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Abstract

Diffusive correlation spectroscopy (DCS) is an emerging optical technique that measures blood 

perfusion in deep tissue. In a DCS measurement, temporal changes in the interference pattern of 

light, which has passed through tissue, are quantified by an autocorrelation function. This 

autocorrelation function is further parameterized through a non-linear curve fit to a solution to the 

diffusion equation for coherence transport. The computational load for this non-linear curve fitting 

is a barrier for deployment of DCS for clinical use, where real-time results, as well as instrument 

size and simplicity, are important considerations. We have mitigated this computational bottleneck 

through development of a hardware analyzer for DCS. This analyzer implements the DCS curving 

fitting algorithm on digital logic circuit using Field Programmable Gate Array (FPGA) 

technology. The FPGA analyzer is more efficient than a typical software analysis solution. The 

analyzer module can be easily duplicated for processing multiple channels of DCS data in real-

time. We have demonstrated the utility of this analyzer in pre-clinical large animal studies of 

spinal cord ischemia. In combination with previously described FPGA implementations of auto-

correlators, this hardware analyzer can provide a complete device-on-a-chip solution for DCS 

signal processing. Such a component will enable new DCS applications demanding mobility and 

real-time processing.
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I. INTRODUCTION

DCS is a relatively new optical technology to probe microvascular blood flow [1]. In the 

typical implementation, the tissue of interest is illuminated with a long-coherence length 

near infra-red (NIR) laser and the temporal fluctuation of interference patterns formed on the 

tissue surface are detected. This interference (‘speckle’) pattern fluctuates on a time scale 

dependent on the motion of scatterers in tissue dominated by red blood cells. Such temporal 

fluctuations can be quantified with an autocorrelation function. A correlation diffusion 
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equation [2] relates tissue optical properties and motion of scatterers to the correlation 

decay. By fitting the measured autocorrelation curve using the theoretical model to the 

diffusion correlation function, a blood flow index (BFI) can be derived. This technology has 

been validated against various techniques, including MRI [3-5], microspheres [6], and 

Doppler ultrasound [7]. It is fundamentally different from measurements of blood volume 

and/or saturation with Diffuse Optical Spectroscopy (DOS) or Near Infrared Spectroscopy 

(NIRS) devices. DCS probes the motion of scatterers (including red blood cells) in tissue on 

scales of ~ 1 μs, quantifying this motion every 10-1000 ms, while DOS/NIRS measures 

tissue absorption and scattering at ≫1 ms time scales [1].

DCS has been widely used to assess blood flow in tissues more than 1 cm below the tissue 

surface, permitting non-invasive assessment of blood flow. This technique is particularly 

useful to measure microvascular cerebral blood flow and offers some unique advantages 

over other techniques. For example, DCS has been widely applied to measure cerebral blood 

flow in the critically and chronically ill, including adults with ischemic stroke [8-10] or 

during neuro-critical care [11, 12] and pediatric patients [13, 14]. This technology has also 

been applied to cancer monitoring, as many tumors have abnormal microvasculature and 

enhanced blood flow [15]. Recently, minimally invasive DCS probes have been developed to 

allow for measurement of spinal cord blood flow. These probes can be placed into the spinal 

canal within the epidural space through a laminotomy or percutaneously via an epidural 

needle to monitor spinal cord blood flow. Extensive studies in large animal models have 

demonstrated the feasibility of these measurements during a variety of surgical interventions 

[16-18]. Monitoring spinal cord ischemia may have utility during aortic surgery, spine 

reconstruction procedures, and in the management of patients after spinal cord injury to 

prevent secondary ischemia. Recently, so-called “Fast DCS” has been developed by Wang 

[19], which measures blood flow dynamics at up to 100 Hz utilizing a software correlator. 

This higher temporal resolution enables resolution of blood flow pulsation due to the cardiac 

cycle [20, 21].

The DCS data analysis typically requires two steps: (1) calculating a temporal 

autocorrelation function of the scattered light intensity and (2) fitting the measured 

autocorrelation to a theoretical model, i.e. a solution of the correlation diffusion equation, to 

extract a blood flow index. The autocorrelation function measured in DCS requires a large 

range of correlation delay times (τ:200 ns-1 ms). In calculating the temporal autocorrelation 

function in DCS, a ‘multi-tau’ approach, which adjusts integration times as τ increases, is 

generally used to improve computational efficiency by significantly reducing the number of 

correlation values to be calculated. Multi-tau correlation was first invented by Schatzel et al 

[22] and has been implemented in software [23, 24] and in hardware using FPGA 

technology [25]. Both traditional and fast DCS measurements require a non-linear fit of the 

auto-correlation curve at each time point of measurement to a solution of the correlation 

diffusion equation. This forms a computational bottleneck, as these fitting algorithms require 

significant computation resources. This fit is frequently performed in postprocessing, 

reducing the utility of DCS measurements, e.g., in guiding surgical interventions in real 

time. We have developed a hardware analyzer that implements the DCS curve-fitting 

algorithm on a Xilinx FPGA with a significantly increased processing efficiency. Coupled 
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with previous work utilizing FPGAs to calculate the correlation function, this has opened the 

path to integrate the entire data processing necessary for DCS on a single silicon chip.

