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Abstract

Protein complexes play a significant role in the core functionality of cells. These complexes are 

typically identified by detecting densely connected subgraphs in protein-protein interaction (PPI) 

networks. Recently, multiple large-scale mass spectrometry-based experiments have significantly 

increased the availability of PPI data in order to further expand the set of known complexes. 

However, high-throughput experimental data generally are incomplete, show limited agreement 

between experiments, and show frequent false positive interactions. There is a need for 

computational approaches that can address these limitations in order to improve the coverage and 

accuracy of human protein complexes. Here, we present a new method that integrates data from 

multiple heterogeneous experiments and sources in order to increase the reliability and coverage of 

predicted protein complexes. We first fused the heterogeneous data into a feature matrix and 

trained classifiers to score pairwise protein interactions. We next used graph based methods to 

combine pairwise interactions into predicted protein complexes. Our approach improves the 

accuracy and coverage of protein pairwise interactions, accurately identifies known complexes, 

and suggests both novel additions to known complexes and entirely new complexes. Our results 

suggest that integration of heterogeneous experimental data helps improve the reliability and 

coverage of diverse high-throughput mass-spectrometry experiments, leading to an improved 

global map of human protein complexes.
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1 INTRODUCTION

Protein interactions and complexes play a central role in the functionality of cellular 

organisms. A critical task in the analysis of biological systems at the molecular level is the 

systematic study of the protein-protein interaction (PPI) networks underlying all cell 

functions.

PPIs can be divided into two types (i) direct physical interactions between protein pairs, and 

(ii) indirect interactions through other proteins in a complex typically referred to as complex 

co-membership. The former interaction type is commonly detected experimentally by a 

yeast two-hybrid (Y2H) assay, whereas the latter interaction type is frequently determined 

by co-immunoprecipitation (coIP) coupled with mass-spectrometry (MS) [5, 32]. Despite 

several years of experimental work, the coverage of PPI networks for most organisms is 

largely incomplete [9, 20]. For instance, the comprehensive resource of mammalian protein 

complex (CORUM) database is one of the most widely used databases of manually 

annotated protein complexes from mammalian organisms [11]. However, the latest release of 

CORUM (version 3.0) only lists 4, 274 mammalian protein complexes across 4, 473 

different genes. Thus, close to 80% of the human proteins are not included in CORUM while 

Berggård et al [5] estimate that over 80% of proteins participate in complexes. Hence, 

experimental and computational efforts are still required to establish a more comprehensive 

set of protein complexes.

Recently, three large-scale MS-based experimental studies have published protein interaction 

maps [14, 16, 38]. While these studies significantly increase the set of known human co-

membership interactions, several are still likely missing [7, 9]. The data of Huttlin et al [16] 

(BioPlex) and Hein et al [14] is derived from affinity purification/mass-spectrometry (AP-

MS), where interactions with a tagged subset of human proteins referred to as baits are 

surveyed; this restricts the set of observable co-membership interactions to those revealed by 

co-precipitation with a bait protein (often termed preys). The resulting interaction sets are 

comprised of 23, 744 bait-prey pairs over 7, 668 proteins (2, 594 baits) in Bioplex, and 26, 

642 bait-prey pairs over 5, 462 proteins (1, 125 baits) in Hein et al. While the two data sets 

overlap in 47% and 69% of the proteins studied, only 3–4% of the identified pairwise 

interactions overlap [7]. This partially results from the different cell lines used by each 

study, but also indicates that both are likely far from complete. In the case of Wan et al [38], 

the interaction data is determined from co-fractionation/mass-spectrometry (CF-MS) 

experiments, which measures whether untagged proteins fractionate together. In this 

experiment, protein interactions are inferred from repeated observation of co-eluting 

proteins across samples and separations. This data set contains 16, 665 protein interactions 

out of 3, 466 proteins from fractionated soluble complexes across nine metazoan species 

such that each interaction is supported by at least two species. As a result, this interaction 
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data is biased towards evolutionarily conserved complexes from abundant and soluble 

human proteins.

Although complementary, as mentioned above these independent experiments typically 

show limited overlap, are incomplete, and contain large fractions of false positive 

interactions [4, 7–9, 12, 37, 40]. Therefore, there is a need for systematic studies which 

integrate MS-based experiments as a means of creating a unified and full view of the set of 

human protein complexes.

Toward this goal, several methods have been developed to integrate molecular information 

for improving prediction of protein interactions and complexes [1–3, 15, 17–19, 21–26, 28–

30, 39]. At the core, these methods predict complexes via a multi-step process: (i) assign 

confidence scores to pairwise interactions, (ii) identify densely connected clusters (iii) refine 

clusters into protein complexes, and (iv) evaluate complexes against a set known from 

previous work. Recently, Drew et al [7] integrated and re-analyzed 9, 063 MS experiments 

comprising the BioPlex, Hein et al and Wan et al data sets in order to provide a more global 

map of human protein complexes. They developed a two-stage machine learning pipeline for 

building protein complexes that first integrates protein pair features from the three data sets 

using a Support Vector Machine and then clusters the resulting pairs to obtain protein 

complexes. A key component utilized by this framework is a weighted matrix model based 

on prior work by Hart et al [13]; it produces estimated weights for prey-prey interactions 

under a common bait when re-analyzing data from AP-MS experiments. This integrative 

approach resulted in improved coverage of the map of human complexes, which the authors 

incorporated into a database referred to as hu.MAP.

While hu.MAP identifies previously uncharacterized protein interactions, it is still restricted 

since it can only predict interactions between observed prey proteins that share an 

underlying bait. Thus, it cannot be generalized to identify potentially novel protein 

interactions or complexes in the absence of an anchoring bait. Furthermore, as previously 

mentioned, most of the existing high-throughput protein interaction data is noisy and likely 

missing interactions; these will also be absent from hu.MAP. To mitigate these challenges, 

several methods combine different types of auxiliary information such as gene expression 

data [17], protein domains [18, 28] and functional annotation [22]. However, most of these 

methods were applied to older mass spec data and do not use additional recent 

complementary data. In particular, these prior methods do not use protein sub-cellular 

localization annotations from large scale bioimage databases (e.g., Human Protein Atlas [34, 

35]) and so the utility of this complementary source remains largely unexplored.

