digital health; sensor; smart vehicle; health monitoring

1. Introduction

Unobtrusive and continuous health monitoring in private spaces uses sensor technology without
introducing any inconveniences to the patient’s normal life [1]. With respect to “private spaces”,
we refer to a living environment with limited public access, such as a home, apartment, or a privately
owned car [2]. In sensor-enhanced private spaces, health-related information is collected continuously
and critical changes or events are captured automatically. Furthermore, the collected information
reflects the natural reality and promising services, including emergency detection, disease management,
and health status feedback, and advice becomes achievable [3].

The Internet of Things (IoT) facilitates the ubiquitous sensing of all aspects of people’s lives,
including health, entertainment, activities, and communication [4]. Big data (variety, velocity, volume)
is collected unobtrusively and artificial intelligence (AI) is applied to early detect diseases or predict
health status [5,6]. As of today, people’s private spaces are equipped with advanced technology,
which is reshaping their lifestyles. For example, smart wearables track activities. AI-based personal
assistants, such as Amazon Alexa or Google Home, have not only changed human-machine interaction
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but established these technologies as part of regular life [7], which also includes, for instance,
autonomous driving.

Personal mobility is a distinctive trait of modernity. In many countries, people spend a considerable
amount of time in cars: the average daily time is about 1 and 1.1 h in the United States [8] and in
Germany [9], respectively. Furthermore, the private vehicle is one of the best-equipped environments
in our daily life. This provides a great opportunity to convert the vehicle into a health monitoring
facility [2] and to use the time people spent in their cars for health monitoring [10,11].

For many years, in-vehicle health monitoring has been the focus of research. This includes
environmental, physiological, and behavioral monitoring:

• Environmental parameters include temperature, air quality, humidity, weather and light conditions,
and speed. They are captured already by default for in-car well-being and driver’s assistance systems.

• Physiological parameters typically include vital signs; in particular, heart rate (HR), respiration
rate (RR), body surface temperature, and skin impedance. More advanced parameters can
be measured with special sensing devices.

• Behavioral parameters quantify physical activities during the drive to reflect the driver’s attention
level, tiredness, and well-being.

With respect to physiological parameters, Naziyok et al. reviewed contact-less monitoring
for general wards and highlighted ballistocardiography (BCG), radar, and thermography for HR, RR,
and cardiopulmonary signals, respectively [12]. More recently, Leonhardt et al. comprehensively reviewed
unobtrusive vital-sign monitoring in automotive environments [10]. Based on cardio-respiratory
and thermo-regulatory couplings, they obtain bio-electrical, mechanical, and thermal effects. Sensors,
such as electrocardiography (ECG), capacitive ECG (cECG), radar, BCG and seismocardiography (SCG),
video imaging, photoplethysmography (PPG) and PPG imaging (PPGI), magnetic induction (MI),
and thermography capture body surface potentials, displacements and temperatures, the superficial
perfusion, and the intrathoracic impedance. Bruser et al. particularly focus on cardio-respiratory
parameters [13].

The use of camera sensors allows not only to directly observe the driver’s activities [14] but
also delivers vital signs. For instance, oxygen saturation is measured by attaching a light-emitting
diode (LED) and photo-diode to the steering wheel [15] as well as from analyzing images captured
by a camera attached to the windscreen or the control panel dashboard [16]. The RR can be measured
when deploying a piezoelectric sensor or an accelerometer on the seat belt [11,15] but also from radar
signal [17].

To date, several authors use physiological information to monitor the driver state, detect fatigue,
or assess stress, and the data is fed into driving assistance systems [18–20]. These applications require
robustness during the entire drive, which is hardly reached.

Medical applications, in contrast, profit from the regularity of every-day use and cope with
dropouts during the ride. However, existing research does not provide a guide to currently proposed
sensor systems for in-vehicle monitoring. In particular, the following questions need to be answered.

1. Which sensors are suitable for in-vehicle data collection?
2. Where should the sensors be placed?
3. Which biosignals or vital signs can be monitored in the vehicle?
4. Which purposes can be supported with the health data?

2. Methods

In this paper, we focus on unobtrusive continuous health monitoring in a smart vehicle, which
we consider a private environment or a private space. We present terminology for sensors, locations,
biosignals, and purposes and applied a comprehensive literature review to answer the stated questions.
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2.1. Terminology of Unobtrusive In-Vehicle Health Monitoring

The primary goal of driving is to reach a predefined destination. The driver perceives information
about the environment, such as weather, road conditions, and traffic signs, and accordingly controls
the vehicle [21]. Driving consist of tasks on different levels [22]:

• Strategic tasks (e.g., choice of route);
• Navigational tasks (e.g., adherence to the chosen route);
• Traffic-related tasks (e.g., interacting with other road users);
• Adherence to rules (e.g., traffic signs and signals);
• Tasks related to the road (e.g., chosen position within traffic); and
• Speed control (e.g., maintenance of the speed according to road situation).

For these tasks, objects such as steering wheel, windscreen, mirrors, pedals, or the dashboard
(speedometer) are used, and their context, location have to be considered [23,24]. Accordingly, we propose
a flat terminology that covers unobtrusive sensors (electromagnetic, mechanic, optic), their locations
(seat, chassis, instruments), and the biosignals or vital signs (body, heart, blood, lung, eye) that can
be obtained by the sensors and the purposes (Figure 1).
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Figure 1. Terminology of unobtrusive in-vehicle health monitoring.

2.2. Literature Retrieval

Using our terminology of unobtrusive in-vehicle health monitoring (Figure 1), we developed
the search string that reflects two aspects:

• Biosignal consists of general terms, such as biosignal, biological signal, physiological signal,
physiological parameter, vital signal, vital sign, vital parameter, and commonly seen specific
biosignals terms, such as ECG, electrocardiograph, heart rate, heart rate variability, heartbeat,
respiration rate, breathing rate, breathing, body movements;

• Vehicle consists of terms regarding the vehicle, such as car, vehicle, automobile, automotive, drive,
driving, driver.