II. METHODS

A. Theoretic DCS Model

We apply the simplest (infinite homogeneous medium, eqn. 1) and most common (semi-

infinite half-space, eqn. 2) analytical solutions to the diffuse correlation equation. In the 

semi-infinite half-space (eqn. 2), there is a planar boundary between a homogenous diffuse 

media and a non-diffuse medium (e.g., tissue-air) at z=0 in the solutions described in 

Durduran et al [1]. For the purposes of these calculations, tissue optical properties (index of 

refraction, absorption, and scattering) and experimental geometry (source-detector 

separation) are assumed constants in the fitting procedure. Combinations of these constants 

are designated as A, B, F and H in equations (1) and (2) and defined in Appendix 1. The 

resulting simplified equations have only two free parameters: β and αDB.

g2(r, τ) = 1 + β e−r A + BαDBτ

F

2
(1)

g2(ρ, 0, τ) = 1 + β e−r1 A + BαDBτ

r1H − e−rb A + BαDBτ

rbH

2
(2)

β is the inverse of the number of detected modes. In our work, β ≤ 1/2 because we detect 

unpolarized light through a single mode fiber. In an ideal experiment in which there is only a 

single spatial and polarization mode detected, β = 1. As our device does not select the 

polarization of the highly scattered detected light with two polarization modes, β is 1/2. Any 

additional modes, background light, etc., will further reduce this value. Clinical experiments 

often take place under non-ideal circumstances and β may change with time and is a 

parameter in experimental data fitting. The product αDB is often termed the “blood flow 

index” (BFI).

The DCS analysis computes αDB and β values through the best fit of the theoretical 

autocorrelation function from equation (1) or (2) to the acquired experimental intensity 

autocorrelation g2e (τ). The Mean Square Error (MSE) of the fit is defined using equation 3 

where N is the number of values in g2e(τ). The best fit criteria is defined as the minimum of 

the MSE.

MSE = 1
N ∑1

N (g2(τi) − g2e(τi))2
(3)

We use an iterative, non-linear Nelder-Mead method to search the minimum value of MSE 

without the need to calculate its derivative [26]. We have implemented the algorithm using 

FPGA for true hardware computing.
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B. FPGA Computation

FPGA was first developed in 1985 by Xilinx and later expanded by Altera, Actel, Lattice 

and other semiconductor companies. An FPGA chip has a huge number of configurable 

logic blocks (CLB), digital signal processing (DSP) slices and distributed memory on one 

silicon chip. FPGA hardware computing employs the parallel processing technology and 

implements algorithms as digital logic circuits using the CLBs, DSP slices and memory 

blocks on a FPGA chip. Compared with software solutions for the same computation, it 

eliminates the necessity for an operating system and guarantees high throughput. Algorithms 

implemented on an FPGA can be much faster than those programs in a typical computer 

language because the performance of the FPGA is not compromised by the overhead of 

operating systems and other unrelated processes running in the background.

Numeric representation is the key factor that determines the complexity of the computing 

logic. Fixed-point representation was popular in the past when the FPGA resources were not 

abundant. Its limited resolution can introduce significant computing error that could alter the 

convergence of the algorithm. Furthermore, the dynamic range of fixed-point value is also 

limited and can easily cause overflow during computation. αDB is roughly 10−8 smaller than 

β in the DCS model and thus floating point representation is a better choice than the fixed 

point. As the FPGA resources grow exponentially with the technology development, it 

becomes affordable to adopt floating-point representation in FPGA to address the issues in 

fixed-point representation. There are two floating-point representations: single floating-point 

representation that uses 32-bit binary and double precision representation that uses 64-bit 

binary. Both are defined by the IEEE Standard for Binary Floating Point Arithmetic (IEEE 

754) [27]. We adopted single floating-point representation in our DCS analyzer because it 

consumes moderate amount of DSP slices and logic cells and offers reasonable resolution 

and dynamic range. Double precision can also be considered if the FPGA resources are 

sufficient to hold the computation logic of the double precision operations of the algorithm. 

The FPGA can also accommodate the customized floating point data type for the optimal 

use of the FPGA resources [28]. However, it needs an extra step of conversion to either 

single precision or double precision data type for subsequent processing off the FPGA.

It is challenging to build the computing circuits of arithmetic operations and math functions 

from scratch. Fortunately, FPGA manufacturers have provided the solution by offering 

FPGA IP cores for the hardware computation. Xilinx (Xilinx, Inc., San Jose, CA 95124) has 

IP cores [28] that adopted the Coordinate Rotation Digital Computer (CORDIC) algorithm 

[29, 30] and expanded the support to cover the basic math functions of trigonometric, 

exponential and logarithmic functions. Those IP cores support the computation in both 

single precision and double precision format as well as customized floating-point 

representation.

A “pipeline” is the primary structure for high throughput parallel processing in FPGA. It 

divides an algorithm into multiple steps and each step is implemented as a digital module in 

FPGA, which completes its operation within one FPGA clock cycle. The modules in the 

pipeline work simultaneously under the same FPGA clock signal, which is a series of digital 

pulses of fixed frequency. The signal edge (e.g. the rising edge) moves the data a step 

forward in the pipeline. Therefore, the pipeline inputs data one per FPGA clock and outputs 
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the processed data one per FPGA clock after a fixed latency (Equ.4). Computing cores are 

designed as the pipelines and can be connected in serial to form a larger pipeline. If M is the 

number of clocks to process the first data point through the pipeline and ΔT is the clock 

cycle, MΔT will be the time delay or latency of the FPGA computation pipeline. The total 

time needed for the processing N data points in a pipeline can be determined using the 

following equation.

T = (M + N − 1)ΔT (4)

Data synchronization is the essential mechanism to ensure the correct data flow in pipeline. 

If the operands at the inputs of a core are from different data paths, they must be 

synchronized to guarantee the correct output. This is achievable by adjusting the delays in 

the data flow paths to synchronize the input data.

C. FPGA DCS Analyzer

Figure 1 illustrated the composition of the DCS system with an FPGA analyzer. The 

computer is a PXI embedded computer system running Windows 7 (PXIe 8840, National 

Instruments, Austin, TX) with a reconfigurable digital I/O PXIe module powered by Xilinx 

Kintex 325 (PXIe 7822R, National Instruments, Austin, TX). The probe consisted of a pair 

of single mode detector fibers placed symmetrically about a source fiber inside a cylindrical 

sheath of milky plastic (Fig. 2). A long coherence laser (Crystalaser, Reno NV, 785nm) light 

was coupled into the source fiber and attenuated to ~25 mW. Each detector fiber was 

connected to an individual avalanche photodetector (APD). The scattered light from tissue is 

collect by a fiber optic probe and a Silicon APD (Model SPCM-AQ4C, Excelitus 

Technologies, Watertown, MA) converts the photons into a series of electronic pulses. The 

correlator (correlator.com, NJ) counts the pulses and outputs an autocorrelation function. 

