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Abstract

The heterogeneity of traumatic brain injury (TBI) remains a core challenge for the success of interventional clinical trials.

Data-driven approaches for patient stratification may help to identify TBI patient phenotypes during the acute injury

period as well as facilitate targeted trial patient enrollment and analysis of treatment efficacy. In this study, we im-

plemented an unsupervised machine learning approach to identify TBI subpopulations at injury baseline using data from

1213 TBI patients who participated in the Citicoline Brain Injury Treatment Trial (COBRIT) Trial. A wrapper framework

utilizing generalized low-rank models automatically selected relevant clinical features that were subsequently used to

cluster patients using a partitioning around medoids clustering algorithm. Using this approach, we identified three patient

phenotypes with unique clinical injury profiles based on a subset of acute injury features. Phenotype-specific differences in

long-term functional outcome trajectories were respectively observed at 3 and 6 months after injury. In comparison, when

patients were grouped by baseline Glasgow Coma Scale (GCS), no differences in baseline clinical feature profiles or long-

term outcomes were observed. To test phenotype reproducibility in an external validation data set, we used a K-nearest

neighbors algorithm to classify subjects in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury

(TRACK-TBI) Pilot data set into corresponding phenotypes, then measured the Gower’s dissimilarities between TRACK-

TBI and COBRIT subjects in each phenotype. No significant differences were found between trial subjects within two

phenotypes, suggesting that these phenotypes may be generalizable within a broad range of TBI severity. Further,

Extended Glasgow Outcome Scale (GOS-E) outcomes in the TRACK-TBI data set similarly demonstrated phenotype-

specific differences in long-term outcomes. Our results suggest that unsupervised machine learning is a promising and

effective approach for discovery of novel injury subpopulations over the conventional GCS-based method, and may

improve patient selection in future TBI clinical trials.
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Introduction

Traumatic brain injury (TBI) is a leading cause of death and

disability in the United States, with an estimated 2,800,000

new cases annually.1 Within the past 30 years, several promising,

high-profile TBI treatments have entered late-stage clinical trials,

yet none were proven to show patient benefit.2–6 A core challenge

for TBI clinical trials is the identification of patients most likely to

respond to treatment, which is difficult because of the heterogeneity

of TBI with respect to cause, severity, pathology, and prognosis.

Currently, TBI is predominantly classified based on acute clinical

symptoms. The Glasgow Coma Scale (GCS), one of the most

widely used schemas to score the severity of acute brain injury, is

the primary selection criteria for inclusion in most TBI trials.7

Based on a patient’s GCS score, one may be classified as having a

mild (GCS 13–15), moderate (GCS 9–12), or severe (GCS <8)

injury. Although symptom scoring does play an important role in

clinical management of TBI, there is consensus among TBI re-

searchers that the GCS is not granular enough to capture the

complexity of brain injury.6,7 The limitations of the current TBI
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classification system imply a need for a more accurate and com-

prehensive schema to better stratify TBI patient subpopulations for

clinical trial development and treatment.

Unsupervised machine learning is a promising method for dis-

covery of patient phenotypes, and has previously improved clas-

sification and identification of patient subpopulations for several

diseases.8–11 Recently, unsupervised algorithms have also been

applied within the context of TBI.12–16 In this study, we employed

an unsupervised machine learning approach to identify both rele-

vant clinical variables and patient phenotypes at injury baseline

using data from 1213 TBI patients who participated in the Citico-

line Brain Injury Treatment Trial (COBRIT).17 Our unsupervised

approach consisted of two stages within a wrapper framework

wherein the first stage, generalized low-rank models (GLRMs), was

used to automatically select important clinical features that were

used in the second stage to cluster patients into phenotypes using a

partitional clustering algorithm. To understand the clinical signif-

icance of the resulting phenotypes, patients were examined for

differences in acute injury profile and long-term neurofunctional

outcomes. To demonstrate reproducibility of the phenotypes, we

trained a supervised K-nearest neighbors (K-NN) classifier model

on the COBRIT data to predict cluster membership for subjects in

the Transforming Research and Clinical Knowledge in Traumatic

Brain Injury (TRACK-TBI) Pilot data set, and then examined the

similarity of subjects assigned to the same cluster from each trial

cohort. This study supports the use of machine learning in the

development of a more comprehensive approach to TBI clinical

stratification and analysis of clinical trial outcomes.

Methods

Study design

This study was approved by the Children’s Hospital of Phila-
delphia Institutional Review Board. Analysis was conducted on
data from the interventional COBRIT (NCT00545662; n = 1213
subjects) trial and the observational TRACK-TBI (NCT01565551;
n = 599 subjects) study.17–19 The data sets were sourced from the
Federal Interagency Traumatic Brain Injury Research Informatics
Systems.20 Because experimental treatment was concluded to be
ineffective over placebo in the COBRIT trial, subjects from both
treatment and placebo study arms were pooled into one cohort for
our study. Inclusion criteria for the COBRIT study specified that all
patients be between the ages of 18 and 70 years old, been diagnosed
with a non-penetrating TBI, and have a positive baseline computed
tomography (CT) scan. Subjects enrolled in the TRACK-TBI Pilot
study were ‡16 years of age, with an external force head trauma,
and a positive baseline CT scan taken within 24 h of injury.

Data cleaning

COBRIT baseline data were acquired prior to injury or within
24 h of injury. All available baseline data were included for analysis
unless otherwise indicated (Table S1). Baseline data consisted of
both numerical and categorical variables (i.e., features) and in-
cluded pre-injury data such as subject demographics and medical
history 3 months prior to injury, and acute (< 24 h after injury) data
such as mechanism of injury, CT radiology assessments, laboratory
tests, physiological measurements, physician intervention, and
toxicology screens. Where only the highest and lowest values were
reported for physiological measurements (e.g., heart rate and blood
pressure) within 24 h of injury, values were averaged into a single
baseline value. All categorical features were consolidated into a
maximum of three categories, based on frequency to reduce data
sparsity. These categorical variables were then dummy coded into
binary representations (i.e., assigned ‘‘1’’ if feature was present or

‘‘0’’ if it was absent) to allow input into the categorical hinge loss
functions used in training our generalized low-rank model. The
cleaned baseline data set consisted of 156 features.