To increase the reliability and coverage of predicted complexes we developed a new method 

that integrates data from multiple recent heterogeneous experiments and sources (mass spec 

experiments, gene expression measurements and sub-cellular localization annotations). In 

particular, we first fused the heterogeneous data into features and then trained a random 

forest classifier for pairwise protein interactions. We next developed graph based methods to 

combine pairwise interactions into protein complexes of varying sizes which are optimized 

and refined using a validation set derived from an earlier version of CORUM. We present 

results showing that our approach improves prediction of pairwise interactions, accurately 
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identifies known complexes, and predicts novel complexes and additions to known 

complexes that are supported by other data sources.

2 METHODS

We developed an integrated approach for predicting protein complexes by fusing 

heterogeneous data from different experiments and sources. The key insight is that by 

combining orthogonal data sources, we can increase coverage of the protein space, 

compensate for missing or incomplete information, and reduce false positives and negatives.

Our approach involves multiple steps: (i) creating a fused heterogeneous set of protein 

interactions features, (2) learning an accurate classifier of pairwise protein interactions and 

(3) combining clusters of densely interacting protein pairs to form protein complexes.

2.1 Data sets

We used the training and test data sets compiled by Drew et al [7] which were generated 

from the literature-curated complexes in the CORUM core set (version 2.0 released on 

February 2012). These sets are comprised of 27, 665 and 15, 575 positive interactions 

defined as pairs of proteins in the same protein complex, and 2, 543, 855 and 2, 867, 914 

negative interactions defined as pairs of proteins in known complexes but not part of the 

same complex. Additionally, we downloaded the latest version of the CORUM core set 

(version 3.0 released on July 2018), as well as the hu.MAP database which was trained on 

CORUM 2.0 [7]. These data sets were used for performance evaluation and identification of 

previously uncharacterized protein pairwise interactions and complexes. Interestingly, 

CORUM 3.0 and hu.MAP share only 29 identical protein complexes [11]. Table 1 

summarizes the protein complex data sets used in this study.

2.2 Integrating heterogeneous experimental data into protein interaction features

We use several different types of features for predicting pairwise complexes. We first 

followed Drew et al [7], and collected all raw protein pair features from the mass-

spectrometry experiments in BioPlex [16], Hein et al [14] and Wan et al [38], as well as the 

additional features introduced in [7] for bait-prey or prey-prey pairs from the two AP-MS 

experiments. In addition, we generated 15 new features. These included four additional 

features based on mass spec data (two for each AP-MS data sets) defined as the Pearson 

correlation coefficient between (i) prey-prey profiles across all baits, and (ii) bait-bait 

profiles across all preys. The remaining eleven features were computed between all pairs of 

proteins. Three features were computed from the NCI-60 human tumor cell lines panel [10]: 

the Pearson correlation coefficients between (i) co-expression profiles at the RNA-level 

across all cell lines, (ii) co-expression profiles at the protein-level across all cell lines, and 

(iii) co-expression profiles at the protein-level across all tissues. Four additional location-

based features were calculated using data from either the Human Protein Atlas or Swiss-Prot 

[36], respectively. Specifically, let Spi and Spj be the sets of sub-cellular localization 

annotations for a protein pair (pi, pj )i ≠ j, then these location features are defined as

1 overlap: = Spi ∩ Spj
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2 set equality: =
1 if Spi = Spj
0 otherwise

3 Jaccard similarity: =
Spi ∩ Spj
Spi ∪ Spj

4 set inclusion: =
1 if Spi ⊆ Spj or Spj ⊆ Spi
0 otherwise

2.3 Learning a classifier for pairwise protein interactions

We trained and evaluated predictors of pairwise interactions for different data sets and 

combinations of features. For a given feature matrix, we trained a random forest classifier 

using the TreeBagger function in Matlab (version R2017b). We performed a parameter 

sweep on the number of trees over the set {100, 200, 300, 400, 500} using cross-validation 

over the training set. Prediction scores were computed using the predict function with the 

default setting which reports an average vote from all trees in the ensemble. For each 

classifier, the result was a protein interaction network graph such that each edge (pairwise 

interaction) was weighted according to the predicted score from all trees in the random 

forest. After the evaluations were completed, we merged the training and test sets to learn a 

final random forest classifier and applied this classifier to all pairs of proteins for which we 

had data. This final set was comprised of 6, 543 proteins and 21, 533, 203 interactions.

2.4 Building protein complexes from predicted pairwise protein interactions

We applied a two-stage approach for building protein complexes from pairwise protein 

interactions. First, we defined a weighted undirected graph Gt = (V, E, w), where V 
represents the set of proteins, E = {(vi,vj) | w(vi,vj) ≥ t and vi,vj ∈ V} set of protein pairs 

with interaction probability above a pre-defined threshold t, and w : E ℝ is the classifier’s 

estimate of the probability of interaction for all protein pairs (vi, vj). The threshold t was 

chosen to select a given percentage of high-scoring protein pairs in the range of {0.001, 

0.002, 0.005, 0.01, 0.02, 0.05}. For each t, we applied Algorithm 1 which returns all 

maximal cliques in Gt as the set of predicted protein complexes Ct. Furthermore, each 

complex c ∈ Ct is assigned a complex score defined as the minimum edge weight between 

all interactions in the complex. While Algorithm 1 is able to identify strongly connected 

sets, we noticed that it often generates several largely overlapping sets that differ in one 

protein which are all annotated as part of a larger complex in CORUM (see Figure 3A). To 

improve the ability of our methods to identify large complexes we further developed 

Algorithm 2 which is applied to refine the initial set of cliques. Algorithm 2 works on the set 

of complexes predicted by Algorithm 1, Ct, and the interaction network Gt′ = Vt′, Et′ to 

refine the set of complexes by adding new protein members from Vt′, thereby effectively 

expanding and possibly merging complexes. Parameter t′ is selected from the set {0.65, …, 

t} which was determined by a parameter sweep. The main idea behind Algorithm 2 is to 
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relax the strict threshold t′ when we observe a large overlap between two strongly connected 

components. Biologically, this corresponds to larger complexes where not all proteins are 

expected to physically interact. In such cases our pairwise score may be lower for some of 

the pairs even if they are in the same complex.