We connect the terms within and across each aspect with logic OR and AND, respectively (Appendix A).
We applied the search string to the title of articles from three databases: PubMed, IEEE Xplore,
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and Scopus on 16 December 2019. To reflect only up-to-date research, the publishing date spans the last
decade (2009–2019). Furthermore, we restricted responses to the English language. After we combined
all returned records, we removed duplicated papers. Then, we screened titles and abstracts according
to Section 2.3 and excluded irrelevant records. Afterward, we studied the full papers and excluded
work that was published already in included articles (in such cases, we found a large overlap
in the content of papers of the same authors).

2.3. Review Criteria

We reviewed the retrieved full papers to identify research focusing on the application of sensor
technology for unobtrusive health monitoring in the vehicle. As several persons performed the two-stage
review, we defined the following criteria:

• Inclusion

– Unobtrusive sensors are part of the method;
– The sensors are used to collect heath-relevant data, i.e., behavioral or physiological parameters.

• Exclusion

– The sensors are body-attached, wearable, or implanted;
– Sensor data is not used for biosignal or health state monitoring;
– Research is not on humans.

When analyzing the full texts, we extracted the type of sensor and its location, the targeted biosignals
or medical parameters, and the main purpose of the research. Possible options for the purposes are:

• Sensor development for measuring a certain health parameter;
• Application of sensor data for health (i.e., disease management, diagnostics, prediction) or

safety (Figure 1).

With respect to the conditions of an experiment, possible options are:

• On-road driving: the experiment was performed with naturalistic driving, where the subjects were
required to drive a car on real roads;

• Driving simulator: the subjects were required to simulate driving activities on a driving simulator;
• Laboratory setting: a driving-like setting up or a separated (part of a) vehicle was equipped with

sensors (e.g., seat, steering wheel), but no driving activity was simulated.

We further tracked the number of subjects that participated in the experiment.

3. Results

The initial search query on PubMed, IEEE Xplore, and Scopus resulted in 959 records after
removing duplicates, of which 49 papers remained after assessing titles and abstracts (Figure 2).
When reviewing the full texts, we excluded three papers additionally, due to a high overlap in content
to already included papers of the same authors (double publishing). Finally, 46 papers remained
for text analysis (Table 1).

Based on the review criteria (i) sensor development vs. application and (ii) laboratory setting vs.
diving simulator vs. on-road driving, we categorized all papers into six groups (Figure 3).
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Figure 2. Result of literature review.
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Figure 3. Stages of current research. The bottom row lists reference numbers of the papers.

The majority of research (n = 35) focuses on the development of sensor technology. Only a few works
(n = 11) are toward problem-solving. Fourteen of the 35 papers for sensor development have conducted
on-road driving tests, but most of them with only a few subjects (1–5). Exceptions are the work
of Kuo et al. [25] and Lee et al. [26] with ten subjects in an on-road drive test. Nine out
of 11 application-oriented research focus on safety, and only two papers on health-related issues.

According to our terminology (Figure 1), we depict the state-of-the-art for in-vehicle health
monitoring in a graph that links columns for location, sensor, biosignal, and purpose (Figure 4).
The interconnections are based on all 46 papers. In other words, we draw interconnections only
on evidence in the literature. Also, we labeled the interconnections with the reference numbers
of the corresponding papers. To enhance readability, we collected all interconnections and their
supporting literature separately in Table 2.
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Table 1. Included research on in-vehicle health monitoring. The articles are ordered by ascending year. NA: the information is not available.

No. Ref Year Sensor Location Biosignal/Parameter Objective Test Setting # of Subjects

1 [15] 2009 Contact electrode, pulse oximeter, capacitive electrode (conductive
textile), piezoelectric sensor

Steering wheel, bucket seat, seat belt GSR, PPG, ECG, RR Safety: driver’s stress On-road driving 4

2 [27] 2010 Pulse oximeter, contact electrodes Steering wheel PPG, GSR Sensor development Driving simulator 24
3 [28] 2010 Contact electrode (IDAT microsensors, PGR and ECG sensors), BCG

sensor (pressure)
Steering wheel, bucket seat GSR, body temperature, HR, ECG, respiration rate Sensor development Laboratory setting NA

4 [29] 2010 Contact electrode (conductive fabric), pulse oximeter Steering wheel ECG, PPG→ HR, HRV Safety: drowsiness evaluation On-road driving 2
5 [30] 2010 Contact electrode, thermometer (infrared), pulse oximeter, capacitive

electrode
Steering wheel, seat backrest ECG, GSR, PPG, temperature (finger) Sensor development Laboratory setting NA

6 [31] 2011 BCG sensor (air-pack sensor) Seat backrest HR, HRV Safety: detection of drunk driving Laboratory setting 4
7 [32] 2011 Capacitive electrode Seat backrest ECG Sensor development Laboratary setting, on-road driving 59 and 5
8 [33] 2011 Capacitive electrode, piezoelectric sensor, magnetic impedance sensor Bucket seat, backrest ECG, BCG, breath Sensor development Static vehicle, on-road driving 1
9 [34] 2011 Capacitive electrode Seat backrest ECG Sensor development On-road driving 1

