Skip to main content
. 2020 Apr 29;20(9):2517. doi: 10.3390/s20092517
Algorithm 1. Network Partition Algorithm based on Spatial-Temporal Features (NPA)
Input: The set of sensor nodes X={xi|i=1,,n};
Output: The probability distribution of model prediction P={pij|i=1,,n;j=1,,m};
1: Using the embedding function φ:XZ, and the original samples are mapped into the latent feature space
2: K-Means cluster algorithm is used to initialize the objective distribution Q
3: While not convergence
4: fix the objective distribution Q to compute pij=f(zi,Θ)
5: update the prediction distribution P
6: fix the parameters Θ to compute qij=ψ(pij,Θ)
7: update the objective distribution Q
8: minimize minΘ1ni=1nj=1mqijlogpij through fixing the objective distribution Q
9: update the parameters Θ
10: End while
11: Return P={pij|i=1,,n;j=1,,m}