Algorithm 1 Protein Complexes Identification Algorithm
1: function IDENTIFY‐CANONICAL‐COMPLEXES

Input: Gt: = weighted interaction network of protein pairs
above threshold t
Output: Ct: = set of protein complexes

2: Ct = Compute all maximal cliques in Gt
3: for c ∈ Ct do
4: c . score = min w vi, vj ∀ vi, vj ∈ c
5: return Ct

2.5 Evaluation methodology

To enable comparisons on new sets of proteins we evaluated our approach by comparing it to 

our implementation of the method proposed by Drew et al [7]. We determined that our 

implementation was able to generate the same results on the set of proteins originally 

considered in that paper as shown in Figure S1 (compare to Figure 2A in Drew et al [7]).

Performance assessment on pairwise interaction prediction.—The performance 

of each method was evaluated through a 10-fold cross-validation. In each iteration, 10% of 

pairwise interactions in the network are selected for the test set, whereas the remaining 90%

Algorithm 2 Protein Complexes Refinement Algorithm
1: function REFINE‐CANONICAL‐COMPLEXES

Input: Ct: = set of protien complexes and Gt′ = V t′, Et′, w : =
weighted interaction network of protien pairs above refinment
threshold t′
Output: Ct′: = set of refined protein complexes

2: for c ∈ C do
3: for v ∈ V t′ do
4: Add v to c if and only if w v, vi ≥ t′ ∀ vi ∈ c
5: if c ∉ Ct′ then
6: Update c . score = min w vi, vj ∀ vi, vj ∈ c
7: Ct′ = Ct′ ∪ c
8: return C

are used for training. Random forest classifiers were used to construct all predictors and 

perform comparative evaluation. Finally, we estimated the area under the precision-recall 

curve (AUC-PR), which plots precision as a function of recall.

Performance assessment on predicted protein complexes.—To evaluate the 

predicted set of complexes we used k-cliques [7], a new class of similarity metrics for 
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comparing sets of complexes in a formal precision-recall framework. Additionally, this k-

clique metric can be used to evaluate different protein complex scoring schemes in order to 

effectively rank candidate complexes.

2.6 Identification of potentially novel protein complexes

In order to identify potentially novel complexes, we took all candidate complexes that did 

not overlap with CORUM and ranked them by their score. The resulting set of potential 

complexes was further evaluated by traditional enrichment analysis of functional 

annotations, as well as other protein-protein interaction tests to eliminate potential artifacts. 

For instance, we computed Gene Ontology (GO) functional annotation enrichment 

(excluding electronic annotations) for each complex via g:Profiler [31] with g:SCS method 

for multiple testing correction of p-values. Additionally, we restricted the gene list in the 

statistical background to the set of proteins V in the corresponding interaction graph Gt for a 

given threshold t. Furthermore, for each predicted complex size, we generated a random set 

of 10, 000 complexes of same size using the proteins in V and computed GO annotation 

enrichment for each random complex as described above. Finally, for each complex size l, 
the resulting set of l -specific p-values from random complexes is used to assigned a final p-

value, GOP-value, on each candidate complex of equal size, where GOP‐value ∈ 1
10, 000 , 1 .

In the context of interaction-level analysis, we exploited two independent annotation 

sources. First, we used the protein-protein interaction scores from STRING database [33], 

which are derived by integrating multiple data sources (e.g., high-throughput experiments 

and automated literature mining) into a single confidence score for each pairwise interaction 

in the database. For each predicted complex, we computed the average STRING score 

(experimentally-derived only) across all pairwise interactions between members of the 

complex. Second, we downloaded protein abundance profiles for CaCo-2 cells expressing 

wild-type BRAF compiled by Diedrich et al [6]. They applied size-exclusion 

chromatography (SEC) combined with protein correlation profiling-stable isotope labeling 

by amino acids in cell culture (PCP-SILAC) as a means to characterize the protein-protein 

interactions indirectly via cofractionation. The resulting protein-level data set contains 

normalized SEC-PCP-SILAC ratios of 54 SEC fractions for three biological replicates. For 

each possible protein pair in the complex, we computed the Pearson’s correlation coefficient 

of the normalized ratios across the 54 fractions. Finally, for each candidate complex, the 

minimum correlation coefficient is reported.

3 RESULTS

Figure 1 presents the computational pipeline we developed for identifying protein complexes 

from heterogeneous experimental data. We start by combining multiple experiments and 

sources into protein pair features (Figure 1A–B). Of particular note here is that some of our 

new features can be calculated between all possible pairs of proteins, even for those proteins 

that have not been detected in previous MS experiments. Next, we use the fused features to 

train a classifier for pairwise protein interactions (Figure 1C). We then generated a protein-

protein interaction network based on the classifier’s estimate of the probability of pairwise 
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interaction. Finally, we employ a two-step graph-based approach for integrating pairwise 

interactions into protein complexes (Figure 1D–E).

We applied our pipeline to identify protein complexes from distinct mass-spectrometry 

experiments combined with gene expression data and sub-cellular localization annotations 

(see Methods for detailed descriptions). These experiments vary in the type of method 

employed (AP-MS vs. CF-MS) and the number and composition of samples used, as well as 

number of baits surveyed in the case of AP-MS experiments. Therefore, these heterogeneous 

data sets provide a good opportunity to test the generality of our approach for identifying 

previously uncharacterized pairwise interactions and protein complexes.