10 [35] 2012 Contact electrode Steering wheel ECG→HR Sensor development On-road driving 8
11 [36] 2012 Contact electrode Steering wheel ECG Sensor development Laboratory setting 12
12 [37] 2012 Contact electrode Steering wheel ECG Other: driver recognition Static vehicle 32
13 [38] 2012 Capacitive electrode Seat backrest ECG Sensor development On-road driving 2
14 [39] 2012 Capacitive electrodes Bucket seat ECG Sensor development On-road driving 5
15 [40] 2012 Alcohol sensor Control panel Alcohol Sensor development Driving simulator 1
16 [41] 2013 Contact electrode, capacitive electrode Steering wheel, bucket seat ECG Sensor development Driving simulator 1
17 [42] 2014 Capacitive electrode (conductive knit fabric) Seat backrest (cushion) ECG, EMG Safety: driving fatigue Driving simulator 8
18 [18] 2014 Contact electrode (conductive fabric) Steering wheel ECG→ HRV Safety: driving fatigue and drowsiness On-road driving 2
19 [43] 2014 Video camera (eye blinking detector) Car body (roof handle) Saccade frequency (eye blinking) Sensor development Driving simulator 12
20 [44] 2015 Infrared camera (infrared LEDs) Windscreen (rear-view mirror) Video→ HR Sensor development Laboratory setting 30
21 [25] 2015 Video camera Windscreen PPG→ HR Sensor development On-road driving 10
22 [45] 2015 Radar Seat backrest HR, RR Sensor development Driving simulator NA
23 [46] 2015 Video camera Control panel Blood volume pulse (BVP)→ HR, HRV Sensor development Laboratory setting, on-road driving 16 and NA
24 [47] 2015 PPG sensor, pressure sensor, PPG sensors, pressure sensor (gripping),

piezoelectric sensor (respiration)
Steering wheel, seat belt PPG, gripping force, RR Sensor development Laboratory setting NA

25 [48] 2016 Radar Seat backrest Heart rate Sensor development On-road driving 1
26 [49] 2016 Global Positioning System (GPS) Car body (OBDII port) Driving behavior data Driving behavior profiling On-road driving 5
27 [50] 2017 Gas sensor (CO2 and alcohol gas sensor), video camera Steering wheel (steering column, above), windscreen Gas concentration (CO2 and alcohol), breathing

activity
Safety: alcohol detection On-road driving 10

28 [51] 2017 Magnetic induction sensor Seat backrest Respiratory activity Sensor development Driving simulator NA
29 [52] 2017 Spectral photometer, magnetic induction sensor Safety belt HR,RR Sensor development Laboratory setting NA
30 [53] 2017 Video camera Control panel HR Sensor development On-road driving 1
31 [17] 2017 Radar Steering wheel (under) HR, RR Sensor development On-road driving 5
32 [54] 2017 Radar Seat, headrest HR Sensor development Laboratory setting NA
33 [55] 2017 Radar Seat backrest HR Sensor development On-road driving 8
34 [56] 2018 Infrared camera, pressure pad Dash board, bucket seat Body motion Safety: discomfort detection Driving simulator 40
35 [57] 2018 BCG sensor (pressure) Bucket seat (under the foam cushion) BCG→ RR, and HR Sensor development:existing in-car sensor

for new biosignal/information
Laboratory setting 11

36 [58] 2018 Vehicle built-in sensor Car body (OBD port) Driving behavior Diagnosis: mild cognitive impairment On-road driving 28
37 [59] 2018 IR LED Steering wheel PPG→ pulse wave velocity Sensor development NA NA
38 [26] 2018 Video camera Windscreen HR Sensor development On-road driving 10
39 [60] 2018 Radar Windscreen HR, RR Sensor development Laboratory setting 2
40 [61] 2018 Camera Control panel remote PPG (rPPG) Sensor development Laboratory setting, on-road driving 12 and 1
41 [62] 2018 Radar Seat backrest HR, RR Sensor development Laboratory setting 4
42 [63] 2019 Magnetic induction sensor (resonator) Steering wheel HR, breathing rate Sensor development Static vehicle 2
43 [20] 2019 Capacitive electrode Seat backrest, bucket seat (seating area) ECG Sensor development: sensor performance Driving simulator 10
44 [64] 2019 Radar Steering wheel (middle) HR, RR Sensor development Laboratory setting 5
45 [65] 2019 Contact electrode Steering wheel HR, RR Sensor development Driving simulator 5
46 [11] 2019 Accelerometer Seat belt RR Sensor development On-road driving 3
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Figure 4. In-vehicle health monitoring: state-of-the-art. We code the nodes in columns Location, Sensor,
Biosignal, and Purpose with L[n], S[n], B[n], and P[n], respectively, and all interconnections with their
supporting nodes. For instance, S2—L3 represents the reference where the authors use a capacitive
electrode (S2) embedded in the bucket seat (L3) (Table 2).
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Table 2. Mapping connections to literature.

Connection Supporting Literature Connection Supporting Literature

S1—L9 [15,18,27–30,35–37,41,65] S4—B8 [63]
S2—L2 [20,30,33,34,38,39,42] S4—B21 [33,51,52,63]
S2—L3 [15,20,32,39,41] S5—B1 [30]
S3—L1 [54,55] S8—B21 [11]
S3—L2 [45,48,62] S9—B21 [15,47]
S3—L6 [60] S9—B31 [47]
S3—L9 [17,64] S11—B8 [28,31,33,57]
S4—L2 [33,51,63] S11—B21 [28,57]
S4—L4 [52] S11—B30 [31]
S5—L9 [30] S11—B32 [56]
S8—L4 [11] S13—B8 [25,26,46,53,61]
S9—L4 [15,47] S13—B23 [43]
S11—L2 [31] S13—B29 [50]
S11—L3 [28,33,56,57] S14—B8 [44,61]
S13—L6 [25,26,43,46,50] S14—B29 [28]
S13—L7 [53,61] S14—B32 [56]
S14—L6 [44] S15—B8 [52]
S14—L7 [28,56,61] S16—B8 [27,29,47]
S15—L4 [52] S16—B15 [15] [59]
S16—L9 [15,27,29,30,47,59] S16—B16 [27,30]
S18—L8 [49] S18—B27 [49]
S19—L8 [58] S19—B27 [58]
S20—L7 [40] S20—B28 [40,50]
S20—L9 [50] B6—P1 [15]
S1—B1 [28] B8—P2 [18,29,39]
S1—B6 [15,27,30] B8—P3 [31]
S1—B8 [18,28,29,35,36,65] B12—P1 [15]
S1—B12 [15,18,29,30,35,37,41,65] B12—P4 [37]
S1—B21 [65] B16—P1 [15]
S2—B7 [42] B21—P1 [15]
S2—B8 [20,39] B27—P11 [49,58]
S2—B12 [15,20,30,32–34,38,39,41,42] B28—P3 [50]
S3—B8 [17,45,48,54,55,60,62,64] B30—P3 [31]
S3—B21 [17,45,60,62,64] B32—P5 [56]