The correlation data are transferred to the embedded computer through a USB connection. 

LabVIEW FPGA (National Instruments, Austin, TX) was used to program the FPGA chip 

on the reconfig-urable digital module. It has the convenience of the graphic programming 

tool of LabVIEW and removes the challenge of using hardware descriptive languages to 

program the FPGA chip. The system software is also programmed in LabVIEW.

We utilized the semi-infinite solution to the correlation diffusion equation to derive the BFI 

at each time point. In a preparatory step, some constant values are combined to avoid 

redundant computation and save FPGA resources. The values 1/(r1*H) and 1/(rb*H) are 

calculated so that multiplication replaces division in equation 2. The product of B* τ is also 

calculated in advance where τ is a series of time delays corresponding to the correlation 

values. In addition, one is subtracted from the acquired correlation values so that there is no 

need to implement the “plus one” operation in equation 2 for the MSE calculation in 

equation 3. The modified correlation values and the corresponding product of B* τ are sent 

to FPGA via a first-in-first-out buffer (FIFO1) and stored in two memory blocks in FPGA 

memory (MEM). The initial values of αDB and β and the model constants are sent to FPGA 

and stored in registers in MEM for easy access. Figure 3 illustrated the system diagram of 

the FPGA analyzer. The computations in the Nelder-Mead algorithm are divided into four 

sections that can be implemented as four pipelines: an MSE pipeline to calculate the MSE of 
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each αDB and β pair, a sorting pipeline to find the sequence of the latest three MSEs, a 

search pipeline to find new pair of αDB and β values that have a smaller MSE, and a 

convergence pipeline to determine when to terminate the curve fitting. The control logic 

module receives the status of pipelines from the status bus and use the rules in the Nelder-

Mead algorithm to determine the operation sequence of the pipelines. The following is the 

description of the general flow of the sequence control.

First, the control logic starts the MSE pipeline to calculate the MSE of three pairs of αDB 

and β values. The MSEs are then stored in MEM for future use. Second, the control logic 

sends the three MSEs to the sorting pipeline to rank the MSEs. The output data of the 

pipeline are the indexes of αDB and β pairs corresponding to the sorted MSEs and are stored 

in registers for the convergence pipeline and the searching pipeline. Third, the control logic 

picks the smallest and largest MSE and sends them to the convergence pipeline to test if the 

difference is within the preset range. If the convergence criterion is met, the control logic 

outputs αDB and β values of the smallest MSE via FIFO2. Otherwise, it starts the searching 

pipeline using αDB and β pairs of the two smallest MSEs to find candidates of the new pairs 

with the reflection, extension and contraction formulae defined in the algorithm. The MSEs 

of those candidates of αDB and β pairs are computed using the MSE computing pipeline 

again and the new αDB and β pair is selected by the control logic so that its MSE is at least 

smaller than the largest MSE calculated in the previous step. The new αDB and β pair will 

replace that of the largest MSE. If it fails to find the new αDB and β pair, the search pipeline 

will generate two pairs of αDB and β values using the shrink formula in the algorithm. The 

control logic replaces the αDB and β pairs of two largest MSEs with the two new αDB and β 
pairs and computes their MSEs using the MSE pipeline. The iteration repeats from the 

second step until the convergence criteria are satisfied.

The MSE pipeline using equations 2 and 3 is the most complicated pipeline in the analyzer 

(Fig. 4). The inputs to the pipeline are the acquired correlation data g2e(τ) and B*τ. The two 

terms inside the parenthesis in equation 2 are identical operations and therefore two 

instances of the same module ② are used in parallel. The latencies of the computing cores in 

the pipeline are set to one FPGA clock cycle except for the square root core in ① and 

exponent core in ③. The square root core has the latency of four FPGA clock cycles and the 

exponent core has the latency of ten FPGA clock cycles. Based on those settings, module ① 
has latency of 6 FPGA clock cycles, module ② has latency of 13 FPGA clock cycles 

including the following subtraction, module ③ has the latency of 2 FPGA clock cycles and 

module ④ has latency of 3 FPGA clock cycles including the following accumulator (Σ). 

Thus, the entire pipeline has the latency of 24 FPGA clock cycles. Counters (CTR1 and 

CTR2) are incremental counters driven by the FPGA clock and the number of correlation 

time values N is their overflow values. The control module resets both counters to zero as 

the initial addresses of the two memory blocks holding the input data through the CTL 

signal from the control bus. It also starts the pipeline by enabling CTR1 to read the B* τ, 

and sends them to module ① one value per clock. The output data of module ③ are the 

theoretical correlation values from the numerical model. The CTR2 is not enabled until the 

valid signal from module ③ is active. This synchronizes the theoretical correlation values 

with the acquired correlation values at the same time delay for the following MSE 

computation. When the CTR1 overflows, the valid signal to module ① becomes inactive 
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indicating the end of data input to the pipeline. When CTR2 reaches the overflow value, the 

overflow signal enters a delay module (D) with the latency of 3 FPGA clock cycles, which is 

the total latency of the module ④ and the accumulation core. The output of the delay 

module is the active completion signal STA and ensures that the output MSE including the 

sum of squared errors of all data points. Since N is a constant during the fitting, there is no 

need to divide the MSE by N for the following sorting step. When the control module 

receives the STA signal from the MSE pipeline, it deactivates the CTL signal to put the MSE 

pipeline on hold.

D. Phantom Study

The FPGA analyzer was also tested against a software analysis scheme in phantoms. 