3.1 Heterogeneous data improves performance and coverage of pairwise interactions

To evaluate our method and compare it to prior methods, we tested predictive performance 

against each individual mass spectrometry data set (using positive and negative pairwise 

interactions derived from known complexes in CORUM). Figures S2 and S3 show precision-

recall curves and area under the curve (AUC-PR) on the AP-MS data sets for three different 

protein pair models (bait-prey, bait-prey and prey-prey, and all protein pairs) using (i) only 

data set specific features, (ii) adding weighted matrix model features (denoted by MM) as 

was done by Drew et al [7] and (iii) our approach which adds several heterogeneous 

features. As can be seen, for data from BioPlex (Figure S2), the addition of co-expression 

(denoted by coExp) and co-localization (denoted by coLoc) features provided a boost in 

performance (AUC) when compared against previous methods for all protein pair models: 

the bait-prey model showed AUC gains between 0.03–0.19, the bait-prey and prey-prey 

model showed AUC improvements between to 0.05–0.17, and the all pairs model displayed 

AUC gains between 0.15–0.26. Similarly, using data from Hein et al (Figure S3) we 

observed gains in performance when compared to prior methods over the different protein 

pair models. These AUC performance improvements ranged between 0.01–0.04 for the bait-

prey model, 0.02–0.11 for the bait-prey and prey-prey model, and 0.09–0.20 for the all pairs 

model. Interestingly, heterogeneous features improved protein interaction discovery on the 

AP-MS data sets even in the stringent bait-prey model (i.e., protein pairs with direct 

evidence in the AP-MS data), highlighting the usefulness of non-physical orthogonal 

interaction information. In the context of CF-MS data, Figure S4 shows the precision-recall 

curve and AUC on the Wan et al data set using (i) only data set specific features, and (ii) 

adding proposed heterogeneous features. Again, our method exhibited a 6% boost in AUC 

performance (0.73 vs. 0.69) for the all pairs model. Overall, as shown by all three figures, 

our method outperforms all other feature combinations across multiple protein pair models. 

As expected, the use of co-expression and co-localization features showed the largest 

performance gains on the all protein pairs model since it includes pairs without direct 

evidence in the co-precipitated or co-fractionated data. These results are consistent with 

previous studies (e.g., Wan et al [38]) which reported performance gains when auxiliary data 

(e.g., co-expression and co-citation) is combined with MS-based features for identifying 

pairwise interactions.

Next, for performance comparisons on the pairwise protein interaction prediction task across 

the fully integrated mass spec data, we trained a random forest classifier using the features 
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described in Methods and compared our proposed method against the method proposed by 

Drew et al [7]. Figure 2A shows the precision-recall curve and AUC for each method on the 

original pairwise interaction test set, whereas Figure 2B shows the precision-recall curve and 

AUC for both methods on the the full set of pairwise interactions. As shown in Figure 2A, 

both methods perform comparably on the original data which is unsurprising as this set is 

solely comprised of protein pairs derived from MS experiments. However, our method 

strongly outperforms the method by Drew et al when evaluated using all protein pairs 

(Figure 2B). Specifically, our method led to almost double AUC score when compared to 

Drew et al (0.23 vs. 0.12). The AUC improvement is even larger (0.30 vs. 0.13) when 

focusing on the top 10% of the scores (not shown). These results highlight the critical role of 

auxiliary data sources (i.e., co-expression and co-localization) not only for improving 

performance in the identification of pairwise interactions but also for increasing coverage 

across protein pairs for which there is no evidence in the MS-based data.

3.2 Identification of human protein complexes

Given the results regarding accurate prediction of pairwise interactions, we next looked at 

the ability of our method to predict known and novel complexes. A well-known signature of 

protein complexes is that co-membership proteins tend to exhibit a dense connectivity in the 

underlying interaction network. To this end, we applied Algorithm 1 (Methods) to the 

interaction network Gt derived from high-scoring protein pairs across different thresholds t 
(Methods). We denote the set of protein complexes identified when using Gt as Ct. To 

further improve the set of complexes from Algorithm 1 (i.e., Ct ), we applied Algorithm 2 to 

merge complexes in Ct using a lower threshold network Gt′. This further refines the set of 

complexes by effectively adding new protein members and possibly merging complexes. 

Figure 3A–B shows the number of predicted complexes from Algorithm 1 (A) and 

Algorithm 2 (B) when using the top 0.02% of high-scoring pairs (t = 0.87; t′ = 0.85) as a 

function of complex size (shown in blue). In particular, the total number of predicted 

complexes is reduced from the initial set of 1, 340 in Algorithm 1 to 1, 182 in Algorithm 2. 

To evaluate the accuracy of both algorithms, we computed the number of predicted 

complexes that are identical to those found in CORUM (gray), as well as those complexes 

that are a strict subset of a CORUM complex (yellow). The remaining predictions are 

labeled as novel predicted complexes (orange). As shown in Figure 3, our method produces 

accurate complexes even when lowering the threshold to allow merging (Methods and 

Figure 3B). Comparing these complexes to the hu.MAP complexes proposed by Drew et al 
[7], we observe that our approach produces more complete complexes (Figure S5) while 

hu.MAP generally tends to predict a larger number of new complexes. Specifically, our 

approach predicts a total of 1, 182 complexes after merging (Figure 3B) whereas hu.MAP 

predicts 3, 095 complexes (Figure S5). Among these predicted complexes, our approach 

produces 1.8% complexes with identical matches in CORUM as opposed to 0.7% of the 

total complexes in hu.MAP. Similarly, 21.6% of the complexes identified by our method are 

strict subsets of known complexes in CORUM compared to just 3.0% of the predicted 

complexes in hu.MAP.

To further analyze the effects of the refinement threshold on the set of complexes Ct, Figure 

S6 shows the number of predicted complexes for six different values of t as a function of 
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threshold t′. In all cases, the number of predicted complex decreases as threshold t′ 
decreases. For example, for t = 0.87 (i.e, top 0.02% of high-scoring pairs) the initial set of 

complex is 1, 340 whereas the number of refined complexes is 550 at t′ = 0.65. As expected, 

we observe the large increase of initial complexes between thresholds t = 0.87 (Ct = 1, 340) 

and t = 0.77 (Ct = 7, 917).

3.3 Evaluation of predicted protein complexes

To further evaluate our predictions we compared them to complexes in CORUM and 

hu.MAP, as well as to complexes generated by using hu.MAP pairwise scores as input to 

Algorithms 1 and 2. To systematically evaluate the accuracy of the predicted complexes, we 

use the k-cliques metrics proposed by Drew et al [7] for comparing sets of complexes in a 

formal precision-recall frame-work. Figure 4 and Figure S7 show F-weighted k-clique score 

as a function of average complex size for each threshold t. As can be seen, our method 

(circles) performs favorably when compared to hu.MAP database (square). For instance, 

hu.MAP exhibits a F-weighted k-clique score of 0.31 whereas our complex maps show 

higher F-weighted k-clique scores (ranging from 0.37 for top 0.05% to 0.48 for top 0.002%). 