3.1. Sensors

In total, 15 types of sensors were found in the included papers. Contact (dry) electrode,
capacitive electrode, radar sensor, and video camera are the most popular sensing devices, which
can be found in 11, 9, 8, and 7 papers, respectively. The papers involving the contact or capacitive
electrodes were mostly published from 2009 to 2014 (n = 18), while the video-related work was
mainly published from 2014 to 2018 (n = 8). Several authors collect ECG, EMG, or galvanic skin
response (GSR) through electrode and corresponding amplifiers and filters [15,20,27,29,30,37]. When
cameras are in use, the authors target PPG-derived HR or heart rate variability (HRV) [25,44,46,53,61].
Some work uses cameras naturally for activity or emotion monitoring [28,43]. The pulse oximeters
are attached to the steering wheel and measure HR or RR [15,27,66]. BCG sensors are widely explored
for in-vehicle scenarios. HR and RR are the typical health parameters that can be extracted from
BCG [28,31,57]. In recent years, a radar sensor has become a device for recording physiological
parameters, such as HR and RR [45,48,55,62,64]. Furthermore, two teams use vehicle-built-in sensors,
such as GPS, to assess the driving behavior or the driver’s mental health [49,58].

3.2. Locations

All included research assumed that the driver was the monitored person, i.e., driver-centered.
Although there are plenty of options for human-vehicle interaction, only a limited number of locations
are actually used for health monitoring. Car seats (n = 20) and steering wheels (n = 18) most frequently
host sensing devices. The car seat (backrest and seating area) is a suitable location for capacitive
electrodes [20], BCG sensors [31,57], magnetic induction sensors [33,51] and radar sensors [45,48].
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Since the hands are the unique body part of the driver that directly contacts the vehicle, the steering
wheel is equipped with contact electrodes, a pulse oximeter, and a thermometer [27,28,30,66]. The
control panel, windscreen, and the windscreen-mounted rear-mirror mostly host a camera [25,53,56,61]
or a gas sensor [50]. A modern vehicle is equipped already with many sensors for drive-train control,
safety, and comfort [67]. The data from these built-in sensors are potential resources for behavior
monitoring, and current research considers respective data interfaces (on-board diagnostics) [49,58].

3.3. Biosignals

HR (n = 24) and RR (n = 15) are the most frequently measured health parameters. HR data
is often measured indirectly based on ECG, BCG, remote PPG (rPPG), or radar signals [18,31,68].
Jung et al. derive the HRV from the HR data [18]. RR is usually measured via PPG and BCG [15,57].
Some research uses magnetic and radar sensors [51,68]. Aiming at identifying the driver’s stress
level [15,27], four papers covered GSR signals [15,27,28,30]. Some research collects data on body
movement and facial emotion by video or infrared cameras [43,56]. Using such data, the authors
detected abnormal situations such as discomfort and drowsiness. The driving behavior may also
potentially indicate mental health problems, such as cognitive ability, particularly for old people.
Built-in sensors can provide the number of trips, driving duration and distance, time driving on
local streets and highways, time driving during daylight, after dusk, or at night, and the number
of hard breaks or accelerations [58]. The GPS device records environmental parameters like the driving
areas [49].

3.4. Purposes

We found eleven papers toward solving health problems. However, most of them (n = 9) aim at
improving driving safety. Stress and driving fatigue are detectable through HR and HRV [15,18,29,39].
EMG may also be incorporated as a source to extract features [42]. In order to detect drunk driving,
the alcohol concentration is measured through a gas sensor [50], and driving behaviors under drunk
conditions also could be a clue [31]. Several works explore the effectiveness of ECG for driver
identification [37]. Discomfort detection benefits from monitoring body motion by an infrared camera
and pressure pad [56].

Despite the popularity of research on developing ECG detection and HR measurement, we found
no research using the measured data for solving clinical problems. Only two papers conducted strict
subject selection (elderly people) and were aimed at Alzheimer’s disease [49,58].

4. Discussion

In this paper, we analyzed up-to-date research on in-vehicle health monitoring using unobtrusive
sensors, their locations, the biosignals recorded, and the (medical) purposes of recording. Based on our
in-vehicle health monitoring terminology, we systematically reviewed the literature. Three databases
performed our query and return almost a thousand responses. Interestingly, the records returned
from PubMed and IEEE Xplore are entirely subsets of those from Scopus. This is in contrast to our
findings in previously performed systematic reviews [69] and may be explained with the special focus
on vehicles, which might not be covered completely in PubMed, as vital signs and medical applications
are not in the focus of IEEE Xplore. However, the high sensitivity of our retrieval strategy is indicated
by the fact that only less than 5% of the initially returned records survived our taxonomy-based
standardized selection process and was included in this report (46/959 = 4, 8%).