Phantoms with a range of viscosities (and therefore effective diffusion constants DB) were 

produced utilizing glycerol, 20% Intralipid (Baxter Healthcare, Deerfield, IL), and water, 

following recipes from Cortese [31] to maintain a constant μs′. We produced four phantoms 

with four different flow levels. We measured the flow levels using the DCS system with the 

FPGA analyzer and an independent DCS system with offline DCS analysis in a semi-infinite 

geometry for ~5 minutes for each phantom. BFI of the lowest viscosity phantom (no 

glycerol) was set as baseline. BFI is normalized to baseline using equation 5 as the relative 

BFI or rBFI. The phantom test was conducted in the room temperature of 25 °C. The rBFI of 

each phantom was measured by both DCS systems. Bland Altman plot was used to compare 

the consistency of the BFI measurement with 50 pairs of measurements for each phantom.

r BFI = BFT − BFIBaseline
BFIBaseline

(5)

E. PRE-Clinical Study

We tested the DCS analyzer in the preclinical study of ischemia of spinal cord during spinal 

cord distraction in an adult sheep model. Details of the study will be reported separately. The 

protocol was approved by the IACUC at Stony Brook University. The sheep was pretreated 

with glycopyrrolate (0.02 mg/kg, IM). Anesthesia was induced with ketamine 10 to 20 

mg/kg IM, animals were intubated, and anesthesia was maintained with isoflurane (1.5 to 

3.0%). The spine was exposed sub-periosteally from T11 to L2. Fiber-optic probes were 

inserted into the epidural space through a laminotomy at the L1/L2 level and advanced to the 

planned distraction site under fluoroscopic imaging. Pedicle screws (5.5×30mm) were 

placed at the lowest two thoracic levels and connected to 5.5mm bilateral rods. Baseline 

flow data was obtained at the start of distraction and the spine was distracted at 2 mm 

intervals until a 50% drop in optically measured blood flow was observed or maximum 

distraction distance was reached. The DCS analyzer performed the real-time analysis of 

DCS data and presented the real-time rBFI.

III. REULTS

The Bland Altman plot (Fig. 5) demonstrated that the rBFI differences between the 

measurements by the FPGA analyzer and those by the software analysis were within the 
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95% of confidence level. This suggested that both measurements were consistent. The linear 

correlation showed high correlation with r2 value of 98% and the slope of 1.01.

We have compared the performance of the FPGA implementation of the Nelder-Mead 

method with the software approach to fit the measured autocorrelation function to the 

theoretical model. We added a counter in the FPGA to measure the total number of clocks 

used for the curve fitting of one data set. The computation time of FPGA was the product of 

the total number of clocks and the FPGA clock cycle, which is 25ns at the FPGA frequency 

of 40MHz. In addition to the FPGA-based algorithm, we utilized the MATLAB function 

fminsearch (Mathworks, Natick, MA), which also uses Nelder-Mead algorithm to derive 

BFI from the same correlation data. We used the MATLAB profiling tool to measure the 

CPU time for the fminsearch function to process the same data set. The MATLAB code was 

executed on the Dell Optiplex 9010 (Dell, Round Rock, TX) with a CPU of i7-3770 quad 

cores running at 3.4GHz. Twenty-seven autocorrelation curves were used in the test. Each 

containing approximately 60 paired values of tau and g2 were used in the test. The FPGA 

implementation used the single precision float point as the data representation. The initial 

values of αDB and β were set the same for both FPGA and MATLAB computation. The 

averaged time was 539±127 μs for the FPGA processing and 51 ±8 ms for the fminseach 

function of MATLAB. The BFI values of the same correlation data set from both methods 

were also compared. The relative error, defined as the ratio of the absolute difference 

between the FPGA BFI and the software BFI to the software BFI, is within 0.1%. The 

difference could be attributed to the data precision and the convergence criteria used in the 

two methods.

We utilized this DCS analysis system in a large-animal pre-clinical monitor of spinal cord 

ischemia to demonstrate the potential utility of real-time DCS analysis. Figure 6 showed 

four correlation fitting curves from the FPGA DCS analyzer. They were from two detector 

acquired at the beginning of the stretch (baseline) and the end of stretch in the animal study.

Figure 7 demonstrates a typical time course, in which the rBFI at and above the distraction 

levels. It can be seen that flow falls at the site of distraction and increases above the site. The 

distraction started at 0 minutes, defining a baseline BFI for each site. The rBFI at the 

distraction site decreased progressively with increasing distraction to a nadir of ~−40% of 

baseline at 50 minutes. Following release of the distraction hardware at around 57 minutes, 

blood flow at the site of injury recovered slowly to nearly the baseline level. During this 

period, rBFI at the site superior to the distraction site continue to increase up to 50%. This 

increase in blood flow may be due to a redirection of blood flow from the distraction site 

into alternate paths in the spinal cord vasculature. The results of the full parametric fit were 

displayed in the operating room, enabling clinicians to observe the change of spinal cord 

blood flow in real-time throughout the surgery. The correlation data from animal study were 

also processed by MATLAB DCS analysis software offline for the system level comparison 

and both results matched well. The minor difference could be attributed to the difference in 

the preprocessing of the correlation data and the post-processing of the BFI data in the two 

methods.
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IV. DISCUSSION

It is computationally intensive to obtain the BFI from measured autocorrelation of the 

scattering lights from tissue using the analytical DCS model. Curve fitting of the measured 

autocorrelation values with the theoretical model is a non-linear process, which requires the 

repeated computation of the theoretical correlation values from the pair of αDB (BFI) and β 
parameters in the model until convergence. That process is time consuming and must be 

repeated for each time point and detector channel. Existing real-time fitting algorithms in 

software frequently use a simplified fitting procedure, for example, calculating the half time 

of the decay, to minimize the computational load.