In addition, our methods produced larger complex sizes irrespective of the value of threshold 

t (average complex sizes range between 15.9 for top 0.05% and 24.9 for top 0.002% 

compared to 4 for hu.MAP). Interestingly, we observe that if we use hu.MAP pairwise 

scores in the top 0.02% as input to Algorithms 1 and 2, the resulting set of predicted 

complexes (green dotted line with triangles) outperforms those obtained by hu.MAP itself in 

terms of both F-weighted k-clique score (0.33 vs. 0.31) and average complex size (7.6 vs. 

4.0). Regardless of the initial set of pairwise scores, our method produces larger complexes 

to those obtained by hu.MAP which suggests hu.MAP tends to predict sparser interaction 

networks.

Next, we assessed the quality of the set of predicted complexes via traditional enrichment 

analysis of functional annotations, as well as other complementary data sets for three classes 

of predicted complexes with varying degrees of overlap with CORUM: (i) full overlap with a 

CORUM complex (orange circles), (ii) at least half the member proteins overlap with 

CORUM complex (gray diamonds), and (iii) less than half of co-member proteins overlap 

with CORUM complex (blue triangles). Figure S8 evaluates the distribution of the largest p-

value from enriched functional annotations (plotted as -log10(GOP-value)) for each complex 

using g:Profiler and further adjusted using randomization analysis. As can be seen, over 97% 

(384 out of 394) of predicted complexes in CORUM (orange circles) had at least one 

significantly enriched functional annotation at the 0.05 (i.e., -log10 (0.05) = 1.30) 

significance threshold. In the case of the class of complexes for which at least half the 

member proteins overlap with a CORUM complex (gray diamonds), the majority of 

complexes (> 98%; 737 out of 755) also had at least one significantly enriched functional 

annotation; for complexes with less than half of co-member proteins overlapping with 

CORUM this value was 77% (148 out of 191) (blue triangles). These results provide strong 

evidence of the ability of our method to identify biologically relevant protein complexes.

As an additional metric, Figure S9 shows the distribution of average STRING score for each 

complex as a function of complex score across the three complex classes. In this case, we 
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find significantly high STRING scores (> 0.9) for 86.3% (340 out of 394) of those 

complexes already found in CORUM, 32.7% (247 out of 755) of complexes with at least 

half the member proteins overlap with a CORUM complex, and 26.2% (50 out of 191) of the 

predicted complexes with at most half the member proteins overlap with a CORUM 

complex. As expected, the majority of protein pairs in CORUM are generally characterized 

by high STRING scores, whereas other pairwise interactions show a more disperse pattern 

of STRING score values. Additionally, Figure S10 shows the distribution of the most 

significant p-value from enriched functional annotations (plotted as -log10 (GOP-value)) for 

each complex as a function of the average STRING score for the same complex across the 

three complex classes. In summary, these results demonstrate the ability of our method to 

identify high-scoring and potentially novel candidate complexes.

We also downloaded protein abundance profiles from Diedrich et al [6] and computed the 

Pearson’s correlation coefficient between each protein pair in the predicted complex from 

the expression profiles across the 54 fractions. Figure S11 reports the distribution of this 

coefficient for each complex as a function of complex score across the three complex 

classes. Only complexes for which at least 50% of its protein members had values in the 

expression profiles were considered. Remarkably, more than 27% (12 out of 43) of the class 

of predicted complexes with at least half the member proteins in CORUM show a strong 

correlation coefficient (> 0.6) as opposed to just 10.3% (27 out of 263) for complexes in 

CORUM and 3.1% (19 out of 618) for complexes where at least half of the co-member 

proteins overlap with a CORUM complex.

3.4 Identification of previously uncharacterized protein complexes

In order to identify new protein complexes, we first downloaded version 3.0 of CORUM and 

searched for protein complexes that were not included in the earlier version used for training 

and testing. We found three protein complexes that were predicted by our method based on 

CORUM version 2.0 that were subsequently added to version 3; these are summarized in 

Table 2. Figure 5A illustrates these complexes along with corresponding pairwise score. For 

example, we predicted the CCT complex comprised of seven proteins (CCT2, CCT3, CCT4, 

CCT5, CCT7, CCT8, CCT6A) which belongs to a family of molecular chaperones involved 

in protein folding, assembly and transport. As shown in Table 2, the CCT complex is 

assigned a complex score of 0.94 for which the most significantly enriched functional 

annotations include regulation of protein localization and chaperonin-containing T-complex 
both of which are biologically consistent with the role of this complex. Interestingly, this 

complex was only partially predicted (4 out of 7 protein members) in the hu.MAP database. 

Similarly, the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex 

I) is correctly predicted by our method (15 out of 15 protein members) with a complex score 

of 0.60 while only a partial complex (5 out of 15) is found in hu.MAP. Another complex 

correctly predicted is the ILK-LIMS1-PARVA complex which is a complex known to play 

important roles in the regulation of glomerular cell behavior (complex score 0.87). It is 

noting that our method predicted an additional protein (RSU1) as a member of the ILK-

LIMS1-PARVA complex. We next computed the average STRING score between RSU1 and 

the three complex members restricted to experimental sources only; the resulting score of 

0.899 indicates strong support that RSU1 plays a role in this complex. In addition to finding 
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these correct predictions for new protein complexes, we also searched the latest version of 

CORUM for protein members that were not listed in the earlier version. For instance, Figure 

5B shows the anaphase-promoting complex, a multi-subunit ubiquitination complex 

involved in initiation of anaphase and exit from mitosis. In this case our method was able to 

capture two additional proteins (ANAPC16 and CDC26) that were not originally included in 

CORUM version 2.0. We also computed the experimental-derived average STRING score 

between ANAPC16 and CDC26 against the other members of the complex; the resulting 

score of 0.995 (ANAPC16) and 0.990 (CDC26) provides compelling support of the role of 

both proteins within this complex. Overall, these results provide evidence of the importance 

of incorporating orthogonal data sources such as co-expression and co-localization as means 

to accurately predict protein complexes.