Missing data were handled according to the mechanism of
missingness: missing at random (MAR), missing completely at
random (MCAR), or missing not at random (MNAR).21,22 The
values of data that are MCAR are independent of observed and
unobserved features. Values are considered MAR if their miss-
ingness is conditional on the value of another observed feature
(e.g., CT lesion volumes are conditionally reported based on the
reported presence of a lesion). Features were considered MNAR if
their values are suspected as missing in a biased manner because of
unobserved data, as determined from the original trial case report
form and trial metadata. Data considered to be MNAR were ex-
cluded from further analysis. For the remaining MAR and MCAR
data, features that were missing <10% of values were imputed and
used as input features for clustering analysis. Features missing 10–
30% of values were imputed but not used as clustering input fea-
tures. Lastly, MAR and MCAR features missing >30% of values
were excluded. Number of missing values per feature is provided in
Table S1. For features where missing values were imputed, we used
multiple imputation with random forest completion method (mul-
tivariate imputation by chained equations [MICE] algorithm im-
plemented in ‘‘mice’’ R package version 3.6).23 For each feature
with missing values, we generated five completed data sets (m = 5),
each with slightly different missing value estimates. Each imputed
data set was individually run through the unsupervised GLRM
framework for feature selection (described subsequently), leading
to m = 5 sets of selected features. In the final clustering schema, the
intersection of the m feature sets was used for the final clustering
analysis performed on a single data set pooled by averaging the m
point estimates for each missing value.

To calculate the baseline GCS scores for subjects in the COBRIT
study, we averaged the best and worst GCS values reported during
the acute injury period, as these were the only GCS values reported in
the raw data. GCS scores were then used to assign injury severity
groups: complicated mild (GCS 13–15 with positive CT scan),
moderate (GCS 8–12), and severe (GCS <8). Only one subject was
missing baseline GCS scores and was dropped from the analysis.
Patient outcomes were assessed using the Extended Glasgow Out-
come Scale (GOS-E) primary study outcome measure, collected at
90 and 180 days after injury. The COBRIT study primary outcomes
data contained missing GOS-E values at 90 (n = 263) and 180 days
(n = 383) because of subjects lost to follow-up, missed follow-up
visits, and death.18 Subjects whose study termination was the result
of death (n = 67 at 90 days, n = 73 at 180 days, cumulatively) were
assigned the GOS-E score of 1, according to the GOS-E scale.24

There was no difference in the baseline GCS scores of subjects with
missing and non-missing GOS-E scores (v2 = 8.11, df = 6, p = 0.43).

Feature selection and unsupervised clustering

Baseline data were run through an unsupervised learning
framework to simultaneously select the subset of features and tuning
parameters that produced the best clusters in an iterative process
(Fig. 1). To avoid overfitting, we utilized a sparse GLRM framework
to select the most relevant features during our clustering analysis
(GLRM implemented using R package h2o version 3.26). GLRMs
can represent high-dimensional data of mixed data types (e.g., nu-
merical and categorical) in a transformed lower-dimensional space
(i.e., low-rank).25 Essentially, the GLRM decomposes an m x n
matrix, A, into matrices X and Y such that XY is approximately equal
to A under the constraint that the number of linearly independent
columns (i.e., the rank), k, in XY £ n. In our approach, we used a
GLRM to decompose our baseline data matrix, A, composed of m
rows of patients and n columns of clinical features, into matrices X
and Y. The Y matrix can be viewed as a set of new features derived
from the original n. The X matrix can be viewed as a lower
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dimensional representation of the patients composed of features
represented by columns in Y. Hyperparameter k was selected to be
the minimum k that captured the majority of variance in A (i.e.,
>50% of the total variance), balancing the sparsity of matrix Y—and
in turn reducing the number of selected features to create a more
parsimonious model—against fidelity. Quadratic and hinge loss
functions were used to approximate numerical and binary features,
respectively.25 We applied an L1-norm regularization parameter to
Y to reduce the size of the feature set contributing to the low rank
decomposition of our data. Thus, the GLRM approximated the input
data matrix A, with the following loss functions:

where the L1-regularization parameter c > zero. Instead of scaling
the numeric features prior to the GLRM, the quadratic loss function
was scaled by dividing by e variance, r2

j , of each feature j, to
compensate for unequal feature scaling. The regularization pa-
rameter, c, produces a column-sparse matrix, Y, where the number
of non-zero columns, d, is small relative to the total column num-
ber, n. A column, yj of Y, which is all zero, signifies that feature j
was uninformative in approximating matrix A, and therefore not
selected for clustering analysis.26–28

To select the smallest feature subset capable of generating well-
defined patient clusters, we utilized a wrapper approach wherein
features were selected by optimizing the GLRM regularization
parameter, c, based on the performance of the clustering algorithm.
For a given value of c, matrix Y in the GLRM contained d non-zero
feature columns. The d features found in the GLRM, were then used
to cluster patient observations. Clustering performance was as-
sessed by calculating the average silhouette width for a given
number of clusters.29 The value of c was increased until maximal
silhouette width was achieved for which d > 0. For each GLRM-
produced feature subset, the pairwise dissimilarities (i.e., distances)

between observations in the data set were computed in a Gower’s
dissimilarity matrix.30 Gower’s dissimilarity was chosen because it
can accommodate mixed feature types (i.e., continuous and cate-
gorical). The resulting dissimilarity matrix was clustered using the
partitioning around medoids (PAM) clustering algorithm (PAM
implemented using R package cluster, version 2.0.6).31,32 Optimal
number of clusters, k, was determined by selecting the average
cluster silhouette width for k between 3 and 10. The range of values
for k was chosen to consider both clinical utility and capture the
maximum average silhouette width between the clusters. Specifi-
cally, we set the lower limit of k to three clusters, because that

would be at least as granular as the number of injury severity groups
based on GCS score (i.e., mild, moderate, severe). The upper limit
was set to k = 10 from empirical demonstration that cluster sil-
houette width scores reached a minimum by this point. Clusters
were visualized in two-dimensional space using t-distributed sto-
chastic neighbor embedding (T-SNE) with a perplexity set at 50.33

To ensure the reproducibility of the feature selection and sta-
bility of the clustering result, we ran a fivefold cross-validation of
the data. Each fold, consisting of *20% of the total number of
samples, was left out as a test set while the remaining observations
comprised a training set used to select c and subsequently deter-
mine the selected feature subset for each fold. The training feature
subset was then used to cluster the observations in the test set, and
the maximum average silhouette width score and optimal k clusters
were recorded. The intersection of the features identified in each
fold was used to cluster the full data set. Stability of both the
training and test clusters was assessed by comparing the similarity of
cluster membership between pairs of observations in the training and
test sets, respectively, with their cluster membership in the full data
set using the Pairwise Similarity Index (PSI). PSI was defined for two