We successfully implemented the DCS analysis algorithm of non-linear fitting on an FPGA 

chip. We adopted the Nelder-Mead method because it is used in our offline DCS analysis 

and it involves only simple math computations implementable in FPGA. The phantom study 

demonstrated that the DCS system with the hardware analyzer produced the consistent data 

compared to the independent DCS system with offline DCS data analysis. The pre-clinic 

study has proved that the DCS analyzer enables the real time processing of DCS data and the 

presentation of rBFI to clinicians intraoperatively. The DCS FPGA analyzer will have a 

significant impact on the design of DCS systems. To our knowledge, this is the first report of 

implementing the DCS algorithm on an FPGA chip. Current DCS systems rely on powerful 

desktop computers for the DCS data processing. Some use hardware correlators to relieve 

the computation burden of the autocorrelation of the scattered light from the main computer. 

A high-end desktop computer is a necessity to provide the computation power, but it is not 

suitable for applications when portability and size of the device is crucial. For example, 

while high end computers are usually integrated into research DCS systems, DCS clinical 

monitors which may be routinely deployed at patient’s bedsides during critical care requires 

significant reductions in device size and cost. The DCS FPGA analyzer has moved the 

computation task of DCS algorithm to the FPGA hardware. The associated enormous 

reduction in required computing power significantly reduces the device profile and enables 

use of computers with limited capacity, e.g., tablets, for user interface, device control and 

data presentation, as well as integration with multi-device clinical monitors.

Moving forward, a correlator and analyzer may be integrated into the same FPGA chip. This 

will be the complete device-on-a-chip solution for DCS data processing. The FPGA chip 

will accept the output from the photo detector, compute the correlation of the scattered light 

intensity, and derive the BFI as the output. When combined with microcontroller technology, 

the FPGA can communicate with the computing device through a variety of wired or 

wireless communication links and make the DCS system both portable and with fast real-

time processing capability.

The DCS FPGA analyzer provided a full parametric fit of the DCS theoretical model. It can 

also be adapted to process correlation curves calculated from photons binned by detector 

arrival time, i.e. time-domain DCS. Current implementation utilizes a semi-infinite model. 

This design is modular: multiple analyzer modules can be implemented on one FPGA chip. 

Our current solution used 12.5% of the total available CLBs, 2.5% of block RAM and 8% of 

DSP units on a Xilinx Kintex 325 FPGA for one channel. The usage is about 1/8 of the chip 

Lin et al. Page 9

IEEE Access. Author manuscript; available in PMC 2020 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



capacity, suggesting that at least 6 detector channels may be analyzed with the same FPGA 

chip.

Our preliminary performance test showed that the DCS FPGA analyzer is at least 

comparable to a typical software solution. It takes less than 1 ms to finish one curve fitting 

on FPGA and enables real-time data display, even for ‘fast’ DCS data collected at ~100 Hz. 

Two main factors affect the performance difference between FPGA and CPU. First, the 

software runs under the support of an operating system and compete resources with other 

software threads. The CPU time spent on the DCS analysis is dependent on the number of 

concurring threads and their priorities. Even though the CPU is running at GHz frequency, 

the effective running speed of the DCS analysis is much lower. FPGA solution is the digital 

circuit entirely dedicated to the DCS analysis algorithm and at the full speed of FPGA clock. 

Second, the software solution processes data in serial. For example, the correlation from the 

theoretic model is computed one value at a time. That means that the next correlation value 

will not be processed until the completion of the current correlation value. FPGA solution 

uses a pipeline for parallel processing so that the computation of the correlation values are 

handled one value per FPGA clock cycle. Our pipeline takes 21 FPGA clocks cycles out of 

24 clock cycles in the MSE pipeline to compute one correlation value. However, during the 

21 FPGA clocks, there are other 20 correlation values are also being calculated in the 

pipeline. Pipeline architecture is efficient in the resources uses and scalable to accommodate 

any data size without the need of additional computation units. In our analyzer, the pipeline 

for the computation of one MSE has the latency of 24 clock cycles. To compute an MSE 

from eqn. 2 and a measured autocorrelation function of 50 time delays (values of τ), it takes 

73 FPGA clock cycles (49+24). If the same computation is done in serial processing, it will 

cost 1200 clock cycles (50*24) for the same data size. The difference will be even greater at 

larger data sizes (number of τ values). In the DCS analysis, the time saving is significant 

using the FPGA pipeline solution because most of the processing time is on the repeated 

computation of the theoretical correlation values in the curve-fitting algorithm. That is major 

factor that FPGA outperforms CPU in the DCS measurement. Note that the performance test 

was preliminary and was not intended to accurately measure the performance difference 

between the DCS measurement algorithm implemented on a FPGA or CPU.

Our solution also has limitations. Like all single-wavelength DCS implementations, this 

DCS FPGA analyzer assumes knowledge of the tissue optical properties, which can be 

obtained from simultaneous measurements with time or frequency domain diffuse optical 

spectroscopy. A more comprehensive solution should also include the optical properties as 

variables and additional equations from diffuse optical spectroscopy. Our FPGA analyzer 

can only process two variables using the Nelder-Mead algorithm. This requires major 

modification in the FPGA logic to accommodate the additional variables and new pipelines 

for the additional equations.

In conclusion, the DCS hardware analyzer offers a new data processing solution for DCS 

technology. This advance is a critical step towards developing standardized DCS modules 

and devices for clinical applications.
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APPENDIX

In this appendix, we describe the simplification of the solutions to the diffusion equation 

solutions for infinite and semi-infinite media, with the assumption that all tissue optical 

properties and probe geometry are known. The solutions therefore have only αDB and β as 

free parameters in the fit. Table I is the glossary of variables used in the equations.

A. Infinite Geometry

The infinite media Green’s function for the non-normalized electric field autocorrelation 

function for a source of unit power in the diffusion approximation is [1]

G1( r , τ) = v
4πD ∣ r ∣

e−K(τ) ∣ r ∣
(A1)

where

K(τ) = 3 μs′μa + α(μs′)2κ0
2(6DBτ) (A2)

This assumes the mean squared displacement of the scatters is well modeled by a Brownian 

diffusion coefficient (< Δr2 > = 6DBτ). For the purposes of this calculation, the source and 

detector positions, tissue optical properties, and fraction of moving scatterers are fixed. 

Letting r = ∣ r ∣, A = 3μs′μa, B = 6(μs′)2κ0
2, and C = v/(4π D) (all constants for this 

calculation), the above reduces to

G1(r, τ) = C
r e−r A + BαDBτ

(A3)

The normalized temporal field autocorrelation function is

g1(τ) = G1(τ)
< G1(τ = 0) > (A4)

which is related to the intensity autocorrelation function through the Siegert relation [32] 

under the assumptions of the photon diffusion model,

g2(τ) = 1 + β ∣ g1(τ) ∣2 (A5)

The intensity autocorrelation function is much easier to measure experimentally and forms 

the data input to our fitting model. This reduces to
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g2(τ) = 1 + β e−r A + BαDBτ

F

2
(A6)

where F = e−r A. β and the product αDB are the free parameters in the fit. αDB is often 

referred to as the ‘blood flow index’ (BFI) and it is sensitive to the number of moving 

scatterers (α) and their motion DB.

B. Semi-infinite Geometry

The semi-infinite solution utilizes the well-known method of images [1], placing the image 

source at rb. Evaluated on the tissue-air boundary with an extrapolated boundary condition 

and separation between the source and detector of ρ, the Green’s function for the field 

correlation diffusion equation is

G1(ρ, z = 0, τ) = v
4π D

eK(τ)r1

r1
− e−K(τ)rb

rb
(A7)

Where

r1 = 1
μs′

2
+ ρ2 (A8)

rb = 2zb + 1
μs′

2
+ ρ2 (A9)

and the position of the extrapolated boundary above the surface zb = 2
μs′

1 + Reff
3(1 − Reff) . Reff is 

the effective Fresnel reflection coefficient from the interface [33].

G1(ρ, 0, τ) = C e−r1 A + BαDBτ

r1
− e−rb A + BαDBτ

rb
(A10)

G1(ρ, 0, 0) = C e−r1 A

r1
− e−rb A

rb
(A11)

g2(ρ, 0, τ) = 1 + β e−r1 A + BαDBτ

r1H − e−rb A + BαDBτ

rbH

2
(A12)

where H = e−r1 A
r1

− e−rb A
rb

Lin et al. Page 12

IEEE Access. Author manuscript; available in PMC 2020 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Biography

Wei Lin received B.Ss degree in Biomedical Engineering in 1986 and M.S. degree in 

Mechanical Engineering in 1989 from Shanghai Jiaotong University, Shanghai, China. He 

received Ph.D. degree in Mechanical Engineering from Stony Brook University in 2001, 

Stony Brook, NY, U.S.

Dr. Lin joined the Department of Applied Mechanics in Fudan University, Shanghai, China 

as the assistant professor in 1989 and lecturer in 1993. He joined the Department of 

Biomedical Engineering as the assistant professor in 2004 and associate professor in 2013. 

His current research interests include medical instrumentation, wearable medical devices 

and high performance computing in embedded systems.

Dr. Lin is a member in IEEE and Biomedical Engineering Society.

David R. Busch (M’10) received a B.A. in Physics from St. John’s University, Collegeville, 

MN, in 2001, a Ph.D. degree in Physics from the University of Pennsylvania, Philadelphia, 

PA, in 2011, and post-doctoral training at the Children’s Hospital of Philadelphia.

Since 2018, he has been an Assistant Professor of Anesthesiology & Pain Management and 

Neurology & Neurotherapeutics at the University of Texas Southwestern Medical Center.

Chia Chieh Goh was born in Malaysia in 1979. He received the BE degree in electronic and 

communication engineering from the University of Nottingham, UK, in 2003 and the Ph.D. 

degree on research of smart vehicle embedded system for abnormal driver behavior in 2014. 

He became a Member (M) of IEEE in 2015.

From 2003 to 2017, he was working in both academic and industrial field. Primary research 

and job focus on embedded hardware/software system, artificial intelligence, parallel 

processing and cloud computing for academic, multinational companies and industry 

sectors.

Lin et al. Page 13

IEEE Access. Author manuscript; available in PMC 2020 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dr. Chia Chieh Goh is the member of the Institution of Engineering and Technology (MIET) 

in 2014. He is currently a postdoc researcher in the Department of Biomedical Engineering, 

Stony Brook University. Research focus on spinal cord injury monitoring system on a FPGA 

chip.

JAMES BARSI was born in Bronx, New York, NY, USA in 1979. He received a B.S. in 

chemistry from Fordham University in 2001 and M.D. degree from New York University, in 

2005.

From 2005 to 2010, he completed an Orthopaedic Residency at St. Luke’s Roosevelt 

Hospital in New York. In 2010 to 2011, he completed a fellowship in Pediatric Orthopaedics 

at Children’s Hospital Colorado. Since 2011, he has been an Assistant Professor with the 

Department of Orthopaedics, Stony Brook University, Stony Brook. He is the author of 

numerus articles and has presented nationally on topics related to basic science and clinical 

orthopaedics. His research interests include scoliosis and pediatric trauma.

Dr. Barsi is a diplomate of the American Academy of Orthopaedic Surgeons and a member 

of the Pediatric Orthopaedic Society of North America.

Thomas Floyd, M.D. received his medical degree at the University of Pennsylvania, School 

of Medicine and completed a residency in anesthesiology at the University of Minnesota. He 

received advanced training through a magnetic resonance fellowship and a cardiovascular 

and anesthesia fellowship, both at the University of Pennsylvania.

Dr. Floyd is a Professor in the Department of Anesthesiology and Pain Management at UT 

South-western Medical Center. He has served as principal investigator on several NIH 

funded research projects focused primarily on the development and application of imaging 

technologies and strategies for the early diagnosis and management of neurological sequelae 

associated with surgery. A second major focus for his laboratory is in understanding the role 

of hypoxia in aging-associated cognitive failure.

References

[1]. Durduran T; Choe R; Baker WB; Yodh AG Diffuse optics for tissue monitoring and tomography. 
Rep. Prog. Phys2010, 73, 43.

[2]. Boas DA; Yodh AG Spatially varying dynamical properties of turbid media probed with diffusing 
temporal light correlation. J. Opt. Soc. Am. A-Opt. Image Sci. Vis 1997, 14, 192–215.

Lin et al. Page 14

IEEE Access. Author manuscript; available in PMC 2020 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[3]. Buckley EM; Hance D; Pawlowski T; Lynch J; Wilson FB; Mesquita RC; Durduran T; Diaz LK; 
Putt ME; Licht DJ, et al. Validation of diffuse correlation spectroscopic measurement of cerebral 
blood flow using phase-encoded velocity mapping magnetic resonance imaging. J. Biomed. 
Opt2012, 17, 8.

[4]. Carp SA; Dai GP; Boas DA; Franceschini MA; Kim YR Validation of diffuse correlation 
spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin 
labeling mri; towards mri-optical continuous cerebral metabolic monitoring. Biomed. Opt. 
Express2010, 1, 553–565. [PubMed: 21258489] 

[5]. Yu GQ; Floyd TF; Durduran T; Zhou C; Wang JJ; Detre JA; Yodh AG Validation of diffuse 
correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion 
mri. Opt. Express2007, 15, 1064–1075. [PubMed: 19532334] 

[6]. Zhou C; Eucker SA; Durduran T; Yu GQ; Ralston J; Friess SH; Ichord RN; Margulies SS; Yodh 
AG Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury. 
J. Biomed. Opt2009, 14, 11.

[7]. Buckley EM; Cook NM; Durduran T; Kim MN; Zhou C; Choe R; Yu GQ; Shultz S; Sehgal CM; 
Licht DJ, et al. Cerebral hemodynamics in preterm infants during positional intervention 
measured with diffuse correlation spectroscopy and transcranial doppler ultrasound. Opt. 
Express2009, 17, 12571–12581. [PubMed: 19654660] 

[8]. Delgado-Mederos R; Gregori-Pla C; Zirak P; Blanco I; Dinia L; Marin R; Durduran T; Marti-
Fabregas J Transcranial diffuse optical assessment of the microvascular reperfusion after 
thrombolysis for acute ischemic stroke. Biomed. Opt. Express2018, 9, 1262–1271. [PubMed: 
29541519] 

[9]. Durduran T; Zhou C; Edlow BL; Yu GQ; Choe R; Kim MN; Cucchiara BL; Putt ME; Shah Q; 
Kasner SE, et al. Transcranial optical monitoring of cerebrovascular hemodynamics in acute 
stroke patients. Opt. Express2009, 17, 3884–3902. [PubMed: 19259230] 

[10]. Gregori-Pla CB,I; Camps-Renom P; Zirak P; Serra I; Cotta G; Maruccia F; Prats-Sánchez L,; 
Martínez-Domeño A; . Early microvascular cerebral blood flow response to head-of-bed 
elevation is related to outcome in acute ischemic stroke. Journal of Neurology2019.

[11]. Busch DR; Balu R; Baker WB; Guo WS; He L; Diop M; Milej D; Kavuri V; Amendolia O; St 
Lawrence K, et al. Detection of brain hypoxia based on noninvasive optical monitoring of 
cerebral blood flow with diffuse correlation spectroscopy. Neurocrit. Care2019, 30, 72–80. 
[PubMed: 30030667] 

[12]. Selb J; Sutin J; Lin PI; Bechek SC; Boas DA; Franceschini MA; Rosenthal ES Feasibility of 
diffuse correlation spectroscopy for prolonged monitoring of cerebral autoregulation during 
neurocritical care. J. Cereb. Blood Flow Metab2016, 36, 728–729.

[13]. Durduran T; Zhou CA; Buckley EM; Kim MN; Yu GQ; Choe R; Gaynor JW; Spray TL; Durning 
SM; Mason SE, et al. Optical measurement of cerebral hemodynamics and oxygen metabolism in 
neonates with congenital heart defects. J. Biomed. Opt2010, 15, 10.

[14]. Lynch JM; Buckley EM; Schwab PJ; McCarthy AL; Winters ME; Busch DR; Xiao R; Goff DA; 
Nicolson SC; Montenegro LM, et al. Time to surgery and preoperative cerebral hemodynamics 
predict postoperative white matter injury in neonates with hypoplastic left heart syndrome. J. 
Thorac. Cardiovasc. Surg2014, 148, 2181–2188. [PubMed: 25109755] 

[15]. Cochran JM; Chung SH; Leproux A; Baker WB; Busch DR; DeMichele AM; Tchou J; Tromberg 
BJ; Yodh AG Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant 
chemotherapy. Phys. Med. Biol2017, 62, 4637–4653. [PubMed: 28402286] 

[16]. Busch DR, Davis J, Kogler A, Galler RM, Parthasarathy AB, Yodh AG, Floyd TF Laser safety in 
fiber-optic monitoring of spinal cord hemodynamics: A preclinical evaluation. J. of Biomedical 
Optics2018, 23.

[17]. Kogler AS; Bilfinger TV; Galler RM; Mesquita RC; Cutrone M; Schenkel SS; Yodh AG; Floyd 
TF Fiber-optic monitoring of spinal cord hemodynamics in experimental aortic occlusion. 
Anesthesiology2015, 123, 1362–1373. [PubMed: 26418696] 

[18]. Mesquita RC; D’Souza A; Bilfinger TV; Galler RM; Emanuel A; Schenkel SS; Yodh AG; Floyd 
TF Optical monitoring and detection of spinal cord ischemia. PLoS One2013, 8,9.

Lin et al. Page 15

IEEE Access. Author manuscript; available in PMC 2020 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[19]. Wang DT; Parthasarathy AB; Baker WB; Gannon K; Kavuri V; Ko T; Schenkel S; Li Z; Li ZR; 
Mullen MT, et al. Fast blood flow monitoring in deep tissues with real-time software correlators. 
Biomed. Opt. Express2016, 7, 776–797. [PubMed: 27231588] 

[20]. Carp SA; Farzam P; Redes N; Hueber DM; Franceschini MA Combined multi-distance 
frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition 
and real-time analysis. Biomed. Opt. Express2017, 8, 3993–4006. [PubMed: 29026684] 

[21]. Parthasarathy AB; Gannon KP; Baker WB; Favilla CG; Balu R; Kasner SE; Yodh AG; Detre JA; 
Mullen MT Dynamic autoregulation of cerebral blood flow measured non-invasively with fast 
diffuse correlation spectroscopy. J. Cereb. Blood Flow Metab. 2018, 38, 230–240. [PubMed: 
29231781] 

[22]. Schatzel K; Drewel M; Stimac S Photon-correlation measurements at large lag times - improving 
statistical accuracy. Journal of Modern Optics1988, 35, 711–718.

[23]. Magatti D; Ferri F Fast multi-tau real-time software correlator for dynamic light scattering. 
Applied Optics2001, 40, 4011–4021. [PubMed: 18360435] 

[24]. Magatti D; Ferri F 25 ns software correlator for photon and fluorescence correlation 
spectroscopy. Review of Scientific Instruments2003, 74, 1135–1144.

[25]. Kalinin S; Kuhnemuth R; Vardanyan H; Seidel CAM Note: A 4 ns hardware photon correlator 
based on a general-purpose field-programmable gate array development board implemented in a 
compact setup for fluorescence correlation spectroscopy. Review of Scientific Instruments2012, 
83.

[26]. Nelder JA; Mead R A simplex-method for function minimization. Comput. J1965, 7, 308–313.

[27]. IEEE. Ieee standard for binary floating-point arithmetic. 1985.

[28]. Xilinx. Cordic v6.0 logicore ip product guide. 2016.

[29]. Volder JE The cordic trigonometric computing technique. Institute of Radio Engineers 
Transactions on Electronic Computers1959, EC-8, 330–334.

[30]. Volder JE The birth of cordic. J. VLSI Signal Process. Syst. Signal Image Video Technol2000, 
25, 101–105.

[31]. Cortese L; Lo Presti G; Pagliazzi M; Contini D; Dalla Mora A; Pifferi A; Sekar SKV; Spinelli L; 
Taroni P; Zanoletti M, et al. Liquid phantoms for near-infrared and diffuse correlation 
spectroscopies with tunable optical and dynamic properties. Biomed. Opt. Express2018, 9, 2068–
2080. [PubMed: 29760970] 

[32]. Lemieux PA; Durian DJ Investigating non-gaussian scattering processes by using nth-order 
intensity correlation functions. J. Opt. Soc. Am. A-Opt. Image Sci. Vis1999, 16, 1651–1664.

[33]. Contini D; Martelli F; Zaccanti G Photon migration through a turbid slab described by a model 
based on diffusion approximation .2. Theory. Applied Optics1997, 36, 4587–4599. [PubMed: 
18259254] 

Lin et al. Page 16

IEEE Access. Author manuscript; available in PMC 2020 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The functional diagram of a DCS system. Only one detector is shown for each probe.
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Fig. 2. 
DCS probe used in the measurement of microvascular blood flow in the spinal cord. Source 

(Src.) and detector (Det.) fibers are described in the text.
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Fig. 3. 
The computing logic of multi pipelines for the Nelder-Mead method for numerical 

modeling. Four pipelines are used for MSE computing, MSE sorting, Parameters searching 

and convergence checking. The execution sequence is controlled by the control logic module 

based on the outputs from the pipelines. The paths between MEM and the four pipelines are 

bidirectional for data transmission.
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Fig. 4. 
The pipeline implementation of the MSE calculation in the DCS analysis. Each block in 

yellow is an IP core or modular combinations of IP cores (①, ②, ③ and ④). ∑ is the 

accumulator core. CTR1 and CTR2 are counters. D is the delay unit of three clock cycles 

that turns the counter overflow signal into the STA signal of the pipeline. MEM is the 

memory storing the correlation delay and experiment data. Bτ and g2e(τ) (labeled in red) are 

inputs to the pipeline. Constants A, r1, rb and H are stored in FPGA memory. αDB and β are 

iteration parameters. x and y represent the input data of the cores.
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Fig. 5. 
rBFI1 is from FPAG analyzer and rBFI2 is from software analysis. (a) Bland Altman plot of 

the BFI measurements on four phantoms by two independent DCS systems. The black line 

indicated the difference mean and the red lines define 95% confidence interval (1.96 

standard deviation of the rBFI difference) from the difference mean. (b) Linear correlation 

between the rBFIs.
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Fig. 6. 
The fitted vs. acquired correlation. (a) at site, baseline (b) at site, end stretch (c) above site, 

baseline (d) above site, end stretch.
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Fig. 7. 
Temporal and spatial variations in the relative BFI (rBFI) at two sites on the spinal cord: at 

and above an injury caused by vertical stretching of the spinal column in a scoliosis surgery 

model. The “at site SW’ and “above site SW” are the data processed offline by software. 

The photon count rates were between 100 and 700 k counts/s during the experiment.
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TABLE I

Glossary

Symbol Description

α Fraction of scattering events from moving particles.

DB Effective Brownian diffusion coefficient.

D ~vμs′ ∕ 3 Photon diffusion constant

k0 2π/λ Wavenumber of DCS illumination of wavelength λ (785nm)

μa Tissue absorption coefficient at the wavelength of interest (0.1cm−1)

μs′ Tissue reduced scattering coefficient at the wavelength of interest (17 cm−1)

ρ Radial distance between source and detector in semi-infinite measurement (known)

rd
Position of detector

rs
Position of source

r rd − rs Distance between source and detector position (dependent on probe)

v Speed of light in the medium

z Depth into semi-infinite medium; surface is z=0
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