Table 3 presents a subset of the top predictions by our method that are still not present in the 

latest version of CORUM. For example, Figure 5C shows two predicted complexes: AP2A1, 

AP2B1, AP2M1 with complex score of 0.88, STRING score of 0.911 and top GO 

annotation of AP-2 adaptor complex, and HYPK, NAA10, NAA16 with complex score of 

0.80, STRING score of 0.535 and top GO term of NatA complex. Additionally, the complex 

comprised of proteins ARCN1, COPA, COPB1, COPB2 and COPG1 is listed in STRING as 

the coatomer protein complex which is a cytosolic protein complex that binds to dilysine 

motifs and reversibly associates with Golgi non clathrin-coated vesicles (complex score of 

0.90). In addition to a significantly high average STRING score from experimental sources 

(0.943), this complex also shows a large minimum Pearson’s correlation coefficient (0.736) 

with the CaCo-2 co-fractionation data. Similarly, POLR3A, POLR3B, POLR3C, POLR3F, 

POLR3G and POLR3H are listed as members of the RNA polymerase III complex which is 

also missing from CORUM. These and other predicted complexes are strongly supported by 

functional enrichment analysis and STRING scores, thus, demonstrating the ability of our 

method to identify new complexes. A full list of predicted complexes with their scores, 

enrichment value, STRING scores and co-location measures is available in Supporting File 

1.

4 CONCLUSIONS

We presented an approach which integrates multiple heterogeneous experiments and sources 

to identify potential protein complexes. In addition to using mass spectrometry experiments, 

gene expression measurements and protein abundance levels, we have also included sub-

cellular localization annotations in our feature set. This allowed us to increase the set of 

potential interactions that the method can predict so that it includes all protein pairs. We next 

used methods for max clique discovery to combine pairs into complexes and developed new 

methods for further refining these complexes to avoid local minima.

Evaluation of our method on the task of predicting protein pairwise interactions improves 

predictive performance by close to 100% over previous methods when evaluated using all 

protein pairs. Additionally, we show that our two-stage method for combining pairwise 

interactions into protein complexes leads to a performance improvement between 19% and 

50% over a recently published method. We provide multiple examples where our method 

correctly identifies novel additions to known complexes as well as new complexes.
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In addition to validation of our method on known complexes we have also compiled a set of 

novel predictions. These predicted complexes do not fully overlap with known CORUM 

complexes, yet display many similar characteristics. In particular, several are strongly 

supported by significantly enriched functional annotations, as well as significant interaction-

level scores derived from the STRING database or independent co-fractionation experiments 

on CaCo-2 cells.

While our work improved coverage and the identification of known complexes, we believe 

that there is still a lot of room for further improvements for protein complex prediction 

methods by making use of additional data sources. For example, Orre et al [27] recently 

performed sub-cellular fraction on more than 12, 000 proteins across multiple cell lines and 

conditions. We hope to use these and additional new data sources to further improve our 

predicted set in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic diagram illustrating the whole computational pipeline proposed in this work. 

Figure shows step in the pipeline. (A) Collecting heterogeneous experimental data sources 

derived from mass spectrometry (MS) experiments, gene expression measurements and sub-

cellular localization annotations, (B) Integrating heterogeneous data into a fused feature 

matrix, (C) Training a random forest classifier for predicting pairwise interactions, (D) 

Identifying protein complexes as strongly connected protein clusters from high-scoring 

pairwise interactions, and (E) Refining protein complexes by adding weaker pairwise 

interactions and merging highly overlapping complexes.
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Figure 2: 
Performance comparison of pairwise protein interactions prediction. Figure shows precision-

recall curve and area under the curve (AUC) of our proposed method (blue) compared 

against a previously published approach by Drew et al [7] (red). (A) Figure shows the 

comparison results for the original test set of protein pairs in [7]. (B) Figure shows the 

comparison results on the full set of protein pairs for which we had data.
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Figure 3: 
Comparison of predicted complexes against gold standard CORUM (version 2.0). Figure 

shows all predicted complexes (blue) across three different categories as a function of 

complex size. The categories are (1) identical match to complex in CORUM (gray), (2) strict 

subset to a complex in CORUM (yellow), and (3) potentially novel complex (orange). (A) 

Figure shows predicted complexes using Algorithm 1 for threshold t = 0.87 selected from 

top 0.02% of high-scoring proteins pairs. (B) Figure shows predicted refined complexes 

using Algorithm 2 with t′ = 0.85 on top 0.02% high-scoring proteins pairs shown in (A).
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Figure 4: 
Comparison between predicted and hu.MAP complexes. Figure shows F-weighted k-clique 

score [7] of our method (solid lines with circles) for two representative thresholds t as a 

function of average complex size for each t′ threshold. Figure also shows corresponding 

scores for hu.MAP (square) and an in-house implementation that uses hu.MAP pairwise 

scores as input to Algorithms 1 and 2 (dotted lines with triangles).

Lugo-Martinez et al. Page 20

ACM BCB. Author manuscript; available in PMC 2020 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Examples of known and new complexes identified by our method. Complexes are illustrated 

using Cytoscape (version 3.7.1); diamond nodes represent a protein in the complex and 

edges represent predicted interactions (all edges presented had probability > 0.6). (A) 

Correctly identified protein complexes from the latest CORUM release that were not part of 

the earlier version of CORUM used for training. (B) Our method correctly adds novel 

proteins, ANAPC16 and CDC26, to a known protein complex. (C) Two new complexes 

identified by our method. Both are strongly supported by complementary data from GO and 

STRING.

Lugo-Martinez et al. Page 21

ACM BCB. Author manuscript; available in PMC 2020 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lugo-Martinez et al. Page 22

Table 1:

Summary of protein complex data sets. For each data set, we show the number of distinct proteins P, number 

of complexes C, average number of proteins per complex PC and average number of complexes per protein CP.