FIG. 1. Diagram of the hybrid generalized low-rank model and clustering approach implemented for unsupervised learning. The full
feature set with n features and m observations (i.e., traumatic brain injury [TBI] patients) is decomposed into two matrices of lower rank
(i.e., dimensions), k. An L1-regularization parameter, c, is applied to the second low-rank matrix to create a feature subset n’, of the
original matrix. The n’ x m feature subset is used to calculate an m x m dissimilarity matrix of the observations and clustered using the
partitioning around medoids (PAM) algorithm. The average silhouette width of the clusters is calculated for a range of 3–10 clusters in
PAM. The c parameter is increased if the average silhouette width is higher than the previous iteration and stopped when n’ is zero. The
final feature subset n’ and clustering schema is selected using the c value that yields the highest cluster silhouette width.
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sets of clustering labels of equal length—Set A and Set B—as the
number of observation pairs that belong to the same cluster in both
Set A and Set B divided by the total number of observation pairs:

Pairwise Similarity Index(%)

¼ Same Cluster in Set A \ Same Cluster in Set Bð Þ
Total numer of observation pairs

� 100

In determining the necessity of the final feature subset, both the
PSI and the Jaccard similarity coefficient were calculated.34 Two
clustering results were considered similar if the PSI was >90%,
such that 90% of observation pairs had the same relationship (i.e.,
belonged to the same cluster in both cluster schemas, or belonged to
different clusters in both cluster schemas) and had a Jaccard co-

efficient >0.75, indicating that 75% of each cluster was recovered in
the alternate cluster schema.35 To ensure none of the selected
features were redundant or non-informative to cluster formation,
we tested the necessity of each feature in achieving the same
clustering result. Individual features were ‘‘nullified’’ by randomly
shuffling values among patients, essentially transforming that fea-
ture into noise. This shuffling procedure was repeated 500 times to
generate a series of null feature distributions. Clustering was per-
formed on the feature subset with the null-shuffled feature, and the
likeness of the new clusters to the clusters of the full feature set was
compared by measuring the mean Jaccard similarity coefficients
and pairwise similarity indices, respectively (Fig. 2A, B). Features
that exceeded the PSI and Jaccard similarity thresholds were ex-
cluded from the final feature set used to generate clusters.

FIG. 2. Determining the necessity of each feature in contributing to the final cluster assignment. Feature necessity: Each feature was
individually replaced with a null distribution of randomly shuffled values. The remaining features plus the null feature were then clustered
upon and the similarity of the clustering result was compared with the original feature set clustering solution using two different measures:
(A) the Jaccard similarity coefficient and (B) the pairwise similarity index. Any feature with a Jaccard similarity coefficient >0.75 and
pairwise similarity index >90% (dotted lines) when nullified was considered unnecessary. Color image is available online.
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Reproducibility of clusters in external validation
data set

To assess cluster generalizability in an external validation data
set, we developed a supervised K-NN classifier to determine the
cluster assignments of subjects in the TRACK-TBI Pilot data set
using the GLRM-selected features. Briefly, K-NN is a nonpara-
metric algorithm in which the target class of a new observation is
determined by the majority target class of the K neighboring ob-
servations used to train the model. COBRIT data were split into a
training data set (80%, n = 970 subjects) and a holdout data set
(20%, n = 243 subjects). Model hyperparameter K was tuned using
10-fold cross-validation on the training data for values of K be-
tween 1 and 20 (K-NN implemented using caret package in R,
version 6.0-78).36 The performance of the trained K-NN model was
evaluated by measuring the accuracy of labeling the correct cluster
in the holdout data set. The trained K-NN model was then used to
predict the subtypes (i.e., cluster membership) of TRACK-TBI
Pilot subjects with predictor feature data available (n = 385). To
determine the resemblance of TRACK-TBI-predicted clusters to
the original COBRIT-derived clusters, the pairwise Gower’s dis-
similarities between TRACK-TBI and COBRIT patients in the
same clusters were calculated and compared between the two data
sets using the cross-match test.37 The cross-match statistical test is a
distribution-free permutation test that compares two multivariate
distributions of different sample sizes by using distances between
observations. Observations are divided into pairs with the goal of
minimizing the distance between observations. The cross-match
statistic is defined as the number of times a subject from one group
was paired with a subject from another group; small values of the
statistic (i.e., fewer pairs with observations from both groups) reject
the hypothesis that the observations come from the same distribu-
tion. Lastly, to determine if TRACK-TBI clusters had similar long-
term recovery outcomes to COBRIT clusters, 90- and 180-day
GOS-E scores for TRACK-TBI subjects were examined for inter-
phenotype differences.

Statistical analysis

We assessed differences in the multivariate predictors (i.e., the
GLRM-selected baseline features) of cluster membership and GCS
severity group by conducting multinomial logistical regression
analyses in which cluster membership was modeled as the depen-
dent variable. The adjusted odds ratios with associated 95% con-
fidence intervals (CI) and p values calculated from Wald tests are
reported to demonstrate the magnitude of influence that each pre-
dictor feature had on cluster membership. Non-predictor numerical
variables were univariately assessed for differences between clus-

ters using the Kruskal–Wallis test with Holm’s correction for
multiple comparisons. Pearson’s v2 test was used to compare the
distribution of categorical variables by cluster. Numerical data are
presented as the median and interquartile range (IQR). Statistical
comparisons were considered significant when corresponding p
values were <0.05 or as determined by the Holm’s test statistic after
correcting for multiple comparisons. All data were processed and
analyzed using the R statistical programming language (R version
3.4.0) and RStudio software (version 1.0.143). The code repository
used to generate study results is provided at: https://github.com/
masino-lab/tbi-clusters.

Results

Unsupervised machine learning identified relevant
baseline clinical features

Fivefold cross-validation of the COBRIT study baseline data

identified an intersection of six features (Table 1).38 The feature

subset included: hematology measures such as platelet count, he-

matocrit, and hemoglobin levels; coagulation measures such as

prothrombin time (PT) and PT international normalized ratio

(INR); and blood glucose levels. Other features in the union, but not

the intersection, of training sets, included partial thromboplastin

time, blood pressure, heart rate, and midline shift measurement as

observed in CT findings. Study treatment arm (i.e., citicoline or

placebo) was not selected by the model as an important feature.

Permutation shuffling of individual features demonstrated no re-

dundancy in the selected feature subset and that each feature se-

lected in the GLRM was necessary in generating the final clustering

result (Fig. 2).

Novel TBI phenotypes have unique clinical
feature profiles

Using the six features selected from the baseline COBRIT

data, three subject clusters, or phenotypes, were readily identified

(Fig. 3A, maximum average cluster silhouette width = 0.193).

Subjects belonged to one of three groups identified as phenotype A

(n = 420), phenotype B (n = 446), and phenotype C (n = 347). De-

mographically, there were no differences in phenotype age, race,

ethnicity, and education level distributions; however, there was a

significant difference in phenotype gender distribution ( p < 0.001,

Table 2). To test if the original study treatment group influenced

cluster membership, we examined the distribution of treatment

groups in each phenotype. Here we found no association between

Table 1. Fivefold Cross-Validation Results of GLRM-Wrapper Feature Selection and Clustering

Training c
Number of selected

features d Training k Training SW
Training similarity

index (%) Testing SW
Testing similarity

index (%)

CV Fold 1 325 7 3 0.15 70.71 0.15 69.10
CV Fold 2 331 7 3 0.14 67.36 0.14 79.80
CV Fold 3 336 6 3 0.18 71.30 0.18 69.08
CV Fold 4 340 6 4 0.14 96.69 0.14 69.92
CV Fold 5 333 6 3 0.16 66.20 0.16 76.26

For each of the m imputed data set of baseline features, observations were split into five cross-validation (CV) folds, where the observations in each
fold were separately used as a test set and the remainder comprised the training set. The table reports the averaged parameter values for each CV fold
across the m imputed data sets. Training observations were used to train the generalized low-rank models (GLRM) wrapper for the L1-regularization
hyperparameter c (Column 1), and consequently the number of non-zero weighted features, d (Column 2). Training and test sets with d features were
individually clustered using the partitioning around medoids (PAM) algorithm and the number of clusters that yielded the maximum average silhouette
width (SW) was recorded for the training set and testing sets, (training, Columns 3 and 4; test, Column 6). To assess how well pairs of observations were
clustered together in each training or test set versus the full set of observations, the pairwise similarity index was calculated for all training and test sets
(training, Column 5; testing, column 7).
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FIG. 3. Partitional clustering reveals distinct traumatic brain injury phenotypes. (A) T-distributed stochastic neighbor embedding
(T-SNE) projection of 1213 traumatic brain injury (TBI) patients from the Citicoline Brain Injury Treatment Trial (COBRIT) study,
each dot representing one patient. The partitioning around medoids (PAM) clustering solution, which yielded the maximum average
silhouette width, resulted in three clusters labeled phenotype A (teal, n = 420), phenotype B (red, n = 446), and phenotype C (purple,
n = 347). X and Y axes denote two-dimensional (2-D) representation of six-dimensional feature space. Novel TBI phenotypes have
different recovery outcome trajectories based on the Extended Glasgow Outcome Scale (GOS-E) scores at (B) 90 days and (C) 180 days
post-injury. Statistical significance was computed using the Kruskal–Wallis test with Holm’s correction for multiple comparisons
(asterisks represent p values: ****p < 0.0001, p > 0.05 n.s.). Color image is available online.
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treatment arm and cluster membership (v2 test, p = 0.79, v2 = 0.48,

df = 2). Additionally, there was no significant enrichment of GCS

injury severity groups (i.e., complicated mild, moderate, severe) in

any of the clusters (Fig. 4A; v2 test, p = 0.76, v2 = 1.84, df = 4).

When assessing the values of the features used to identify the

phenotypes, we found that each phenotype had a unique clinical

profile (Table 3). Phenotype A was predominantly characterized by

mild anemia indicated by low hematocrit (median [IQR] = 37 [3], %)

and hemoglobin levels (median [IQR] = 12.4 [1.2], g/dL). Phenotype

B contained subjects with relatively normal hematological values,

but a lower platelet count (216 [87], 1000/lL) and an elevated

prothrombin time (median [IQR] = 13 [2.8] sec) compared with

phenotype A. Phenotype C had the most severe clinical profile, with

abnormal feature values indicative of thrombocytopenia, anemia,

and coagulopathy. To understand feature differences among phe-

notypes, we performed a multinomial logistical regression analysis

(Table 3). In comparison with phenotype C, phenotype A was more

likely to have higher hematological values (platelets, hemoglobin,

hematocrit) but shorter prothrombin time and lower glucose levels.

Additionally, no difference in INR was demonstrated (adjusted odds

ratio [95% CI]: 0.72 (0.44–1.18), p = 0.19). Likewise, compared with

phenotype C, phenotype B was significantly likely to have higher

hematological values, lower coagulation measurements, and no

difference in blood glucose (Adjusted odds ratio [95% CI]: 0.99

[0.98–1.0], p = 0.13). For comparison, we examined the same feature

profiles when patients were grouped by their GCS score (Table 4).

Interestingly, no significant differences were detected between the

severe and the complicated mild severity groups, except that the

complicated mild group had lower INRs (adjusted odds ratio [95%

CI]: 4.37 [1.101–7.42], p = 0.04). Platelet count was also higher in

the moderate group than in the complicated mild group (adjusted

odds ratio [95% CI]: 1.00 [1.00–1.01], p = 0.03). Overall, this sug-

gests that GCS scoring cannot detect differences in these baseline

clinical feature profiles.

Although the GLRM-selected features hold clinical relevance

for classifying new patients into a phenotype, we wanted to in-

vestigate whether baseline phenotypes also held information on

TBI explicitly. To explore this, we looked at the subset of baseline

features specific to TBI, including CT scan findings and injury

event information (mechanism, time of injury). Several TBI fea-

tures demonstrated phenotypic differences (Table 5). These fea-

tures included several CT findings including hemorrhage, midline

shift, lesions, and cistern abnormalities, as well as mechanism of

injury. Of these features, phenotype A was primarily characterized

by a high incidence of abnormal mesencephalic cisterns (30% of

subjects) but a low incidence of intraventricular hemorrhage (IVH)

(11%.). Phenotype B had a similar incidence rate of IVH (11%) and

abnormal cisterns (23%), but had a higher prevalence of subdural

lesions present in the supratentorial region (16%). The most severe

TBI signature was seen in phenotype C, which had high rates of

IVH (24%), abnormal mesencephalic cisterns (47%), and midline

shift measurements >5 mm (15%). In summary, hemorrhage and

subcortical/cisternal abnormalities, as well as injury mechanism,

defined the TBI-specific differences among baseline phenotypes.

TBI phenotypes have different long-term
outcome trajectories

To determine the clinical utility of our patient phenotypes, we

compared long-term functional outcomes at 90 and 180 days after

injury using the GOS-E, the primary outcome measure chosen in

the original COBRIT study. At 90 days, there were significant

Table 2. Patient Demographics by TBI Phenotype

Phenotype A Phenotype B Phenotype C p value

Age (years)a

Median (IQR) 42 (29) 35 (28) 40 (31) 0.116
Subject Count (%)

18–30 144 (34%) 184 (41%) 124 (36%)
>30–45 98 (23%) 97 (22%) 76 (22%)
>45–60 124 (30%) 118 (26%) 101 (29%)
>60 54 (13%) 47 (11%) 46 (13%)

Genderb

Male 281 (67%) 403 (90%) 219 (63%) p < 0.0001
Female 139 (33%) 43 (10%) 128 (37%)

Raceb

White 347 (83%) 369 (83%) 282 (81%) p = 0.863
Black or African-American 61 (14%) 60 (13%) 54 (16%)
Another race 12 (3%) 17 (4%) 11 (3%)

Ethnicityb p = 0.240
Hispanic 18 (4%) 22 (5%) 9 (3%)
Non-Hispanic 402 (96%) 424 (95%) 338 (97%)

Educationb

High school or less 203 (48%) 211 (47%) 182 (52%) p = 0.604
Some college or trade school 142 (34%) 161 (36%) 110 (32%)
College graduate or more 75 (18%) 74 (17%) 55 (16%)

The demographic distribution of patients in each phenotype. Number of subjects in each demographic group is listed under phenotype columns as well
as the percentage of the total number of patients in that phenotype group. Superscripts denote statistical test used to compute p values displayed in
Column 6.

aKruskal–Wallis test with Holm’s correction for multiple comparisons used to compute p values, significance is p < 0.05.
bPearson’s v2 test used to compute p-values, significance is p < 0.05.
TBI, traumatic brain injury; IQR, interquartile range.
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FIG. 4. Baseline Glasgow Coma Scale (GCS) scores do not overlap with traumatic brain injury patient phenotypes and do not
correlate with long-term outcome. (A) T-distributed stochastic neighbor embedding (T-SNE) projection of patients within a reduced
feature space (same as Fig. 3) labeled by injury severity based on patients’ acute GCS score. Injury severity was classified as severe
(GCS <8, n = 834; dark green), moderate (GCS 9–12, n = 304; orange), and mild (defined as GCS 13–15 with an abnormal computed
tomography [CT] scan, n = 75; blue). Extended Glasgow Outcome Scale (GOS-E) scores at (B) 90 days and (C) 180 days post-injury by
injury severity. Statistical significance was computed using the Kruskal–Wallis test with Holm’s correction for multiple comparisons
(asterisks represent p values: *p < 0.05, p > 0.05 n.s.). Color image is available online.

1438



differences in phenotype GOS-E scores (Kruskal–Wallis v2 = 84.08,

p < 0.0001, and Fig. 3B). Patients in phenotypes A and B exhibited

the best overall GOS-E scores (phenotype A: median [IQR] = 6 [2];

phenotype B: median [IQR] = 6 [2], p = 0.13). Conversely, patients

in phenotype C had the poorest 90-day GOS-E scores (median

[IQR] = 5 [3]). Additionally, we measured the effect size of 90-day

GOS-E scores to assess the magnitude of outcome differences

among phenotypes. Between phenotypes A and B, the effect size

was negligible (Cohen’s d: -0.149, 95% CI: -0.297– -0.0004).

There was a medium effect size between phenotypes A and C

(Cohen’s d: 0.533, 95% CI: 0.378–0.687) and phenotypes B and C

(Cohen’s d: 0.719, 95% CI: 0.561–0.877). Respectively, these ef-

fect sizes correspond to a 65% chance that a subject in phenotype A,

and a 69% chance that a subject in phenotype B will have a more

favorable 90-day GOS-E score than a randomly selected subject in

phenotype C.

This phenotypic trend in outcomes persisted at 180 days after

TBI (Kruskal–Wallis v2 = 46.69, p < 0.0001). At 180 days after

injury baseline, the effect size between phenotypes A and B re-

mained negligible (Cohen’s d: -0.175, 95% CI: -0.331 – -0.018).

Interestingly, the effect size between phenotypes B and C remained

of medium magnitude (Cohen’s d: 0.572, 95% CI: 0.404–0.739),

whereas the effect size between phenotypes A and C was reduced at

this time point (Cohen’s d: 0.380, 95% CI: 0.217–0.543). This

signifies that there is a smaller chance (60%) that a subject in

phenotype A will have more favorable outcome (i.e., higher GOS-E

score) than a subject in phenotype C at 180 days after injury. No

significant differences in GOS-E scores at either 90 or 180 days

after injury were observed when subjects were grouped by baseline

GCS scores (90 days: Kruskal–Wallis v2 = 0.93, p = 0.63 [Fig. 4B];

180 days: Kruskal–Wallis v2 = 0.93, p = 0.65).

COBRIT phenotypes demonstrate generalizability
in the TRACK-TBI Pilot data set

In order to test the reproducibility of the patient phenotypes

found using the COBRIT study data, we performed a supervised

learning analysis to classify subjects in the TRACK-TBI data set

into phenotypes and examined their similarity with subjects in each

COBRIT phenotype. A K-NN multi-class classifier was trained on

80% of the COBRIT data (n = 971) to predict the phenotype of each

observation. Tenfold cross-validation determined the optimal

number of nearest neighbors to be K = 19. Accuracy on the re-

maining 20% of the COBRIT data in the holdout set was 92.2%

overall (95% CI: 88–95.2%; Accuracy for individual phenotypes:

A = 89.3%, B = 96.6%, C = 90%). The resulting K-NN model was

then utilized to predict the cluster assignments of TRACK-TBI

Pilot subjects (n = 385) based on the six GLRM-selected features

Table 3. Baseline Feature Values by TBI Phenotype

Phenotype A Phenotype B Phenotype C Phenotype A vs.
phenotype C
adjusted OR

(95% CI)

Phenotype B vs.
phenotype C
adjusted OR

(95% CI)Clinical feature
Median
(IQR)

Median
(IQR)

Median
(IQR) p value p value

Platelet count (1000/lL) 226 (74) 216 (87) 163 (76) 1.02 (1.01–1.03) < 0.0001 1.02 (1.01–1.03) < 0.0001
Hemoglobin (g/dL) 12.4 (1.2) 14.4 (1.4) 10.1 (2.0) 5.76 (4.61–7.19) < 0.0001 6.48 (4.38–9.58) < 0.0001
Prothrombin time (sec) 11 (3.0) 13 (2.8) 14.6 (3.1) 0.48 (0.4–0.56) < 0.0001 1.58 (1.26–1.97) < 0.0001
INR 1.1 (0.1) 1.1 (0.1) 1.2 (0.2) 0.72 (0.44–1.18) 0.19 0.001 (0.0002–0.02) < 0.0001

Hematocrit (%) 37 (3) 42.5 (3) 32 (4.5) 1.73 (1.62–1.85) < 0.0001 6.75 (5.94–7.67) < 0.0001
Glucose (mg/dL) 127 (36) 128 (36) 145 (43) 0.99 (0.98–0.99) 0.0004 0.99 (0.98–1.0) 0.13

(Columns 1–3) The median and interquartile range (IQR) of GLRM-selected baseline features in each phenotype, respectively. (Columns 4, 6)
Multinomial logistical regression was used to calculate the adjusted odds ratio (OR) and 95% confidence intervals (CI) for the likelihood of phenotype
membership based on the GLRM-selected predictor features, where phenotype C is the reference outcome variable. (Columns 5,7) Wald tests were used
to calculate p values for each regression coefficient ( p < 0.05 considered significant, bold font).

TBI, traumatic brain injury; INR, international normalized ratio; GLRM, generalized low-rank models.

Table 4. Baseline Feature Values by Baseline GCS Injury Severity Category

Severe
(GCS score £8)

Moderate
(GCS score 9–12)

Complicated
mild (GCS

score 13–15)

Severe vs.
complicated mild

adjusted OR
(95% CI)

Moderate vs.
complicated mild

adjusted OR
(95% CI)Clinical feature Median (IQR) Median (IQR) Median (IQR) p value p value

Platelet count (1000/lL) 206 (93) 209 (83) 206 (82) 1.00 (0.99–1.08) 0.07 1.00 (1.00–1.01) 0.03
Hemoglobin (g/dL) 12.6 (3) 12.5 (3.1) 12.7 (3.2) 0.94 (0.82–1.08) 0.37 0.94 (0.81–1.10) 0.43
Prothrombin time (sec) 13.1 (3.8) 13.1 (3.3) 12.4 (3.3) 1.00 (0.89–1.13) 0.92 1.06 (0.93–1.20) 0.40
INR 1.1 (0.20) 1.1 (0.15) 1.05 (0.12) 4.37 (1.10–17.42) 0.04 1.15 (0.26–5.01) 0.85
Hematocrit (%) 38 (7) 38 (6.5) 38 (6.5) 1.05 (1.00–1.11) 0.05 1.03 (0.98–1.09) 0.24
Glucose (mg/dL) 132 (41) 136 (40) 132 (30) 1.00 (0.99–1.01) 0.65 1.00 (0.99–1.01) 0.24

Patients were divided into the injury severity groups complicated mild, moderate, and severe based on average acute Glasgow Coma Scale (GCS) score
(< 24 h after injury). (Columns 1–3) The median and interquartile range (IQR) of GLRM-selected baseline features in each phenotype, respectively.
(Columns 4, 6) Multinomial logistical regression was used to calculate the adjusted odds ratio (OR) and 95% confidence intervals (CI) for the likelihood
of phenotype membership based on the GLRM-selected predictor features, where the complicated mild injury severity group is the reference outcome
variable. (Columns 5, 7) Wald tests were used to calculate p values for each regression coefficient ( p < 0.05 considered significant, bold font).

INR, international normalized ratio; GLRM, generalized low-rank models.
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originally used to generate the clusters. As a result, 68 subjects

were assigned to phenotype A, 268 subjects to phenotype B, and

49 subjects to phenotype C. To examine the similarity of TRACK-

TBI subjects and COBRIT subjects assigned to each phenotype,

Gower’s pairwise dissimilarity matrices were calculated for

subjects in each phenotype (i.e., measurement of how similar

subjects within a given phenotype are to each other, Fig. 5A) and

subsequently compared using a cross-match permutation test to

determine if TRACK-TBI and COBRIT subjects in each pheno-

type belonged to the same distribution based on the Gower’s

distance between observations. TRACK-TBI Pilot subjects in

phenotypes B and C were not significantly different from

COBRIT subjects in each respective phenotype (phenotype B:

cross-match statistic = 164, p = 0.34; phenotype C: cross-match

statistic = 41, p = 0.25). However, TRACK-TBI Pilot subjects were

significantly different from COBRIT subjects in phenotype A

(cross-match statistic = 52, p = 0.03), suggesting that phenotype A

may not generalize to an external data set.

Further, TRACK-TBI phenotypes also demonstrated similar

correlations with 90- and 180-day GOS-E scores. At 90 days after

injury, phenotypes A and B exhibited the highest GOS-E scores

(Fig. 5B; phenotype A median [IQR] = 7 [1.25], phenotype B me-

dian [IQR] = 7 [2]) with phenotype C demonstrating significantly

poorer GOS-E scores (median [IQR] = 6 [4], Kruskal–Wallis,

p = 0.0035). Although the effect size was negligible between

TRACK-TBI subjects in phenotypes A and B (Cohen’s d: 0.069,

95% CI: -0.228–0.365), there was a medium effect size between

phenotypes A and C (Cohen’s d: 0.617, 95% CI: 0.193–1.040) and

phenotypes B and C (Cohen’s d: 0.575, 95% CI: 0.227–0.923). Like

COBRIT phenotypes, TRACK-TBI phenotypic differences in

GOS-E scores persisted at 180 days post-injury ( p = 0.023). The

effect size decreased slightly between phenotypes A and C (Co-

hen’s d: 0.310, 95% CI: -0.133–0.754); however, a medium ef-

fect size between phenotypes B and C remained at 6 months post-

injury (Cohen’s d: 0.520, 95% CI: 0.160–0.881). This suggests

that TRACK-TBI phenotypes A and B also have a similar likeli-

hood of favorable GOS-E outcome scores as COBRIT subjects.

In all, these findings demonstrate the generalizability of the TBI

baseline phenotypes discovered using an unsupervised learning

approach to an external data set.

Discussion

The heterogeneity of TBI has been a core challenge for clinical

trials. Classifying TBI patients by symptom scoring, such as GCS,

does not fully capture the spectrum of injury heterogeneity and

leaves a critical need for more precise methods of patient stratifi-

cation. In this study, we identified three TBI patient phenotypes

using unsupervised machine learning. Each patient phenotype was

found to possess a unique baseline feature profile that corresponded

to phenotype-specific differences in long-term functional outcome.

Comparatively, when patients were categorized by their baseline

GCS score, these groups did not demonstrate distinct feature pro-

files and did not correlate with long-term patient outcomes. Further,

when new subjects in the TRACK-TBI Pilot data set were classified

into the phenotypes, there was no difference in the injury profiles of

TRACK-TBI subjects and COBRIT subjects within phenotypes B

and C. These results suggest that the novel patient phenotypes

discovered using our unsupervised clustering approach are largely

reproducible in an external data set and may significantly improve

the precision and value of TBI classification over the current GCS-

based standard.

Generalized low-rank models have demonstrated broad utility

in identifying patient subpopulations based on electronic health

record data.39 Instead of clustering on latent features (e.g., prin-

cipal components), which adds a layer of abstraction to the

original features, we used a regularized GLRM to identify features

with non-zero weights in the low-rank representation, and then

clustered patients on the original values of these features. This

methodology is novel for its implementation of a GLRM for

feature selection within a wrapper framework, and facilitates si-

multaneous unsupervised dimensionality reduction and cluster-

ing. By clustering on the original features and not latent feature

representations, the results of our model have clinical interpret-

ability, as well. GLRM feature selection demonstrated robustness

in selecting non-redundant features as the cluster schema, and

Table 5. Differences in the Occurrence of TBI-Specific Features among Baseline Phenotypes

TBI specific feature Phenotype A Phenotype B Phenotype C p value

Intraventricular hemorrhage 11% (48) 11% (50) 24% (84) < 0.0001
Lesion anatomical sites

Intraparietal lesion in brainstem/diencephalon/corpus callosum 4% (18) 2% (11) 6% (22) 0.026
Subdural lesion in left supratentorial region 9% (39) 16% (73) 17% (58) 0.002

Abnormal mesencephalic cisterns 30% (127) 23% (102) 47% (162) < 0.0001
Mechanism of injury

Motor vehicle 56% (236) 44% (195) 68% (235) < 0.0001
Fall 31% (129) 35% (158) 26% (91)
Other 13% (55) 21% (93) 6% (21)

Midline shift
No shift 79% (330) 81% (362) 73% (252) < 0.0001
0–5 mm shift 16% (67) 16% (70) 12% (43)
6–10 mm shift 4% (18) 2% (11) 10% (36)
> 10 mm shift 1% (5) 0.6% (3) 5% (16)

(Column 1) The subset of TBI-specific features that demonstrated significant differences in the frequency of patients in each phenotype presenting with
these features. Radiology assessment findings on CT scan: presence of intraventricular hemorrhage, anatomical locations of lesions, and abnormal status
of mesencephalic cisterns (abnormal status defined as blood-filled, compressed, or obliterated cisterns). Injury information: mechanisms of injury
including motor vehicle accidents, falls, and other mechanisms, including assault and sports-related injuries. (Columns 2–5) The percentage and number
of patients (expressed in parentheses) in each phenotype who presented with the selected TBI-related features. (Column 6) Statistically significant p
values ( p < 0.05) determined using Pearson’s v2 test.

TBI, traumatic brain injury; CT, computed tomography.
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FIG. 5. Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot subjects classified into
phenotypes demonstrate similar injury profiles and Extended Glasgow Outcome Scale (GOS-E) outcomes as Citicoline Brain Injury
Treatment Trial (COBRIT) phenotype subjects. (A) T-distributed stochastic neighbor embedding (T-SNE) projection of the original
COBRIT subject phenotypes (COBRIT Phen. A, Phen. B, Phen. C) with the addition of TRACK-TBI Pilot subjects given phenotype
assignments by a K-nearest neighbors (K-NN) classifier (TRACK-TBI Phen. A, Phen. B, Phen. C). TRACK-TBI phenotype extended
GOS-E scores at (B) 90 days and (C) 180 days post-injury significance was computed using the Kruskal–Wallis test with Holm’s
correction for multiple comparisons (asterisks represent p values: **p < 0.01, p > 0.05 n.s.). Color image is available online.

1441



membership did not change significantly when individual features

were randomly shuffled during permutation testing. Lastly, two

phenotype groups determined by PAM clustering were repro-

ducible such that when new observations from the TRACK-TBI

Pilot data set were classified into phenotypes using K-NN, they

did not differ significantly from COBRIT observations in the

corresponding phenotype. Reproducibility of phenotype mem-

bership in the TRACK-TBI data set is a significant finding, be-

cause the TRACK-TBI Pilot study is observational and also

contains a higher proportion of subjects with mild TBI than is

present in the COBRIT cohort.19 This demonstrates that the

phenotypes found using our GLRM-clustering approach can

generalize to a wider TBI severity range more indicative of the

broader TBI population.

It is promising that the GLRM-selected features used in unsu-

pervised clustering support clinical intuition and are associated

with phenotypic TBI signatures. For example, several coagulation

and hematological features were identified as important for clus-

tering. Coagulopathy is common in TBI patients and can occur

from blood loss and hemodilution secondary to fluid resuscitation

and is also associated with poor outcomes.40–42 Phenotype C had

the lowest median values of hematocrit, hemoglobin, and platelet

counts, as well as elevated prothrombin time and INR. This sug-

gests that this group contains patients with severe coagulopathy or

bleeding abnormalities associated with their TBI, and may also

indicate additional extracranial injuries.43 This was corroborated

by phenotype C’s TBI signature of intraventricular hemorrhage,

cisternal damage and severe midline shift. Likewise, hypergly-

cemia in this phenotype is indicative of activation of the sympa-

thetic stress response that commonly occurs following TBI.

Hyperglycemia can also signify a reactive response to cellular

metabolic dysfunction and has been linked to coagulopathy in

some TBI patients.44 Phenotype A had relatively normal coagu-

lation measures, which also corresponds with its low rates of

hemorrhage. Additionally, subjects in phenotype A had injuries

characterized by mild anemia and a high prevalence of abnormal

mesencephalic cisterns from CT findings. Phenotype B similarly

had normal hematological laboratory values, but had abnormal

coagulation as evidenced by the elevated prothrombin time, and

higher incidence of subdural lesions. The clinical feature char-

acteristics of both phenotypes A and B indicate that subjects in

these phenotypes presented with milder injury severity than

phenotype C, but are separated by signs of anemia and coagula-

tion, respectively.

Not surprisingly, based on their baseline clinical profiles, pa-

tients in phenotype A and B had the best long-term functional

outcomes, and phenotype C had the worst outcomes at 90 and 180

days after injury. These outcomes correlate with the inferred level

of severity given feature values indicative of coagulopathy and

hemorrhage. Phenotypes A and B had similar GOS-E outcomes,

which were significantly higher than phenotype C. This suggests

that subjects in phenotypes A and B have a milder injury severity

profile that can achieve similar neurorecovery, regardless of pre-

senting with different pathophysiological feature values at baseline.

In contrast, grouping by GCS score provided no correlation with

long-term outcome recovery or baseline feature profiles. This

suggests that the novel phenotypes discovered here may possess

greater clinical utility for stratifying TBI patients and selecting

appropriate clinical trial cohorts than GCS scores.7 Although the

GCS remains important for assessing neurological state, our results

suggest that it is not a useful measure for TBI stratification, espe-

cially when used as the primary measure for trial inclusion/exclu-

sion criteria. Here, we provide a viable alternative classification

approach that can be further developed for practical use.

The recovery of subjects with similar feature values in the

TRACK-TBI Pilot data set, as demonstrated by Gower’s distance,

demonstrates that phenotypes B and C defined by unsupervised

clustering analysis can generalize to the wider TBI population. We

were surprised to find that phenotype A was irreproducible in the

TRACK-TBI data set. By examining the overlay of cluster as-

signments in the T-SNE plot in Figure 5A, it seems that there is a

subset of TRACK-TBI subjects assigned to phenotype A (pink

points, left side of plot) which are closer to phenotype B, suggesting

that a subset of subjects assigned to phenotype A in TRACK-TBI

perhaps would be more appropriately grouped with phenotype

B. This could occur as a result of phenotype misclassification by the

K-NN classifier for these subjects, possibly because phenotype A

shares many commonalities with phenotype B in baseline feature

values (e.g., INR and glucose) and as demonstrated by similar

GOS-E outcome scores. Follow-up analysis in additional external

data sets may provide understanding of whether phenotype A is a

‘‘true’’ phenotype present in the population or if subjects from

phenotype A would be more appropriately consolidated into phe-

notype B.

Our study has two major limitations. First, both the COBRIT and

TRACK-TBI Pilot subjects had a TBI-positive CT scan, as this was

an inclusion criterion set in both studies. Therefore, we do not know

how the phenotypes here will generalize to patients experiencing

TBI symptoms who did not have a CT scan positive for brain injury.

However, the use of clinical trial data aligns with our objective to

facilitate future clinical trial enrollment and the types of TBI cases

seen in a critical care setting. Additionally, the relationship be-

tween phenotype feature profiles and long-term patient outcomes is

only correlative in this study. In future studies, we plan to inves-

tigate the causal relationship between phenotype features and long-

term outcomes as well as integrate these findings into a supervised

machine learning model to predict TBI prognosis.

Conclusion

In summary, our results demonstrate that unsupervised machine

learning holds significant value in identifying novel TBI pheno-

types and important clinical features. With further development, we

anticipate that data-derived patient phenotypes will enhance TBI

patient stratification in clinical trials beyond the GCS-based gold

standard, and ultimately provide clinicians with more detailed in-

formation to acutely manage TBI cases.

Acknowledgments

We thank the COBRIT and TRACK-TBI investigators for the

use and availability of the data.

Data and Materials Availability

Data used in the preparation of this manuscript were obtained

and analyzed from the controlled access data sets distributed from

the Department of Defense (DOD)- and NIH-supported Federal

Interagency Traumatic Brain Injury (FITBIR) Informatics Sys-

tems. FITBIR is a collaborative biomedical informatics system

created by the DOD and the NIH to provide a national resource to

support and accelerate research in TBI. Dataset Identifier: FITBIR-

STUDY0000240. This manuscript reflects the views of the authors

and may not reflect the opinions or views of the DOD, NIH, or those

submitting the original data to FITBIR Informatics System.

1442 FOLWEILER ET AL.



Funding Information

This project was funded by the Department of Anesthesiology

and Critical Care at the Children’s Hospital of Philadelphia and the

Children’s Hospital of Philadelphia Research Institute (A.J.M) as

well as by National Institutes of Health (NIH) R37 HD059288

(A.S.C).

Author Disclosure Statement

No competing financial interests exist.

Supplementary Material

Supplementary Table S1

References

1. Taylor, C.A., Bell, J.M., Breiding, M.J., and Xu, L. (2017). Traumatic
brain injury–related emergency department visits, hospitalizations,
and deaths — United States, 2007 and 2013. MMWR Surveill. Summ.
66, 1–16.

2. Maas, A.I.R., Steyerberg, E.W., Murray, G.D., Bullock, R., Baeth-
mann, A., Marshall, L.F., and Teasdale, G.M. (1999). Why have re-
cent trials of neuroprotective agents in head injury failed to show
convincing efficacy? A pragmatic analysis and theoretical consider-
ations. Neurosurgery 44, 1286–1298.

3. Maas, A.I.R., Roozenbeek, B., and Manley, G.T. (2010). Clinical trials
in traumatic brain injury: past experience and current developments.
Neurotherapeutics 7, 115–26.

4. Narayan, R.K., Michel, M.E., Ansell, B., Baethmann, A., Biegon, A.,
Bracken, M.B., Bullock, M.R., Choi, S.C., Clifton, G.L., Contant,
C.F., Coplin, W.M., Dietrich, W.D., Ghajar, J., Grady, S.M., Gross-
man, R.G., Hall, E.D., Heetderks, W., Hovda, D.A., Jallo, J., Katz,
R.L., Knoller, N., Kochanek, P.M., Maas, A.I., Majde, J., Marion,
D.W., Marmarou, A., Marshall, L.F., McIntosh, T.K., Miller, E.,
Mohberg, N., Muizelaar, J.P., Pitts, L.H., Quinn, P., Riesenfeld, G.,
Robertson, C.S., Strauss, K.I., Teasdale, G., Temkin, N., Tuma, R.,
Wade, C., Walker, M.D., Weinrich, M., Whyte, J., Wilberger, J.,
Young, A.B., and Yurkewicz, L. (2002). Clinical trials in head injury.
J. Neurotrauma 19, 503–557.

5. Marshall, L.F. (2000). Head injury: recent past, present, and future.
Neurosurgery 47, 546–61.

6. Hawryluk, G.W.J., and Bullock, M.R. (2016). Past, present, and future
of traumatic brain injury research. Neurosurg. Clin. N. Am. 27, 375–
396.

7. Saatman, K.E., Duhaime, A.-C., Bullock, R., Maas, A.I.R., Valadka,
A., and Manley, G.T. (2008). Classification of traumatic brain injury
for targeted therapies. J. Neurotrauma 25, 719–738.

8. Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Ro-
senwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I.,
Yang, L., Marti, G.E., Moore, T., Hudson, J., Lu, L., Lewis, D.B.,
Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Wei-
senburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W.,
Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., and Staudt, L.M.
(2000). Distinct types of diffuse large B-cell lymphoma identified by
gene expression profiling. Nature 403, 503–511.

9. Li, L., Cheng, W.-Y., Glicksberg, B.S., Gottesman, O., Tamler, R.,
Chen, R., Bottinger, E.P., and Dudley, J.T. (2015). Identification of
type 2 diabetes subgroups through topological analysis of patient
similarity. Sci. Transl. Med. 7, 311ra174.
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