We developed a graph (Figure 4) that is based on our terminology (Figure 1) and our review
results. It can serve as a framework or guide when developing in-vehicle health monitoring. A list
of possible sensors as well as their suggested locations can be derived from the biomedical data that
is needed for the respective purpose or application. Assuming the driver’s heart parameters, such as
HR, HRV, and RR, can be measured reliably while driving, a medical check-up could be done in the car
on a daily basis during commuting. ECG- or BCG-based monitoring of these parameters enables early
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detection of heart disorders, such as atrial fibrillation [70,71], the precursor of stroke. To this end,
the possible routes are highlighted with blue lines in Figure 4. Furthermore, we list the health purposes
that can be supported by in-vehicle health monitoring, including heart diseases, respiratory diseases,
epilepsy, psychological disorders, Parkinson’s, and cognitive disorders. In addition, the annotated
connections with references (Table 2) denote the weight of the connections. The connections with
more supporting references suggest the promising approaches with higher feasibility. The table also
provides clear linkages to the related references.

The graph in Figure 4 provides the key to answer our initial questions (Section 1):

• Which sensors are suitable for in-vehicle data collection? Contact and capacitive electrodes capture
ECG, and HR and HRV are computed from the recordings. Radar and magnetic induction sensors
also are used for HR and RR measurements by detecting electron-magnetic signals due to organ
movements, while BCG and piezoelectric sensors as well as accelerometers achieve similar goals
through mechanical changes. Cameras provide video data, from which rPPG is generated.
Furthermore, HR or HRV is extracted from the video data. Other work profiles driving behavior
from vehicle built-in sensors in combination with GPS.

• Where should the sensors be placed? Car seat and steering wheel host sensors that are in direct or
indirect contact to the driver, e.g., capacitive and contact electrodes, respectively. The control
panel and the windscreen are the suitable locations to mount video or infrared cameras.

• Which biosignals or vital signs can be monitored in the vehicle? A variety of biosignals or vital signs
are monitored already in the vehicle, including body-related (e.g., body temperature, EMG,
GSR), heart-related (e.g., HR, ECG), blood-related (e.g., pulse transit time, oxygen saturation),
lung-related (e.g., RR), and eye-related (e.g., saccade frequency) parameters. Some work focus
on other information like driving behavior, gas concentration, emotion, body plethysmogram,
grasping force, and body motion.

• Which purposes can be supported with the health data? Driving requires intensive engagement
in terms of both mental and physical efforts. The performance of driving is also associated with
health problems, such as cognitive disorder [58,72]. As known, essential tremor is associated
with incident dementia [73], and the monitoring of hand/foot tremor, for example, by detecting
the operation of steering wheel or pedal gives us the possibility to assess the driving performance.
The research in Stage I (Figure 3) points out the hidden clinical values of measuring biosignals
while driving. However, most application-driven research (Stage II in Figure 3) is aimed at driving
safety, such as fatigue detection and drunk driving. Though in-vehicle health assessment has
potential in monitoring cognitive disorders, it is not yet developed to deliver medical monitoring
in a clinical sense.

So far, a standardized terminology for in-vehicle health monitoring has not been established.
For example, control panel is also called dashboard in many cases; GSR is also known as electrodermal
activity (EDA). The proposed terminology (Figure 1) in this work, on the one hand, may promote
the consistency in scientific communication and, on the other hand, it can form a structured description
of a monitoring system. Surely the scientific community needs to further develop the terminology.

Driving makes the vehicle a dynamic environment. To improve the robustness of health-monitoring
systems, one biosignal or vital sign can be measured by multiple sensors. For example, HR is obtained from
ECG and PPG. Thus, multiple sensors yield a recording system with redundancy. Furthermore, when
multiple parameters are intended to be observed, a body area network (BAN) is formed [74]. As a result,
sensor coupling is an issue that must be considered for signal and data synchronization in future work.

Besides sensors, the vehicle is equipped with actuators [67]. Coupling such actors with health
monitoring can perform signaling alarms in emergency cases, for example, when detecting heart attacks.
Sensors and actuators communicate via the in-vehicle information system (IVIS) [75]. Schneider et al.
transferred the capacitive ECG through the controller area network (CAN) bus [38]. Open issues
include, but are not limited to, (1) how much of the large amount of continuously monitored data
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should be stored within the IVIS, (2) how the health data shall be managed, (3) how the data fusion
workflow shall be implemented in the IVIS, and (4) data exchange between IVIS and health information
systems (HIS).

The existing literature has shown the potential of unobtrusively monitoring health data
in a mobile environment. The IoT sensors are nevertheless only able to measure physiological states but
not interpret the underlying causes of them. Therefore, intrinsically linked mechanisms need to be put
in place so that the collected data can be analyzed and interpreted by health professionals.

The reviewed literature focuses on health monitoring of the driver while passengers
are rarely considered. We also presume that drivers will play a key role as their interactions with
the vehicle provides relevant information. If we consider multiple occupants, the seating location
provides a key to assign the data to the subject. However, it is a question of in-vehicle data storage
and processing whether passengers shall be monitored at all. This will require instantaneous cloud
transfer of data and cloud-based identity management. Then, scenarios can be satisfied where,
for instance, a person sits in the driver seat and then moves to the passenger seat of a different car.

Digital technologies introduce ethical issues such as privacy vulnerabilities for users [76].
Accompanied with the vehicle telematics, physiological information tells far beyond the driving behavior.
The driver can be identified with the physiological data [37]. The ownership and access to the data set
are still open. Avoiding health information disclosure must be considered from the very beginning [77],
and any link between the vehicle and external systems must be secured to protect from hacking
health data.

To foster the car as a diagnostic space, strictly designed clinical studies need to be conducted. So far,
the number of subjects is still low, and the significance of the effects of monitored data has not shown up.
Semantic integration of sensor data for in-vehicle health management requires the establishment
of standards [78].

5. Conclusions

As an equipped private space, the smart vehicle is a promising facility for health monitoring.
This work provides a guide with regard to sensors, location, biosignals, and the purpose of
currently proposed sensor systems for in-vehicle monitoring. Potential sensors can be derived from
the biomedical data that is needed for the respective purpose or application. The suggested locations
for the corresponding sensors are also linked. The annotated connections with references denote
the weight of the connections and provide clear linkages to the related references. To the four
sub-questions: (1) Unobtrusive sensors, which are based on electro-magnetical, mechanical, and optical
mechanisms, are used for in-vehicle health data collection. (2) Driver-centered locations, such
as steering wheel, car seat, and windscreen, are the most commonly used locations to host
the sensors. (3) Typical physiological signals/parameters, such as ECG, HR, RR, body temperature,
can be measured reliably, even while driving. (4) To date, most research has focused on sensor
technology development. Research on mental health assessment and profiling the driving behavior
is on track. However, health-oriented research on the medical use of physiological parameters is still
on-demand. Furthermore, the terminology used in literature analysis may promote consistency
in scientific communication and form a structured description of a monitoring system.
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Abbreviations

The following abbreviations are used in this manuscript:

AI artificial intelligence
BAN body area network
BCG ballistocardiography
CAN controller area network
cECG capacitive ECG
ECG electrocardiography
EDA electrodermal activity
EMG electromyography
GPS Global Positioning System
GSR galvanic skin response
HIS health information systems
HR heart rate
HRV heart rate variability
IoT Internet of Things
IVIS in-vehicle information system
LED light-emitting diode
MI magnetic induction
PPG photoplethysmography
PPGI PPG imaging
rPPG remote PPG
RR respiration rate
SCG seismocardiography

Appendix A. Searching String

Appendix A.1. PubMed

(biosignal[Title] OR biological[Title] OR biological signal[Title] OR biological signals[Title] OR
physiological signal[Title] OR physiological parameter[Title] OR physiological parameters[Title]
OR vital signal[Title] OR vital signals[Title] OR vital sign[Title] OR vital signs[Title] OR
vital parameter[Title] OR vital parameters[Title] OR ECG[Title] OR electrocardiograph[Title]
OR electrocardiography[Title] OR electrocardiogram[Title] OR heart rate[Title] OR heart rate
variability[Title] OR heartbeats[Title] OR heartbeat[Title] OR respiration rate[Title] OR respiratory
rate[Title] OR breathing rate[Title] OR breathing[Title] OR breath[Title] OR respiration[Title] OR body
movements[Title] OR body motion[Title] OR driving profile[Title] OR routine[Title])
AND
(car[Title] OR car’s [Title] OR vehicle[Title] OR in-vehicle[Title] OR in-car[Title] OR driver[Title] OR
driver’s[Title] OR driving[Title] OR automotive[Title] OR road[Title] OR safety belt[Title] OR steering
wheel[Title] OR seat belt[Title])
AND 2009:2019 [edat]

Appendix A.2. IEEE Xplore

(“Document Title”:biosignal OR “Document Title”:biological OR “Document Title”:biological signal
OR “Document Title”:physiological OR “Document Title”:physiological signal OR “Document
Title”:physiological parameter OR “Document Title”:vital signal OR “Document Title”:vital sign OR
“Document Title”:vital parameter OR “Document Title”:ECG OR “Document Title”:electrocardiograph
OR “Document Title”:electrocardiography OR “Document Title”:electrocardiogram OR “Document
Title”:heart rate OR “Document Title”:heart rate variability OR “Document Title”:heartbeat OR
“Document Title”:respiration rate OR “Document Title”:respiratory rate OR “Document Title”:breathing
rate OR “Document Title”:breathing OR “Document Title”:breath OR “Document Title”:respiration OR
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“Document Title”:body motion OR “Document Title”:driving profile OR “Document Title”:routine OR
“Document Title”:driver’s condition OR “Document Title”:health state OR “Document Title”:driver
condition)
AND
(“Document Title”:car OR “Document Title”:car’s OR “Document Title”:vehicle OR “Document
Title”:in-vehicle OR “Document Title”:in-car OR “Document Title”:driver OR “Document
Title”:driver’s OR “Document Title”:driving OR “Document Title”:automotive OR “Document
Title”:road OR “Document Title”:safety belt OR “Document Title”:steering wheel OR “Document
Title”:seat belt)

Appendix A.3. Scopus

TITLE (
(“biosignal” OR “biological” OR “biomonitoring” OR “biological signal” OR “physiological signal”
OR “physiological parameter” OR “vital signal” OR “vital sign” OR “vital parameter” OR “ECG” OR
“electrocardiograph” OR “electrocardiography” OR “electrocardiogram” OR “heart rate” OR “heart
rate variability” OR “heartbeat” OR “respiration rate” OR “respiratory rate” OR “breathing rate” OR
“breathing” OR “breath” OR “respiration” OR “body movements” OR “body motion” OR “driving
profile” OR “routine” )
AND
( “car” OR “car’s ” OR “vehicle” OR “in-vehicle” OR “in-car” OR “driver” OR “driver’s” OR “driving”
OR “automotive” OR “road” OR “safety belt” OR “steering wheel” OR “seat belt” )
)
AND
( LIMIT-TO ( PUBYEAR, 2019) OR LIMIT-TO ( PUBYEAR, 2018) OR LIMIT-TO ( PUBYEAR, 2017) OR
LIMIT-TO ( PUBYEAR, 2016 ) OR LIMIT-TO ( PUBYEAR, 2015) OR LIMIT-TO ( PUBYEAR, 2014) OR
LIMIT-TO ( PUBYEAR, 2013) OR LIMIT-TO ( PUBYEAR, 2012) OR LIMIT-TO ( PUBYEAR, 2011) OR
LIMIT-TO ( PUBYEAR, 2010) OR LIMIT-TO ( PUBYEAR, 2009))
AND
( LIMIT-TO ( PUBSTAGE, “final” ))
AND
( LIMIT-TO ( LANGUAGE, “English” ))
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44. Gücüyener, İ. A novel design of heartbeat monitoring system for the motor vehicle. Int. J. Inj. Contr.
Saf. Promot. 2015, 23, 395–399. [CrossRef]

45. Vinci, G.; Lenhard, T.; Will, C.; Koelpin, A. Microwave interferometer radar-based vital sign detection
for driver monitoring systems. In Proceedings of the IEEE MTT-S International Conference on Microwaves
for Intelligent Mobility (ICMIM), Heidelberg, Germany, 27–29 April 2015; pp. 1–4.

46. Qi, H.; Wang, Z.J.; Miao, C. Non-contact driver cardiac physiological monitoring using video data.
In Proceedings of the IEEE China Summit and International Conference on Signal and Information Processing,
ChinaSIP 2015, Chengdu, China, 12–15 July, 2015; pp. 418–422.

47. Ju, J.H.; Park, Y.J.; Park, J.; Lee, B.G.; Lee, J.; Lee, J.Y. Real-time driver’s biological signal monitoring system.
Sens. Mater. 2015, 27, 51–59.

48. Lee, K.; Park, C.; Lee, B. Tracking driver’s heart rate by continuous-wave doppler radar. In Proceedings
of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
EMBC 2016, Orlando, FL, USA, 16–20 August 2016; pp. 5417–5420.

http://dx.doi.org/10.1109/TITB.2010.2091646
http://www.ncbi.nlm.nih.gov/pubmed/21075732
http://dx.doi.org/10.1109/TBME.2011.2163715
http://dx.doi.org/10.1007/s00779-010-0350-4
http://dx.doi.org/10.1109/JSEN.2011.2118201
http://dx.doi.org/10.1109/JSEN.2011.2163816
http://dx.doi.org/10.3923/itj.2013.4730.4734
http://dx.doi.org/10.1142/S0129065714500063
http://dx.doi.org/10.1109/JBHI.2014.2305403
http://dx.doi.org/10.1080/17457300.2015.1047867


Sensors 2020, 20, 2442 16 of 17

49. Babulal, G.M.; Traub, C.M.; Webb, M.; Stout, S.H.; Addison, A.; Carr, D.B.; Ott, B.R.; Morris, J.C.; Roe, C.M. Creating
a driving profile for older adults using GPS devices and naturalistic driving methodology. F1000 Res. 2016, 5, 2376.
[CrossRef]

50. Ljungblad, J.; Hök, B.; Allalou, A.; Pettersson, H. Passive in-vehicle driver breath alcohol detection using
advanced sensor signal acquisition and fusion. Traffic Inj. Prev. 2017, 18, S31–S36. [CrossRef]

51. Vetter, P.; Leicht, L.; Leonhardt, S.; Teichmann, D. Integration of an electromagnetic coupled sensor into
a driver seat for vital sign monitoring: Initial insight. In Proceedings of the IEEE International Conference
on Vehicular Electronics and Safety, ICVES 2017, Vienna, Austria, 27–28 June 2017; pp. 185–190.

52. Leicht, L.; Vetter, P.; Leonhardt, S.; Teichmann, D. The PhysioBelt: A safety belt integrated sensor system
for heart activity and respiration. In Proceedings of the IEEE International Conference on Vehicular
Electronics and Safety, ICVES 2017, Vienna, Austria, 27–28 June 2017; pp. 191–195.

53. Zhang, Q.; Wu, Q.; Zhou, Y.; Wu, X.; Ou, Y.; Zhou, H. Webcam-based, non-contact, real-time measurement
for the physiological parameters of drivers. Measurement 2017, 100, 311–321. [CrossRef]

54. Yano, K.; Kondo, G.; Kamiya, Y. A new non-contact measurement of heartbeat variations for car drivers
using doppler sensors. In Proceedings of the IEEE International Conference on Vehicular Electronics and
Safety, ICVES 2017, Vienna, Austria, 27–28 June 2017; pp. 162–167.

55. Bounyong, S.; Yoshioka, M.; Ozawa, J. Monitoring of a driver’s heart rate using a microwave sensor and
template-matching algorithm. In Proceedings of the IEEE International Conference on Consumer Electronics,
ICCE 2017, Las Vegas, NV, USA, 8–10 January 2017; pp. 43–44.

56. Beggiato, M.; Hartwich, F.; Krems, J. Using smartbands, pupillometry and body motion to detect discomfort
in automated driving. Front. Hum. Neurosci. 2018, 12, 338. [CrossRef] [PubMed]

57. Wusk, G.; Gabler, H. Non-invasive detection of respiration and heart rate with a vehicle seat sensor. Sensors
2018, 18, 1463. [CrossRef] [PubMed]

58. Seelye, A.; Mattek, N.; Sharma, N.; Witter, P.; Brenner, A.; Wild, K.; Dogde, H.; Kaye, J. Passive assessment
of routine driving with unobtrusive sensors: A new approach for identifying and monitoring functional
level in normal aging and mild cognitive impairment. J. Alzheimers Dis. 2017, 59, 1427–1437. [CrossRef]
[PubMed]

59. Conoci, S.; Rundo, F.; Fallica, G.; Lena, D.; Buraioli, I.; Demarchi, D. Live demonstration of portable systems
based on silicon sensors for the monitoring of physiological parameters of driver drowsiness and pulse
wave velocity. In Proceedings of the IEEE Biomedical Circuits and Systems Conference, BioCAS 2018,
Cleveland, OH, USA, 17–19 October 2018; pp. 1–3.

60. Yang, M.; Yang, X.; Li, L.; Zhang, L. In-car multiple targets vital sign monitoring using location-based
VMD algorithm. In Proceedings of the 10th International Conference on Wireless Communications and Signal
Processing, WCSP 2018, Hangzhou, China, 18–20 October 2018; pp. 1–6.

61. Nowara, E.M.; Marks, T.K.; Mansour, H.; Veeraraghavan, A. SparsePPG: Towards driver monitoring using
camera-based vital signs estimation in near-infrared. In Proceedings of the 2018 IEEE Conference on
Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2018, Salt Lake City, UT, USA,
18–22 June 2018; pp. 1272–1281.

62. Kim, D.K. Wireless vital signal tracking for drivers using micro-doppler seatback radar. In Proceedings
of the 9th IFIP International Conference on New Technologies, Mobility and Security, NTMS 2018, Paris,
France, 26–28 February 2018; pp. 1–5.

63. Park, J.K.; Hong, Y.; Lee, H.; Jang, C.; Yun, G.H.; Lee, H.J.; Yook, J.G. Noncontact RF vital sign sensor
for continuous monitoring of driver status. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 493–502. [CrossRef]
[PubMed]

64. Tran, Q.T.; Long Ton, T.; Minh Nguyen, N.T.; Duong Nguyen, B. A k-band noninvasive vital signs
monitoring system in automotive applications. In Proceedings of the International Symposium on Electrical
and Electronics Engineering (ISEE), Ho Chi Minh, Vietnam, 10–12 October 2019; pp. 85–88.

65. Cassani, R.; Falk, T.H.; Horai, A.; Gheorghe, L.A. Evaluating the measurement of driver heart and breathing
rates from a sensor-equipped steering wheel using spectrotemporal signal processing. In Proceedings
of the 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019, Auckland, New Zealand,
27–30 October 2019; pp. 2843–2847.

66. D’Angelo, LT.; Lüth, TC. Integrated systems for distraction-free vital signs measurement in vehicles.
ATZ Worldw. eMagazine. 2011, 113, 52–56. [CrossRef]

http://dx.doi.org/10.12688/f1000research.9608.2
http://dx.doi.org/10.1080/15389588.2017.1312688
http://dx.doi.org/10.1016/j.measurement.2017.01.007
http://dx.doi.org/10.3389/fnhum.2018.00338
http://www.ncbi.nlm.nih.gov/pubmed/30319372
http://dx.doi.org/10.3390/s18051463
http://www.ncbi.nlm.nih.gov/pubmed/29738456
http://dx.doi.org/10.3233/JAD-170116
http://www.ncbi.nlm.nih.gov/pubmed/28731434
http://dx.doi.org/10.1109/TBCAS.2019.2908198
http://www.ncbi.nlm.nih.gov/pubmed/30946676
http://dx.doi.org/10.1365/s38311-011-0116-2


Sensors 2020, 20, 2442 17 of 17

67. Robert Bosch GmbH. Bosch Automotive Electrics and Automotive Electronics: Systems and Components,
Networking and Hybrid Drive; Springer Fachmedien Wiesbaden: Berlin, Germany, 2014.

68. Schires, E.; Georgiou, P.; Lande, T.S. Vital sign monitoring through the back using an UWB impulse radar
with body coupled antennas. IEEE Trans. Biomed. Circuits. Syst. 2018, 12, 292–302. [CrossRef]

69. Ganapathy, N.; Swaminathan, R.; Deserno, T.M. Deep learning on 1-D biosignals: A taxonomy-based survey.
Yearb. Med. Inform. 2018, 27, 98–109. [CrossRef]

70. Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability:
Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381.
[CrossRef]

71. Mei, Z.; Gu, X.; Chen, H.; Chen, W. Automatic atrial fibrillation detection based on heart rate variability
and spectral features. IEEE Access 2018, 6, 53566–53575. [CrossRef]

72. Alzheimer’s Association. 10 early signs and symptoms of Alzheimer’s. 2019. Available online: https:
//www.alz.org/alzheimers-dementia/10_signs (accessed on 28 December 2019).

73. Thawani, S.P.; Schupf, N.; Louis, E.D. Essential tremor is associated with dementia: Prospective population-based
study in New York. Neurology 2009, 73, 621–625. [CrossRef] [PubMed]

74. Rodrigues, J.J.P.C.; Compte, S.S.; de la Torra Diez, I. 6 - Body Area Networks. In E-Health Systems; Elsevier:
Amsterdam, The Netherlands, 2016; pp. 97–121.

75. Harvey, C.; Stanton, N.A.; Pickering, C.A.; McDonald, M.; Zheng, P. In-vehicle information systems to meet
the needs of drivers. Int. J. Hum. Comput. Interact. 2011 , 27, 505–522. [CrossRef]

76. Berghel, H. Vehicle telematics: The good, bad and ugly. Computer 2019, 52, 66–70. [CrossRef]
77. Fatima A.; Colomo-Palacios, R. Security aspects in healthcare information systems: A systematic mapping.

Procedia Comput. Sci. 2018, 138, 12–19. [CrossRef]
78. Lenz, R.; Beyer, M.; Kuhn, K.A. Semantic integration in healthcare networks. Int. J. Med. Inform. 2007, 76, 201–207.

[CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TBCAS.2018.2799322
http://dx.doi.org/10.1055/s-0038-1667083
http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a014868
http://dx.doi.org/10.1109/ACCESS.2018.2871220
https://www.alz.org/alzheimers-dementia/10_signs
https://www.alz.org/alzheimers-dementia/10_signs
http://dx.doi.org/10.1212/WNL.0b013e3181b389f1
http://www.ncbi.nlm.nih.gov/pubmed/19704081
http://dx.doi.org/10.1080/10447318.2011.555296
http://dx.doi.org/10.1109/MC.2019.2891334
http://dx.doi.org/10.1016/j.procs.2018.10.003
http://dx.doi.org/10.1016/j.ijmedinf.2006.05.008
http://www.ncbi.nlm.nih.gov/pubmed/16769243
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Terminology of Unobtrusive In-Vehicle Health Monitoring
	Literature Retrieval
	Review Criteria

	Results
	Sensors
	Locations
	Biosignals
	Purposes

	Discussion
	Conclusions
	Searching String
	PubMed
	IEEE Xplore
	Scopus

	References