Data set name P C PC CP

CORUM core set (v2.0) 3, 189 2, 083 4.53 2.41

CORUM core set (v3.0) 4, 473 3, 512 4.11 2.63

hu.MAP 7, 777 4, 659 3.99 2.39

ACM BCB. Author manuscript; available in PMC 2020 May 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lugo-Martinez et al. Page 23

Ta
b

le
 2

:

Su
m

m
ar

y 
of

 p
re

di
ct

ed
 p

ro
te

in
 c

om
pl

ex
es

 th
at

 a
re

 p
re

se
nt

 in
 th

e 
la

te
st

 C
O

R
U

M
 r

el
ea

se
 (

ve
rs

io
n 

3.
0)

 b
ut

 w
er

e 
no

t u
se

d 
fo

r 
tr

ai
ni

ng
. F

or
 e

ac
h 

pr
ed

ic
te

d 

co
m

pl
ex

, w
e 

pr
ov

id
e 

th
e 

co
m

pl
ex

 n
am

e,
 p

re
di

ct
ed

 m
em

be
r 

pr
ot

ei
ns

, c
om

pl
ex

 s
co

re
 a

nd
 to

p 
3 

G
O

 f
un

ct
io

na
l a

nn
ot

at
io

ns
 f

ro
m

 g
:P

ro
fi

le
r 

al
on

g 
w

ith
 

co
rr

es
po

nd
in

g 
p-

va
lu

e.

C
om

pl
ex

 n
am

e
P

re
di

ct
ed

 c
om

pl
ex

 m
em

be
rs

C
om

pl
ex

 s
co

re
To

p 
3 

G
O

 a
nn

ot
at

io
ns

 (
p-

va
lu

e)

C
C

T
 c

om
pl

ex
C

C
T

2,
 C

C
T

3,
 C

C
T

4,
C

C
T

5,
 C

C
T

7,
C

T
8,

 C
C

T
6A

0.
94

C
ha

pe
ro

ni
n-

co
nt

ai
ni

ng
 T

-c
om

pl
ex

 (
2.

2E
-2

2)
R

eg
ul

at
io

n 
of

 p
ro

te
in

 lo
ca

liz
at

io
n 

to
 C

aj
al

 b
od

y 
(8

.4
E

-2
2)

Po
si

tiv
e 

re
gu

la
tio

n 
of

 p
ro

te
in

 lo
ca

liz
at

io
n 

to
 C

aj
al

 b
od

y 
(8

.4
E

-2
2)

IL
K

-L
IM

S1
-P

A
R

V
A

 c
om

pl
ex

IL
K

, L
IM

S1
, P

A
R

V
A

, R
SU

1
0.

87
Fo

ca
l a

dh
es

io
n 

(5
.1

E
-5

)
C

el
l-

su
bs

tr
at

e 
ad

he
si

on
 (

5.
1E

-5
)

C
el

l-
su

bs
tr

at
e 

ad
he

re
ns

 ju
nc

tio
n 

(5
.2

E
-5

)

R
es

pi
ra

to
ry

 c
ha

in
 c

om
pl

ex
 I

N
D

U
FA

7,
 N

D
U

FA
8,

 N
D

U
FA

9,
 N

D
U

FA
10

, N
D

U
FB

1,
N

D
U

FB
4,

 N
D

U
FB

8,
 N

D
U

FS
1,

 N
D

U
FS

2,
 N

D
U

FS
3,

N
D

U
FV

1,
 N

D
U

FS
4,

 N
D

U
FS

8,
 N

D
U

FV
2,

 N
D

U
FA

12
0.

60
N

A
D

H
 d

eh
yd

ro
ge

na
se

 (
ub

iq
ui

no
ne

) 
ac

tiv
ity

 (
1.

4E
-3

9)
N

A
D

H
 d

eh
yd

ro
ge

na
se

 (
qu

in
on

e)
 a

ct
iv

ity
 (

1.
4E

-3
9)

N
A

D
H

 d
eh

yd
ro

ge
na

se
 a

ct
iv

ity
 (

2.
3E

-3
9)

ACM BCB. Author manuscript; available in PMC 2020 May 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lugo-Martinez et al. Page 24

Ta
b

le
 3

:

Su
m

m
ar

y 
of

 to
p 

25
 p

ot
en

tia
lly

 n
ov

el
 c

an
di

da
te

 p
ro

te
in

 c
om

pl
ex

es
. F

or
 e

ac
h 

ca
nd

id
at

e 
pr

ed
ic

te
d 

co
m

pl
ex

, w
e 

lis
t t

he
 c

om
pl

ex
 m

em
be

rs
, c

om
pl

ex
 s

co
re

, 

to
p 

G
O

 a
nn

ot
at

io
ns

 f
ro

m
 g

:P
ro

fi
le

r 
an

d 
th

ei
r 

p-
va

lu
e,

 S
T

R
IN

G
 s

co
re

 (
ex

pe
ri

m
en

ta
l o

nl
y)

 a
nd

 m
in

im
um

 P
ea

rs
on

 c
or

re
la

tio
n 

co
ef

fi
ci

en
t.

P
re

di
ct

ed
 c

om
pl

ex
C

om
pl

ex
 s

co
re

To
p 

G
O

 a
nn

ot
at

io
n 

(p
-v

al
ue

)
ST

R
IN

G
 s

co
re

P
ea

rs
on

 c
or

r.
 c

oe
ff

. (
m

in
)

A
C

T
R

1A
, D

C
T

N
4,

 A
C

T
R

10
0.

93
D

yn
ac

tin
 c

om
pl

ex
 (

3.
1E

-5
)

0.
87

9
-

D
L

A
T,

 D
L

D
, P

D
H

A
1

0.
92

Py
ru

va
te

 d
eh

yd
ro

ge
na

se
 c

om
pl

ex
 (

3.
7E

-9
)

0.
83

9
−

0.
19

9

D
L

A
T,

 P
D

H
A

1,
 P

D
H

B
0.

92
Py

ru
va

te
 d

eh
yd

ro
ge

na
se

 c
om

pl
ex

 (
3.

7E
-9

)
0.

89
5

-

A
C

T
R

1B
, A

C
T

R
10

, D
C

T
N

4
0.

92
D

yn
ac

tin
 c

om
pl

ex
 (

3.
1E

-5
)

0.
86

2
-

A
C

T
R

1B
, D

C
T

N
1,

 D
C

T
N

2,
 D

C
T

N
4

0.
91

D
yn

ac
tin

 c
om

pl
ex

 (
1.

1E
-8

)
0.

85
5

-

A
R

C
N

1,
 C

O
PA

, C
O

PB
1,

 C
O

PB
2,

 C
O

PG
1

0.
90

C
O

PI
 v

es
ic

le
 c

oa
t (

2.
1E

-1
4)

0.
94

3
0.

73
6

N
U

P6
2,

 N
U

P8
8,

 N
U

21
4

0.
90

N
uc

le
ar

 p
or

e 
(1

.3
E

-5
)

0.
86

7
-

N
SM

C
E

1,
 N

SM
C

E
2,

 S
M

C
5,

 S
M

C
6

0.
90

Sm
c5

-S
m

c6
 c

om
pl

ex
 (

2.
4E

-1
2)

0.
95

6
-

N
SM

C
E

1,
 N

D
N

L
2,

 S
M

C
5,

 S
M

C
6

0.
89

Sm
c5

-S
m

c6
 c

om
pl

ex
 (

2.
4E

-1
2)

0.
95

7
-

PO
L

R
3A

, P
O

L
R

3C
, P

O
L

R
3F

, C
R

C
P

0.
89

R
N

A
 p

ol
ym

er
as

e 
II

I 
co

m
pl

ex
 (

2.
1E

-1
0)

0.
85

6
-

A
C

T
R

1A
, D

C
T

N
1,

 D
C

T
N

2,
 D

C
T

N
4,

 C
A

PZ
A

2
0.

88
A

nt
ig

en
 p

ro
ce

ss
in

g 
an

d 
pr

es
en

ta
tio

n 
(8

.8
E

-8
)

0.
80

9
−

0.
34

7

PO
L

R
3A

, P
O

L
R

3B
, P

O
L

R
3C

, P
O

L
R

3F
, P

O
L

R
3G

, P
O

L
R

3H
0.

88
R

N
A

 p
ol

ym
er

as
e 

II
I 

co
m

pl
ex

 (
9.

4E
-1

7)
0.

87
2

-

T
M

E
D

2,
 T

M
E

D
3,

 T
M

E
D

10
0.

88
C

O
PI

-c
oa

te
d 

ve
si

cl
e 

(1
.5

E
-7

)
0.

85
8

-

K
PN

A
3,

 K
PN

A
4,

 R
A

N
G

A
P1

0.
88

Pr
ot

ei
n 

lo
ca

liz
at

io
n 

to
 n

uc
le

us
 (

9.
4E

-4
)

0.
28

2
0.

29
4

A
P2

A
1,

 A
P2

B
1,

 A
P2

M
1

0.
88

A
P-

2 
ad

ap
to

r 
co

m
pl

ex
 (

4.
1E

-8
)

0.
91

1
-

D
C

T
N

2,
 D

C
T

N
4,

 D
C

T
N

5
0.

87
D

yn
ac

tin
 c

om
pl

ex
 (

3.
1E

-5
)

0.
93

6
-

D
C

T
N

4,
 D

C
T

N
5,

 D
C

T
N

6
0.

87
A

nt
ig

en
 p

ro
ce

ss
in

g 
an

d 
pr

es
en

ta
tio

n 
(5

.7
E

-4
)

0.
92

4
-

C
O

PA
, C

O
PB

1,
 C

O
PE

, C
O

PG
1

0.
87

C
O

PI
 v

es
ic

le
 c

oa
t (

4.
9E

-1
1)

0.
94

3
0.

85
7

N
D

N
L

2,
 N

SM
C

E
1,

 N
SM

C
E

2,
 S

M
C

5,
 S

M
C

6
0.

86
Sm

c5
-S

m
c6

 c
om

pl
ex

 (
3.

5E
-1

6)
0.

96
4

-

A
R

C
N

1,
 C

O
PA

, C
O

PB
1,

 C
O

PB
2,

 C
O

PE
, C

O
PG

1
0.

84
C

O
PI

 v
es

ic
le

 c
oa

t (
8.

7E
-1

8)
0.

94
4

0.
73

6

SE
C

23
B

, S
E

C
24

A
, S

E
C

24
C

0.
80

6-
ph

os
ph

of
ru

ct
ok

in
as

e 
ac

tiv
ity

 (
2.

8E
-5

)
0.

90
0

-

H
Y

PK
, N

A
A

10
, N

A
A

16
0.

80
N

at
A

 c
om

pl
ex

 (
3.

05
E

-5
)

0.
53

5
0.

98
8

C
Y

C
1,

 U
Q

C
R

Q
, U

Q
C

R
Q

2,
 U

Q
C

R
FS

1
0.

79
M

ito
ch

on
dr

ia
l r

es
pi

ra
to

ry
 c

ha
in

 c
om

pl
ex

 I
II

 (
3.

3E
-1

1)
0.

85
1

-

N
H

P2
, N

O
P1

0,
 R

IO
K

1
0.

78
sn

R
N

A
 p

se
ud

ou
ri

di
ne

 s
yn

th
es

is
 (

3.
9E

-5
)

0.
22

2
-

C
O

PB
, P

C
, P

FK
L

, P
FK

M
0.

78
6-

ph
os

ph
of

ru
ct

ok
in

as
e 

ac
tiv

ity
 (

2.
8E

-5
)

0.
29

2
-

ACM BCB. Author manuscript; available in PMC 2020 May 26.


	Abstract
	INTRODUCTION
	METHODS
	Data sets
	Integrating heterogeneous experimental data into protein interaction features
	Learning a classifier for pairwise protein interactions
	Building protein complexes from predicted pairwise protein interactions
	Evaluation methodology
	Performance assessment on pairwise interaction prediction.
	Performance assessment on predicted protein complexes.

	Identification of potentially novel protein complexes

	RESULTS
	Heterogeneous data improves performance and coverage of pairwise interactions
	Identification of human protein complexes
	Evaluation of predicted protein complexes
	Identification of previously uncharacterized protein complexes

	CONCLUSIONS
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Table 1:
	Table 2:
	Table 3:

