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Abstract

Diabetes is a major risk factor for coronary heart disease (CHD). The major form of diabetes is 

type 2 diabetes (T2D), which is thus largely responsible for the CHD association in the general 

population. Recent years have seen major advances in the genetics of T2D, principally through 

ever-increasing large-scale genome-wide association studies (GWAS). This article addresses the 

question of whether this expanding knowledge of the genomics of T2D provides insight into the 

etiologic relationship between T2D and CHD. We will investigate this relationship by reviewing 

the evidence for shared genetic loci between T2D and CHD; by examining the formal testing of 

this interaction (Mendelian randomization studies assessing whether T2D is causal for CHD); and 

then turn to the implications of this genetic relationship for therapies for CHD, for therapies for 

T2D, and for therapies that affect both. In conclusion, the growing knowledge of the genetic 

relationship between T2D and CHD is beginning to provide the promise for improved prevention 

and treatment of both disorders.
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Type 2 diabetes (T2D) is the most common form of diabetes, responsible for the vast 

majority in Europeans and even greater proportions in other ethnic groups. T2D arises when 

circulating insulin levels are insufficient to maintain normal glucose levels. The central 

defects are insulin resistance and inadequate insulin secretion. Which of these are primary is 

still a matter of debate, and in fact may differ from patient to patient.1 Both phenomena are 

important in the development of T2D, and genetic defects predisposing to both are likely to 

be important contributors to the disease process. Though classically a disease of adults, 
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children are increasingly commonly being diagnosed with T2D. T2D is a progressive 

disorder, with beta-cell function deteriorating over time. Thus, in the early years of diabetes, 

lifestyle modification and oral medications may be sufficient while in the later years, 

supplemental insulin therapy is often required. T2D is a worldwide epidemic.2 The 

incidence of diabetes (mainly diagnosed diabetes) in most countries increased from the 

1990s to the mid-2000s, and has been stable or falling in recent years, depending on the 

country.3 It has been estimated that 1 in every 3 individuals (1 in 2 minorities) born in the 

U.S. in the year 2000 will develop diabetes in their lifetime,4 mainly due to the epidemic of 

obesity. Genome-wide association study (GWAS) findings suggest that failure of insulin 

secretion is the key event that initiates T2D; many diabetes loci discovered by GWAS appear 

to compromise insulin secretion or pancreatic beta-cell development.5 While the 

microvascular complications of T2D are a great cause of morbidity, mortality in diabetes is 

mainly driven by the macrovascular complications of coronary heart disease (CHD) and 

stroke. Diabetes has been long recognized as a risk factor for cardiovascular (CV) disease 

(CVD), conferring a 2- to 4-fold increased risk of CVD mortality.6–8 This review will 

explore the relationship between T2D and CHD, focusing on insights derived from genetic 

studies that have exploited the many findings arising from GWAS.

THE GENETICS OF T2D

Twin and family studies have long suggested a genetic component to the susceptibility to 

T2D. Monozygotic twin studies demonstrate very high concordance (70-90%) for T2D in 

twin pairs,9 yet the overall familial aggregation of T2D is not consistent with a single, 

simple mode of inheritance. Genetic heterogeneity is a likely explanation, as supported by 

GWAS findings. Lifestyle and environment are also critical to the development of T2D. The 

heritability of T2D has been estimated as 40-70%,10, 11 with estimates as low as 30% when 

including individuals with late-onset diabetes.12 The component disorders underlying 

diabetes also display substantial heritability. Insulin sensitivity can be directly quantified by 

physiologic phenotyping procedures, such as the euglycemic hyperinsulinemic clamp, the 

frequently sampled intravenous glucose tolerance test (FSIGT), or the insulin suppression 

test.13 The heritability of insulin sensitivity ranges from 37% to 55% when quantified by 

euglycemic clamp14–18 and 28 to 44% when quantified by FSIGT.19–21 Heritability 

estimates for insulin secretion range from 25% to 57% as determined from insulin 

measurements during oral glucose tolerance testing22–24 and 23% to 84% as determined 

from intravenous glucose tolerance tests.18, 20, 25–28 That T2D is a feature of several 

monogenic disorders (e.g., myotonic dystrophy) also supports its genetic origin as does the 

existence of monogenic diabetes disorders (e.g., maturity onset diabetes of the young).

Before widespread application of GWAS approaches, candidate gene analyses yielded a few 

confirmed susceptibility loci for T2D, including peroxisome proliferator activated receptor 

gamma (PPARG), the pancreatic beta-cell inwardly rectifying potassium channel Kir 6.2 

(KCNJ11), and wolfram syndrome 1 (WFS1).29–32. In 2006, TCF7L2 (transcription factor 7 

like 2), the locus with the strongest effect on the risk of T2D (1.4 odds for T2D per risk 

allele), was discovered by investigators who were following up a linkage signal found on 

chromosome 10 in Icelandic individuals.33
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As with many other common diseases, GWAS revolutionized the genetics of T2D. GWAS is 

an agnostic approach that interrogates the entire genome for genetic variants (most 

commonly single nucleotide polymorphisms, SNPs) that are associated with a specific 

disease or trait.34 The first wave of GWAS in T2D consisted of five studies published in 

2007, all of which were conducted in European-origin subjects.35–39 In the subsequent 

years, over 25 additional GWAS and GWAS meta-analyses were conducted, facilitated by 

increasing sample sizes, data sharing to confirm signals, and collaboration between multiple 

centers worldwide. By 2018, GWAS in multiple race/ethnic groups had resulted in ~140 

T2D loci.40 Later that year, this number was dramatically increased to 403 distinct signals in 

243 loci by a meta-analysis of 32 GWAS involving nearly 900,000 European-origin subjects 

in the DIAMANTE (DIAbetes, Meta-ANalysis Trans-Ethnic) Consortium.41 Considering 

earlier findings in other ethnic groups, this brought the total number of signals to ~460, the 

physiology of which is being delineated.42 Numbers will rise further with the anticipated 

publication of race/ethnic-specific and trans-ethnic meta-analyses by DIAMANTE. The 

currently available loci explain about 20% of the heritability of T2D in Europeans.

For the full potential of these findings to be realized (e.g., development of new drugs), 

detailed understanding of the function of T2D loci, the majority of which are in non-coding 

regions, will be needed. For regulatory variation, this entails identification of the gene or 

genes (not necessarily the nearest gene) whose expression is altered by the T2D variant and 

how that alteration modifies phenotype. Given the flood of new loci, this process will take 

time. However, as we recently described for the genetics of obesity,43 a tremendous amount 

can be learned from GWAS findings before functional characterization. Herein, we will 

focus on how GWAS results have been used to explore the relationships between diabetes 

and CVD.

DIABETES AND CHD

Diabetes is a risk factor for CHD, independent of traditional risk factors such as 

hypertension, hyperlipidemia, and tobacco smoking. Diabetes at baseline is associated with 

2- to 3-fold increased rates of incident CHD, myocardial infarction (MI), and fatal CHD.
44, 45 The concept of diabetes as a cardiovascular risk equivalent largely arose from a 

Finnish study that found that the seven-year incidence of MI in diabetic subjects with no 

history of prior MI was the same as that in nondiabetic subjects with a history of prior MI.46 

Consistent with this, measures of insulin, insulin resistance, and the metabolic syndrome 

also predict future CVD events and mortality.47–56 Increased fasting insulin, insulin 

resistance, and beta-cell dysfunction are associated with increased carotid intima-media 

thickness (IMT), a marker of subclinical atherosclerosis.57, 58 Of interest, there is evidence 

that increased carotid IMT can predict future development of diabetes,59 suggesting a 

possible complex bidirectional relationship or common origins. Indeed, among patients 

undergoing angiography (excluding those with known diabetes), rates of newly discovered 

impaired glucose tolerance and diabetes correlated with the extent of coronary artery disease 

(CAD).60

A shared genetic basis can explain some measure of the co-occurrence of diabetes and CVD, 

referred to as pleiotropy or the “common soil” hypothesis.61 In individuals with normal 
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glucose tolerance, a family history of T2D was a predictor of increased common carotid 

IMT, independently of other risk factors such as smoking, adiposity, lipids, fasting glucose, 

fasting insulin and blood pressure.62, 63 In another study of normal glucose tolerant 

individuals, a history of T2D in the mother or father was associated with elevated carotid 

IMT compared to matched controls with no parental history of diabetes; those with a history 

of T2D in both parents had an even higher carotid IMT than those with a single parent with 

T2D.64 In young adults with type 1 diabetes, a family history of T2D was an independent 

predictor of carotid IMT.65, 66 The clinical relevance of elevated carotid IMT in those with a 

family history of T2D is unknown, as such a family history has not been found to increase 

the risk of incident CHD events.67 Neverthess, the association sets the stage for a deeper 

examination using genetic variants.

One way to investigate the genetic relation between T2D and CHD is to look for 

coheritability, the concept that genes, possibly many genes, are shared for two traits or 

diseases. Classically, studies to determine coheritability, also referred to as genetic 

correlation, utilized twin or family studies.17 In the modern era, alternative methods utilize 

GWAS data to assess heritability and coheritability without family studies. Thus, one can 

estimate genetic correlation by examining the correlation of the entire genome-wide SNP 

data from GWAS between two traits. Using this strategy, Bulik-Sullivan et al. calculated 

genetic correlation between numerous traits and diseases, including T2D and CHD.68 They 

found significant positive genetic correlation between T2D and adiposity traits (BMI, 

extreme BMI, overweight, obese, hip circumference, waist circumference, waist-hip ratio), 

glycemic traits (fasting glucose, fasting insulin, HbA1c) and triglycerides. Inverse genetic 

correlation with T2D was observed for HDL cholesterol and birth weight. A positive genetic 

correlation (rg=0.385) between T2D and CAD was observed. CAD was also genetically 

correlated positively with BMI, triglycerides, waist circumference and waist-hip ratio and 

negatively with HDL cholesterol, height, and years of education. Of interest, the magnitude 

of genetic correlation with T2D was higher than that of the other correlates with CAD. In a 

Chinese population study, the genetic correlation between T2D and CHD was 0.15.69

SHARED LOCI BETWEEN T2D AND CHD

Chromosome 9p21.3

One of the earliest identified and robust shared loci lies at chromosome 9p21.3 near the 

CDKN2A and CDKN2B genes, identified in the earliest GWAS for T2D35, 36, 39, 70 and MI 

and CHD.71–73 Further studies suggested that the T2D and CHD signals in this region are 

independent.74, 75 Considering GWAS findings through 2013, the various SNPs associated 

with CHD were found to reside proximal to a recombination peak while those associated 

with T2D were located distal to that peak.76 Consideration of recent results provide a clearer 

picture of this shared signal. Figure 1 displays associations of SNPs in this region with CHD 

and T2D, using summary data from large-scale GWAS.41, 77 This reveals two linked clusters 

of SNPs for CHD, both proximal to the recombination hotspot (clusters 1 and 2 in Figure 

1A). For T2D, two independent signals are found on either side of the recombination 

hotspot. One of the T2D signals is highly linked with CHD cluster 2 (Figure 1D). Thus, 

while the strongest signal for T2D in this locus appears to be independent of the signals for 
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CHD, there exists a second group of shared SNPs for T2D and CHD as well. One study 

closely examining this region concluded that the block tagged by rs4977574 (cluster 1) was 

primarily associated with atherosclerotic plaque deposition in the coronary arteries while 

cluster 2 is mainly associated with myocardial infarction (plaque rupture and thrombosis).78 

That cluster 2 SNPs also affect T2D suggests a mechanism whereby some chromosome 

9q21 SNPs predispose to atherosclerotic plaque formation while the diabetogenic SNPs in 

the region increase the risk of rupture and thrombosis of these plaques, potentially via 

hyperglycemia or other features specific to the diabetic state (e.g., hyperinsulinemia, 

increased inflammation). However, given that only a single study78 documented differential 

effects on plaque deposition versus plaque rupture, the above must be considered hypothesis 

generating until confirmed by future studies. While the CHD region overlaps the CDKN2A 
and CDKN2B genes, the long non-coding RNA CDKN2B-AS1 (also known as antisense 

non-coding RNA in the INK4 locus, ANRIL) is thought to be the effector at this locus. 

ANRIL has many different splice isoforms as well as circular RNA forms. Though not fully 

established, the balance of evidence suggests that CHD promoting genotype at 9p21 

increases expression of linear ANRIL, which has pro-proatherogenic (pro-proliferative, anti-

apoptotic) effects via altered expression of target genes, and decreases expresion of circular 

ANRIL, which has antiatherogenic effects via altered ribosomal RNA processing.79 In 

whole blood, peripheral blood monocytes, and atherosclerotic plaque tissue, linear ANRIL 
was positively associated with severity of atherosclerosis, while circular ANRIL was 

inversely correlated.80, 81 The target genes regulated by ANRIL, possibly including 

CDKN2A and/or CDKN2B, remain to be established. Given that this locus contains the 

strongest current signal for CHD (rs4977574, OR 1.3, p=8.8x10−223),77 further clarification 

of the underlying molecular mechanisms will be needed to enable clinical use of these 

findings, though efforts to incorporate 9p21 genotype to predict clinical outcomes are 

already underway.82 Whether ANRIL plays a role in the diabetogenic aspects of 9p21 also 

warrants investigation.

IRS1 (Insulin Receptor Substrate 1)

Another shared locus is the IRS1 locus at chromosome 2p36.3, where several GWAS have 

identified a group of SNPs in linkage disequilibrium (LD) that are associated with T2D, 

increased fasting insulin, increased triglycerides, lower HDL cholesterol, and/or increased 

visceral-to-subcutaneous fat ratio.83–87 While the review by Dauriz and Meigs76 listed six 

SNPs comprising this cluster, the GWAS Catalog88 now lists over 20 such SNPs, with 

additional associations with increased systolic and diastolic blood pressure (e.g., 
rs7590201), decreased body fat percentage (e.g., rs2943652), decreased body mass index 

(e.g., rs2176040), decreased waist circumference and waist-hip-ratio (e.g., rs2176040 and 

rs1515108), increased lean mass (e.g., rs2943656), and decreased adiponectin (e.g., 
rs1515110) (with respect to alleles corresponding to increased risk of T2D). In addition, 

recent GWAS have now associated at least two SNPs (rs2943634, rs2972146)77, 89 from this 

tightly linked cluster with CHD at genome-wide significance levels, with the diabetogenic 

allele increasing CHD risk. Though SNPs in this cluster are over 500 kb from IRS1, data 

from the Genotype-Tissue Expression (GTEx) Project reveal that these SNPs are eQTLs 

(expression quantitative trait loci) for IRS1 in subcutaneous and visceral adipose tissue, with 

the alleles associated with increased T2D and CHD associating with decreased IRS1 
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expression. Experimental evidence suggests that the region of these SNPs may be home to 

enhancers that affect IRS1 expression.90 Alternatively, the close proximity of these SNPs 

with non-coding RNA LOC646736 and microRNA MIR5702 raise the possibility that these 

might regulate IRS1 expression. Furthermore, the diabetogenic allele of rs2943641 (a 

representative of this cluster) was associated with oral glucose tolerance-based measures of 

insulin resistance as well as with reduced basal levels of IRS1 protein and decreased insulin 

induction of IRS1-associated phosphatidylinositol-3-OH kinase activity in human skeletal 

muscle biopsies.91 Given that IRS1 is the immediate second messenger of the insulin 

receptor, as well as the several metabolic syndrome-related traits associated with these 

SNPs, a likely mechanistic explanation is that insulin resistance may be a link between T2D 

and CHD. The lack of any association of SNPs in this loci with glycemic parameters (e.g., 
fasting glucose, hemoglobin A1c (HbA1c)) suggests, for this locus and possibly other loci, 

that insulin resistance and/or hyperinsulinemia, rather than hyperglycemia, are pathogenic in 

CHD in diabetes. The absense of association of the IRS1 locus SNP cluster with measures of 

structural atherosclerosis (e.g., coronary artery or abdominal aortic calcium, internal and 

common carotid intima-media thickness)92 suggests, similar to the chromosome 9p21 locus, 

that these diabetogenic SNPs may play a greater role in plaque destabilization than plaque 

formation.

Searches for Common Loci

In 2015, Jansen et al.93 examined 44 SNPs robustly associated with T2D in GWAS for their 

association with CHD in the largest dataset at the time, consisting of 22,233 cases with CAD 

and 64,762 controls from the Coronary Artery Disease Genome-wide Replication and Meta-

analysis (CARDIoGRAM) Consortium.94, 95 Of the 44 T2D SNPs, 10 SNPs were associated 

with CAD (P<0.05), with the diabetogenic allele associated with increased odds of CAD, 

which greatly exceeded the number expected by chance. Indeed, 29 of the 44 SNPs 

exhibited a positive odds ratio for association with CAD, also greater than expected by 

chance. After study-wide Bonferroni correction, only rs2943651 remained individually 

statistically significantly associated with CAD (p=3.4x10−5); this is one of the SNPs in the 

IRS1 locus described above. This study went on to construct genetic risk scores based on the 

44 T2D SNPs; these scores were significantly associated with CAD.93 Formal Mendelian 

randomization analyses provide an even more compelling story (reviewed below).

In contrast to the enrichment of CHD association seen among T2D SNPs, analyses in the 

opposite direction (i.e., assessing association of robust GWAS-discovered loci for CHD with 

T2D) have been much less dramatic. A study of 62 CHD loci examined their association 

with multiple cardiometabolic traits.96 After correction for multiple testing, the largest 

number of associations were seen with lipid traits and blood pressure traits. The only 

association with T2D (OR 1.12, p=2.7x10−5) was that of rs3130683, which lies within C2, 

which codes for complement C2 protein. There is no genome-wide signal for this SNP in the 

latest T2D GWAS.41 These findings suggest that recognized CHD genetic susceptibility loci 

act largely through lipids and blood pressure, with little action through T2D. Coupled with 

the frequent CHD association seen for T2D SNPs, it appears that T2D may cause CHD but 

CHD does not cause T2D, as detailed further below.
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In 2017, Zhao et al. conducted a large GWAS for T2D with additional steps to elucidate 

shared genetics with CHD.97 Their GWAS increased the number of T2D SNPs at the time to 

106, of which 17 were at least nominally associated with CHD (P<0.01), more than expected 

by chance. The only instance where the SNP associations with T2D and CHD both met 

genome-wide significance was for rs7578326 at the IRS1 locus, providing the first such 

evidence for the IRS1 group of SNPs discussed above. They also examined shared genetic 

risk more broadly across the genome; 76% of all SNPs associated with T2D at P<5 x 10−8 

and 82% of all SNPs nominally associated with T2D (5 x 10−8 < P < 0.05) exhibited 

directionally consistent effects with CHD. In contrast, there was no such enrichment for 

CHD SNPs in terms of association with T2D. To further explore the shared genetics of T2D 

and CHD, Zhao et al. conducted a bivariate GWAS on the joint distribution of T2D and 

CHD, which identified 19 loci, including a novel signal at rs825476 near CCDC92 that is 

also an eQTL for this gene. They further refined these results with formal colocalization 

analysis (requiring colocalization probability >0.5) to identify the T2D-CHD associations 

due to a single underlying SNP, yielding 8 signals, 7 with consistent effects on T2D and 

CHD, two of which are coding variants (Table 1). At the apolipoprotein E (APOE) locus, the 

diabetogenic allele was also associated with decreased LDL-C (see possible explanation 

below in Therapeutic Implications). The IRS1 SNP did not meet the colocalization criterion. 

Additional loci of interest that did not meet this criterion but that had directionally consistent 

effects on T2D include CDKN2A/2B (discussed above), and FTO and MC4R (adiposity 

loci, see discussion below).

Triglyceride Metabolism Loci

A series of shared loci are centered on triglyceride metabolism. Lipoprotein lipase (LPL) is 

the enzyme on endothelial cells that hydrolyzes triglycerides, yielding monoacylglycerol and 

free fatty acids, making them available for tissue uptake. Thus, LPL acts to decrease 

triglyceride levels. GWAS studies have established LPL as a locus for triglycerides and 

HDL-C, two lipid fractions that are inversely correlated. Impressive P values (3 x 10−293 for 

rs79407615 and HDL-C and 1x10−300 for rs1569209 and triglycerides) have been recorded 

among a group of SNPs in LD.98 As high triglycerides and low HDL-C are hallmarks of the 

metabolic syndrome, it is not surprising that this locus has also been associated with the 

metabolic syndrome as well.99 In 2018, GWAS meta-analyses for CHD77 and T2D41 

identified SNPs in LPL as associated with T2D at the genome-wide significance level, top 

SNPs being rs17091891 and rs10096633, respectively (Figure 2). These SNPs are highly 

linked (r2=0.97), thus representing a shared signal. A study of exomic variation identified 

rs328 in LPL as associated with T2D, with the common allele conferring risk.100 SNP rs328 

is in LD with rs17091891 and rs10096633 (r2=0.75). SNP rs328 is a nonsense variant 

(S447X) that truncates the last two amino acids from the enzyme. A link between rs328 and 

CHD was noted in candidate gene work over 20 years ago.101 We and others have found that 

the Ter allele of rs328 confers gain of function in LPL.102, 103 This is consistent with GWAS 

findings from multiple race/ethnicities that the Ter allele is associated with decreased 

triglycerides and increased HDL-C and reduced risk of T2D.100, 104–106 Large-scale exome 

chip work confirmed the consistent directional effect of LPL variants on CHD and T2D.107 

This work prompted studies of factors that regulate LPL. Angiopoietin-like 4 (ANGPTL4) 

inhibits LPL. ANGPTL4 was sequenced and inactivating variants were tested for association 
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with lipid levels and CAD; the missense variant (rs116843064, E40K) was associated with 

lower triglycerides, higher HDL-C, and less CAD (OR 0.81, 95% CI 0.70-0.92 in lysine 

allele carriers), consistent with inactivation leading to higher LPL activity.108 GWAS have 

found consistent associations with triglycerides, HDL-C, and CAD.77, 98 Furthermore, the 

lysine allele was recently found to protect against T2D (OR 0.89, 95% CI 0.85-0.92) and 

associate with lower fasting glucose and greater insulin sensitivity index from the oral 

glucose tolerance test.109 All these results on LPL and ANGPTL4 are more broadly 

consistent with the genetic epidemiologic evidence that variants affecting triglycerides are 

risk factors for CHD.110

The diverse forms of shared genetic susceptibility for T2D and CHD are illustrated in Figure 

3.

HETEROGENEITY WITHIN T2D AND THE IMPACT ON CHD

Those who see patients with T2D readily recognize different patterns of patients, such as 

lean apparently insulin sensitive patients versus the more common obese, insulin resistant 

patients. Race/ethnic differences appear to play a role in this heterogeneity.1 Phenotype-

based studies have suggested different subtypes of diabetes; however, given that phenotype 

can evolve over time, it has been suggested that genetic-based classification could have 

greater utility over the lifespan, including before diabetes develops.111

One study of 94 independent T2D SNPs assembled their association from GWAS with 47 

cardiometabolic and anthropometric traits and performed Bayesian nonnegative matrix 

factorization cluster analysis (a “soft” cluster analysis that allows SNPs to fall into more 

than one cluster, allowing for pleiotropic effects of T2D SNPs).112 This identified five 

clusters, each with distinct tissue-specific enhancer enrichment. Two clusters were related to 

reduced insulin secretion, one also with high proinsulin levels (“beta-cell” cluster) and one 

with low proinsulin levels (“proinsulin” cluster). The remaining clusters appear to have 

effects on insulin resistance, including an “obesity” cluster (high BMI), a “lipodystrophy-

like” cluster (low BMI and HDL-C and higher triglycerides), and a “liver/lipid” cluster (low 

triglycerides). Pertinent to the current review, these clusters were associated with distinct 

clinical outcomes from GWAS. The beta-cell and lipodystrophy clusters were associated 

with CAD, whereas only the beta-cell cluster was associated with ischemic, large vessel, and 

small vessel stroke. No cluster was associated with cardioembolic stoke. The lipodystrophy-

like cluster was also associated with elevated systolic and diastolic blood pressure. The 

proinsulin, obesity, and liver/lipid clusters were benign in terms of cardiovascular outcomes. 

If these clusters prove robust in additional analyses, they may pave the way to methods to 

prioritize which patients with T2D require the most intensive cardiovascular risk factor 

reduction.

The lipodystrophy-like cluster harkens to earlier data that used GWAS to suggest the 

existence of a normal-weight but “metabolically obese” phenotype.113 This study performed 

hierarchical cluster analysis on the association of 19 SNPs for fasting insulin with 8 traits 

(HDL-C, triglycerides, BMI, visceral-to-subcutaneous adipose tissue ratio, CT-measured 

hepatic steatosis, alanine aminotransferase (ALT), adiponectin, and sex hormone binding 
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globulin). A cluster of 11 SNPs were identified that were characterized by higher 

triglycerides, lower HDL-C, greater hepatic steatosis and central adiposity but lower BMI. A 

genetic risk score of these 11 variants was associated with higher risk of T2D and CAD and 

elevated systolic and diastolic blood pressure, but not with carotid IMT or carotid plaque. 

These results suggest a lipodystrophy-like phenotype that increases risk of T2D and CHD. 

Another study using a different approach mined the GWAS literature for SNPs associated 

with elevated fasting insulin, lower HDL-C and higher triglyceride levels, finding 53 loci.114 

These loci were found to play a role in rare, severe insulin resistance (association with 

familial partial lipodystrophy type 1) as well as common, mild states of insulin resistance 

(association with oral glucose tolerance and euglycemic clamp-derived measures of reduced 

insulin sensitivity). Genetic risk scores based on these SNPs were associated with reduced 

peripheral fat and reduced ability to expand peripheral fat over time; these loci exhibited 

expression enrichment in adipose tissue. By impairing peripheral and subcutaneous adipose 

storage capacity, these SNPs may lead to visceral and hepatic fat deposition, ultimately 

increasing risk of insulin resistance and diabetes. Genetic risk scores based on these SNPs 

were also associated with CHD, consistent with observations above.112, 113

We catalogued and classified over 450 independent SNPs for T2D, representing the state of 

the field at the time.42 Based on association with physiologic measures or hierarchical 

cluster analyses, the T2D SNPs were categorized as acting through beta-cell dysfunction, 

insulin resistance, lipodystrophy, or obesity/lipid pathways. Genetic risk scores based on the 

beta-cell and insulin resistance categories displayed the expected associations with oral 

glucose tolerance test-derived decreased insulin secretion and euglycemic clamp-derived 

reduced insulin sensitivity (two of the major endophenotypes leading to T2D), respectively; 

in contrast, the genetic risk score based on all T2D SNPs did not associate with these 

endophenotypes. One explanation of these results is that in any given individual, a limited 

number of genetically-driven metabolic derangements contribute to the development of T2D, 

which is consistent with the emerging concept of subtypes of T2D.111, 112, 115 Indeed, the 

recent soft clustering analysis found that the genetic profile of ~30% of individuals analyzed 

fell predominantly into one subclass.112 Studies are ongoing to examine the association of 

the clusters with the natural history of T2D, including microvascular and macrovascular 

complications. Future studies focusing on the component loci within each classification may 

shed light not only on the pathogenesis of T2D but also the differential cardiovascular risk 

associated with each subtype of T2D. Elucidation of key driver genes within each subtype 

could allow development of specific agents to prevent and/or better treat T2D and CHD in 

people based on their genetic profile obtained before the development of disease. 

Examination of the relationships between genes underlying each subtype may identify 

mechanistic pathways from normal glucose tolerance to T2D to CHD.

MENDELIAN RANDOMIZATION (MR): DOES T2D CAUSE CHD?

While the shared genetic basis discussed above suggests common origins, it raises the 

question of whether T2D causes CHD. Epidemiologic studies suggest this is the case, but 

causality cannot be deduced from observational studies. Randomized trials of intensive 

glucose lowering have not answered this question, as results have been mixed. However, we 

can turn to genetics to help answer this critially important question.
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Overview of MR

The causal effect of a risk factor on an outcome can be assessed using Mendelian 

randomization (MR). The risk factor is represented by genetic variants (referred to in this 

context as instrument variables) for that factor, which avoids confounding and reverse 

causation in relation to the outcome, issues that plague observational studies. If a risk factor 

is truly causal for an outcome, then genetic variants for the risk factor will be associated 

with the outcome. Formal MR analysis assesses the instrument variable associations with 

risk factor and outcome to yield causal estimates. Instrument variables can be based on a 

single variant or multiple variants, the latter increasing power but also the chance of 

pleiotropy (see below). Random assortment of alleles during gametogenesis simulates a 

clinical trial where cases and controls differ only in the risk factor, in this case the genetic 

variants. A key advantage over clinical trials is that the genetic exposure can occur over long 

time periods (even lifelong), unlike clinical trials where the exposure is introduced late and 

only for months to years. Thus, lifelong exposure to even very subtle alteration in risk factor 

phenotype (due to different genetic variants) may have a significant impact on 

cardiometabolic diseases that develop later in life. MR may be useful in predicting whether 

drugs targeting certain risk factors will be effective in preventing outcomes, if the drug effect 

can be represented by genetic instruments (e.g., variants that lower LDL-C mimic statins). 

MR can also be used to predict drug adverse effects (see statins and T2D below). MR is 

based on three core assumptions: 1. Instrument variables are strongly associated with the 

risk factor of interest, 2. Variants are not associated with confounders of the risk factor and 

the outcome. 3. Variants are associated with disease through that risk factor and not through 

other mediators (Figure 4). Thus, MR may not be valid if the genetic instrument exhibits 

pleiotropy, whereby the variant (or variants in high LD) are associated with other traits. 

Modern MR methods such as MR Egger and MR PRESSO can assess whether substantial 

pleiotropy is present.116 Population stratification, where the race/ethnic composition of the 

cases and controls are different, may also interfere with MR, as race/ethnic-specific allelic 

differences may spuriously be associated with disease. In GWAS datasets, population 

stratification can be detected and corrected statistically. In early MR studies, the instrument 

to risk factor and instrument to outcome estimates were generated in a single cohort. In two-

sample MR, these estimates are derived from separate, non-overlapping cohorts. The latter 

technique has allowed MR to be conducted using summary data from large GWAS 

consortia. Another advantage of two-sample MR is that it is less susceptible to weak 

instrument bias; in two-sample MR, this bias is towards the null whereas in one-sample MR, 

this bias is in the direction of the observational association.117 Multiple MR algorithms 

exist, with the workhorse being the sensitive inverse-variance weighted (IVW) method. 

Many studies also include additional methods, typically MR Egger and weighted median as 

sensitivity analyses to bolster results seen with IVW. Below, in reports that utilized multiple 

methods, we report results derived from IVW.

MR Studies of T2D as a Cause of CHD

Numerous MR studies examining T2D or CHD as outcomes have been published. These 

have been reviewed extensively and will be touched on briefly here.118–120 Obesity (as BMI) 

has been the most extensively studied risk factor, with strong evidence that it is causal for 

both T2D and CHD. One study went further to determine that the BMI to CHD relationship 
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is mediated in part through systolic blood pressure, LDL-C, and remnant cholesterol.121 

Another study concluded that the causality of BMI for CHD is mediated in large part by 

triglycerides and glycemia (HbA1c),122 while yet another concluded that adiposity’s effect 

on CHD is independent of blood pressure, glycemia, or T2D.123 Central fat distribution (as 

waist-hip ratio adjusted for BMI) also appears to cause T2D and CHD.124, 125 Effects of 

lipid fractions vary, with HDL-C not causing T2D or CHD (or possibly protecting against 

T2D126), triglycerides causing CHD but not T2D, and LDL-C causing CHD but protecting 

against T2D. Below, we will describe in detail MR studies wherein T2D and its component 

quantitative traits were examined as risk factors for CHD and cerebrovascular disease.

In 2015, SNPs for T2D were leveraged in MR analyses examining whether T2D may be 

causal for CHD. This was performed in two studies127, 128 that used summary data from the 

Diabetes Genetics Replication and Meta-Analysis Consortium (DIAGRAMv3)84 and 

CARDIoGRAM plus the Coronary Artery Disease Genetics (C4D) consortium (now known 

as CARDIoGRAMplusC4D).129 Using 59 variants associated with T2D, Ross et al. 

calculated the causal effect of T2D on CHD as an odds ratio of 1.63 (95% CI 1.23-2.07), 

which remained significant after adjusting for LDL-C, HDL-C, total cholesterol, 

triglycerides and BMI.128 Ahmad et al. took a strict approach to avoid pleiotropy, excluding 

any T2D variants that were also associated with BMI, systolic or diastolic blood pressure, 

LDL-C, or triglycerides, resulting in 26 SNPs for the MR analysis, which supported a causal 

effect of T2D on CHD (Table 2).127 Zhao et al. also conducted Mendelian randomization 

and found that an instrument based on 16 SNPs exclusively associated with T2D was 

significantly associated with CHD (Table 2).97

Among ~160,000 individuals in the China Kadoorie Biobank (CKB), 48 T2D SNPs were 

used in MR analysis supporting causality of T2D for CHD and ischemic stroke (mainly non-

lacunar stroke as numbers were small for lacunar stroke) but not intracerebral hemorrhage 

(Tables 2 and 3).69 The genetically predicted outcomes were similar to the observational 

associations in CKB. This study also conducted MR for similar outcomes using summary 

statistics from DIAGRAM, CARDIoGRAMplusC4D, and the International Stroke Genetics 

Consortium (ISGC) (Tables 2 and 3), notably finding no evidence of heterogeneity in results 

between Chinese and Europeans. A study in Europeans found causal evidence for T2D but 

not fasting glucose or fasting insulin with lacunar (small vessel) stroke; none of these were 

causal for intracerebral hemorrhage, and large vessel stroke was not evaluated.130 Another 

study found causal evidence of T2D with all ischemic stroke, large vessel stroke, and small 

vessel stroke, and of fasting glucose with large vessel stroke (Table 3); the latter two findings 

were not considered robust given sensitivity analysis and multiple testing correction, 

respectively.131 In the latter study, fasting insulin had no causal evidence for any of the 

stroke types, and T2D and fasting glucose had no causal evidence for cardioembolic stroke. 

These studies generally support T2D as causal for large and small vessel ischemic stroke but 

not intracerebral hemorrhage or cardioembolic stroke.

What Components of T2D Cause CHD?

The compelling MR evidence that T2D causes CHD raises the question of what feature(s) of 

diabetes may be responsible. Molecular biologic and animal model studies have suggested 
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several potential mechanisms, including inflammation, hyperthrombotic state, endothelial 

dysfunction, oxidative stress, and advanced glycation end products, among others. 

Epidemiologic studies have associated fasting glucose, even in the non-diabetic range, with 

incident CHD.132 Similar observations have been made with markers of insulin resistance.48 

Currently, we can look to formal MR studies addressing hyperglycemia, hyperinsulinemia, 

insulin resistance, and insulin secretion as potential mediators of the effect of T2D on CHD.

Hyperglycemia—In a study of 80,522 Danish individuals, five SNPs for fasting glucose 

(FG) were also associated with nonfasting glucose.133 These were used in MR analyses that 

found causal effects for nonfasting glucose on CHD and MI (Table 2). To avoid pleiotropy, 

the authors selected the five SNPs because they were not associated with other risk factors. 

However, three (GCK rs4607517, ADCY5 rs1170867, DGKB rs2191349) of the SNPs have 

been found to be associated with T2D.134 In addition, two SNPs (GCK rs4607517, G6PC2 
rs560887) are also associated with increased birth weight,135 leaving only one SNP 

(ADRA2A rs10885122) free of pleiotropic effects. Thus, this study is inconclusive regarding 

whether nonfasting glucose is causative for CHD.

Ross et al. conducted MR using 9 SNPs for HbA1c (HbA1c) and 30 SNPs for FG.128 

HbA1c (OR 1.53 (95% CI 1.14-2.05) per 1% increase) but not FG (OR 1.18 (95% CI 

0.97-1.42) per 1 mmol/L increase) was associated with increased odds of CHD; after 

adjustment for lipid fractions and BMI, the effect of HbA1c lost significance (OR 1.66, 95% 

CI 0.44-6.35). The authors noted that their study was underpowered regarding FG. Using the 

same datasets but excluding SNPs with pleiotropic effects, Ahmad found supportive 

evidence for FG SNPs as increasing CHD risk (Table 2).127

To create an instrument variable that purely represented FG, Merino et al. assembled 12 FG 

SNPs that had no evidence of association with T2D or other risk factors such as lipids, 

obesity, or blood pressure.136 Using these 12 SNPs, a causal effect of FG on CHD was 

suggested (Table 2). SNP rs560887 (G6PC2) was the strongest contributor to the MR 

instrument; this SNP and another (PDX1 rs11619319) are associated with increased birth 

weight.135 Given that low birthweight has been causally linked to CHD,137 inclusion of 

these SNPs would not result in false positive results, as the FG increasing alleles are 

associated with increased birth weight.135, 138, 139 After verifying that the 12-SNP 

instrument was not associated with T2D, they then removed 7 SNPs that displayed even 

nominal (P<0.05) evidence for association with lipid fractions, blood pressure, or obesity; 

the resulting 5 SNPs (including PDX1 rs11619319 and G6PC2 rs560887) still supported 

causality of FG for diabetes (Table 2).

Two recent MR studies confirmed a causal effect of HbA1c on CHD (Table 2).140, 141 Both 

used the same datasets,142, 143 but approached the analysis differently. SNPs associated with 

HbA1c have been classified as acting via glycemic pathways or erythrocytic pathways.142 

Au Yeung et al. estimated HbA1c effects on CHD separately in UK Biobank (UKBB) and 

CARDIoGRAMplusC4D (Table 2), excluding not only SNPs associated with potential 

confounders but also the erythrocytic SNPs.141 Leong et al. relied on MR Egger to exclude 

pleiotropy and analyzed all HbA1c SNPs as well as glycemic and erythrocytic SNPs 

separately, combining UKBB and CARDIoGRAMplusC4D via meta-analysis.140 That the 
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erythrocytic SNP instrument was associated with CHD suggests that glycosylated 

hemoglobin may influence CHD through mechanisms not only related to hyperglycemia, but 

also potentially independent of hyperglycemia, such as reduced hemoglobin and increased 

LDL-C.140

Hyperinsulinemia—Tikkanen et al. conducted MR using summary-level data from 

GWAS consortia as well as individual-data analyses.144 This study uniquely first used 

summary-level data to simultaneously model multiple risk factors for CHD, including LDL-

C, HDL-C, triglycerides, BMI, WHR, fasting insulin, fasting glucose, systolic and diastolic 

pressure (257 SNPs in total). In this multivariate model, the significant predictors of CHD 

were LDL-C, triglycerides, fasting insulin and fasting glucose. Notably, when insulin was 

removed from the model, BMI and WHR became significant, suggesting adiposity may 

affect CHD in part via insulinemia. In their individual level analysis, of the same nine risk 

factors, BMI, WHR, and fasting insulin were significantly associated with CHD both 

individually (Table 2) and in a multivariate model. While this difference from the summary-

level may be due to sample size, it suggests insulin may also act through non-adiposity 

mechanisms on CHD. To this point, a subsequent network MR study placed fasting insulin 

(out of 10 evaluated potential mediators) on the causal pathway between shortened 

telomeres (a marker of cellular aging) and CHD (Table 2), suggesting that fasting insulin 

may account for 18% of the total effect of telomere length on CHD.145

After carefully excluding any SNPs with evidence of pleiotropic effects, investigators 

conducted MR analyses in the UKBB,146 using various combinations of SNPs associated 

with fasting insulin and fasting insulin adjusted for BMI in MAGIC,83 several of which were 

also associated with direct physiologic measures of insulin resistance.147 Genetically 

predicted fasting insulin was associated with increased risk of MI overall; when stratified by 

sex, the effect was significant only in the men (Table 2). A similar pattern was seen for 

angina. The fasting insulin instruments were also associated with LDL-C, systolic blood 

pressure, apolipoprotein B, and reticulocyte count, raising these as possible mediators of the 

effect on CHD.

Insulin resistance and insulin secretion—Ross et al. examined instruments based on 

26 T2D SNPs implicated in beta-cell dysfunction and 11 T2D SNPs associated with insulin 

resistance based on their review of the literature; both of these were similarly associated 

with increased CHD (beta-cell: OR 1.83, 95% CI 1.19-2.62; insulin resistance: OR 2.35, 

95% CI 1.46-3.53).128 Gan et al. also examined subsets of T2D SNPs thought to act through 

beta-cell dysfunction and insulin resistance; the effects on CHD were statistically similar, 

though the insulin resistance risk score was insignificant, likely due to the low number of 

SNPs (Table 2).69 Another study found that beta-cell dysfunction SNPs appear to increase 

CHD risk.127

Lessons Learned from MR Studies

As reviewed above, a wealth of studies have shed light on how T2D and related traits drive 

CHD and ischemic stroke (Figure 5). Results are compelling when several studies arrive at 

consistent conclusions; however, a caveat is that many studies utilized summary data from 
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the same large genetics consortia, sometimes arriving at different conclusions, in part when 

different sets of SNPs are used or when pleiotropy is handled differently (e.g., statistically or 

by removing pleiotropic variants) or due to different sample sizes depending on when the 

summary data were accessed (e.g., DIAGRAMv3 or DIAGRAMv4). We note that while MR 

studies provide strong clues on causality, they do not elucidate detailed molecular or 

physiologic mechanisms.

Given the tight relationships (including genetic correlation68) between adiposity, lipids, 

T2D, and CHD, another challenge is disentangling the effects of T2D from those of 

adiposity (BMI, WHR) and lipid fractions on the risk of CHD. Formal mediation analyses 

are needed to dissect the causal effect of T2D on CHD. This will be a challenging task, 

evidenced by the fact that such analyses have yielded conflicting results regarding the causal 

effect of BMI on CHD, as noted above.121–123 Given the well-recognized differences in risk 

of T2D and CHD between women and men, the paucity of studies genetically interrogating 

these differences is notable. A sensitivity analysis in an MR study examining effects of 

WHR adjusted for BMI on cardiometabolic traits found that while a risk score composed of 

SNPs associated with WHR in women but not men exhibited greater magnitudes of 

association with T2D and CHD in women than men, the differences were not statistically 

significant, possibly due to low power.125 Further studies examining the genetic 

relationships between T2D and CHD in the context of sex differences are needed.

The field still needs instrument variables strongly associated with direct measures of insulin 

resistance and insulin secretion (e.g., by euglycemic clamp or FSIGT). To date, fasting 

insulin has been interpreted as a marker of insulin resistance, yet fasting insulin reflects 

insulin resistance, insulin clearance, adiposity, and insulin secretion; in fact, it represents the 

former three in roughly similar proportions.148 Use of subsets of T2D SNPs implicated in 

insulin resistance or beta-cell function is useful, but conflated with T2D itself. Given the 

recent expansion of the number of independent T2D SNPs to 403,41 the field has not yet had 

the time to fully exploit this range of SNPs in MR studies.

We note that MR studies where fasting glucose is the risk factor have had mixed results with 

CHD as the outcome, whereas results are stronger when T2D or HbA1c are the instrumented 

risk factors. This may reflect that total glycemia, which includes postprandial 

hyperglycemia, may be more important to CHD risk than simply fasting glucose. Consistent 

with this notion, some epidemiologic studies found that postprandial glucose may be a 

stronger predictor of CVD events than fasting glucose.149, 150 Experimental evidence has 

suggested that postprandial hyperglycemia may be especially damaging to the vasculature.
151

Given that the MR studies suggest that T2D and glucose may be causal for CHD and stroke, 

how do we reconcile this with the largely negative results of randomized trials of intensive 

glucose lowering that were designed specifically with cardiovascular disease as the outcome, 

including Action to Control Cardiovascular Risk in Diabetes (ACCORD),152 Action in 

Diabetes and Vascular Disease: Preterax and Diamicron - MR Controlled Evaluation 

(ADVANCE)153, and the Veterans Affairs Diabetes Trial (VADT)?154 The median durations 

of these trials were 3.5 years, 5 years, and 5.6 years, respectively, whereas MR represents 
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lifelong exposure to risk. Nevertheless, meta-analyses including these trials and others found 

that intensive glucose lowering reduces non-fatal MI by 10-16% but does not reduce stroke 

or cardiovacular mortality.155–159 Interestingly, and perhaps more consistent with the 

exposure timeframe of MR, long-term follow-up after the trials ended did in several 

instances reveal that intensive glycemic control eventually resulted in lower rates of major 

cardiovasclar events, for example at 10 years of follow-up in the VADT160 (though not seen 

at 15 years161). A similar later emergence of benefit on cardiovascular events was seen 

during the post-trial observational studies of the United Kingdom Prospective Diabetes 

Study (UKPDS) and the Diabetes Control and Complications Trial (DCCT).162, 163

THERAPEUTIC IMPLICATIONS OF GENETIC FINDINGS

Lipid Lowering Agents and T2D

While CHD and T2D share many underying risk factors, especially obesity, their 

relationship with LDL-C is dramatically different. Low LDL-C appears to be a pathway 

promoting T2D. This emerged when statin treatment was found to confer an increased risk 

of new onset T2D, especially in those with pre-existing impaired glucose tolerance.164 This 

observation led to MR studies that found that genetic variants that lower LDL-C in the 3-

hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and proprotein convertase subtilisin/

kexin type 9 (PCSK9) loci were associated with increased risk of T2D (Table 4).165, 166 

Another study examined variants at genes coding multiple targets of LDL-C lowering agents 

(HMGCR, NPC1L1 (target of ezetimibe), PCSK9, ABGC5/G8, LDLR) and found that while 

the effect of a genetically predicted 1 mmol/L lowering of LDL-C at each locus was 

statistically similar regarding CHD (OR 0.54 to 0.61), the effects on T2D were 

heterogeneous (non-significant to OR 2.42) (Table 4).167 MR studies also found that 

genetically mediated higher LDL-C appears to be protective against T2D (Table 

4)126, 168, 169 and that LDL-C is inversely related with age of onset of T2D.170 This is 

supported by an electronic medical records study that found that people with LDL-C ≤ 60 

mg/dl have doubled prevalence of T2D, which remained significant in sensitivity analyses 

stratifying by sex and weight but not race (effect seen in European but not African ancestry).
171 Additional genetic evidence is the observation that diabetes is less prevelent in those 

with familial hypercholesterolemia.172 This may explain the association of the APOE SNP 

with lower LDL-C and increased odds of T2D referred to earlier.97 Adiposity might be the 

link between lower LDL-C and T2D. LDL-C lowering variants in HMGCR and PSCK9 
were also associated with higher body weight, especially centrally distributed weight.92, 93 

In aggregate, weight increased slightly in statin trials.166 Whether subjects on PCSK9 

inhibitors gain weight has not been reported.173 Unlike statins, clinical trials of PCSK9 

inhibitors have not been associated with increased incident diabetes; a meta-analysis of 

PCSK9 inhibitor trials involving 26,123 subjects found no effect on incident diabetes, 

fasting glucose, or HbA1c.174 In contrast, the meta-analysis that documented increased 

diabetes risk with statins involved 91,140 patients.164 It has been suggested that sample sizes 

of PCSK9 inhibitor and ezetimibe trials have been insufficient to observe an increased risk 

of diabetes. Another suggested explanation for the discrepancy between genetic evidence 

and trial evidence is that because PCSK9 inhibitors mainly target circulating PCSK9, they 

may have little impact on local PCSK9 (e.g., in the beta-cell) where alteration may influence 
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development of diabetes.175 It is also possible that other (not related to LDL-C lowering) 

effects of PCSK9 inhibition may counteract the effect on glycemia.

One study used genetics to prioritize existing and potential lipid lowering drugs that reduce 

CHD risk without adverse glycemic consequences.169 SNPs with associated with LDL-C at 

genome-wide significance (in the Global Lipids Genetics Consortium (GLGC) GWAS) and 

at nominal significance (P<0.05) with CHD (in CARDIoGRAMplusC4D) were collected 

and assessed for association with a glycemic burden composite consisting of T2D, fasting 

glucose, fasting insulin, and fasting proinsulin (from DIAGRAM and MAGIC); loci were 

then selected whose genes coded drug targets. In contrast to MR findings167 (but consistent 

with clincal experience), the PCSK9 and NPC1L1 loci were associated with reduced LDL-C 

and CHD risk but not with the glycemic composite. APOB and LPA loci also exhibited 

associations with reduced LDL-C and CHD risk without adverse glycemic effects. These 

have been recently targeted by a new form of pharmaceutical, antisense oligonucleotides 

(ASO).176 An ASO against APOB, mipomersen, has been approved by the FDA as an 

adjunct to first-line therapies in patients with homogygous familial hypercholesterolemia. 

ASOs targeting LPA have entered phase I trials, and have been found to lower Lp(a) levels.
177 The HMGCR and SLC22A3 loci were also associated with reduced LDL-C and CHD; 

whereas HMGCR was also associated with an increase in the glycemic composite 

(consistent with the statin experience), SLC22A3 was associated with a decrease in the 

glycemic composite.169 SLC22A3 codes for the organic cation transporter OCT3, a widely 

expressed transporter that has been found to modulate metformin pharmacokinetics and 

pharmacodynamics.178 Different coding variants in SLC22A3 have been found to increase 

or decrease cellular metformin uptake.179 In the UKPDS, overweight patients receiving 

intensive glucose-lowering with metformin experienced decreased MI, sudden death, angina, 

stroke and peripheral vascular disease compared to conventional therapy; compared to 

insulin- or sulfonylurea-based intenstive control regimens, metformin also decreased all-

cause mortality and stroke.180

Sulfonylureas and CHD

Sulfonylureas are one of the oldest drug classes for the treatment of T2D. For many years, 

their cardiovascular safety has been questioned. Almost 50 years ago, the University Group 

Diabetes Program reported an increased risk of CAD with use of sulfonylureas.181 As this 

result was not confirmed in subsequent studies, it was not considered in the choice of T2D 

treatment for many years; it was thought by many that this was a problem only with first 

generation sulfonylureas. However, a series of recent studies revived this issue, leading 

many clinicians to prescribe sulfonylureas much less frequently. Among 4,902 diabetic 

women without CVD at baseline in the Nurses’ Health Study, longer duration of 

sulfonylurea use was associated with increased risk of CHD but not of stroke.182 On the 

other hand, a randomized trial primarily designed to examine glycemic durability of 

rosiglitazone compared to metformin or glyburide found in secondary analysis that the risk 

of cardiovascular events was lowest with the sulfonylurea.183 Meta-analyses yielded 

conflicting results regarding the cardiovascular risk of sulfonylureas, suggesting increased,
184 decreased,185 or neutral risk.186 Given the conflicting observational and trial evidence, 

Emdin et al. approached the question using genetics, specifically a variant (rs757110) for 
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T2D that codes for an amino acid change (p.A1369S) in the gene (ABCC8) for one of the 

subunits (ATP binding cassette subfamily C member 8) of the sulfonylurea receptor.187 This 

variant is in high LD with GWAS signals for T2D (r2=0.92 with rs5215). The serine allele 

promotes closure of the channel in vitro, mimicking the action of sulfonylureas to promote 

insulin secretion.188 In a meta-analysis of UKBB with large-scale GWAS, the serine allele 

was associated with a lower odds of T2D (OR 0.93, 95% CI 0.91-0.95) and CHD (OR 0.98, 

95% CI 0.96-0.99). Consistent with the known effects of sulfonylureas, the serine allele was 

also associated with higher BMI, higher fasting insulin and lower 2 hour glucose, but also 

with reduced WHR. Though not perfectly simulating sulfonylurea action (typically started 

late in life and the variant was not associated with HbA1c), this study provides some 

reassurance regarding the cardiovascular safety of sulfonylureas. Given that many studies 

suggesting harm compared sulfonylureas to metformin, one explanation is that both are 

cardioprotective, but metformin moreso, making it appear that sulfonylureas are harmful. 

Indeed, in observational trials where metformin was not the comparator, sulfonylureas had 

the lowest predicted risk.189 Alternatively, patients who are prescribed sulfonylureas rather 

than metformin may have more advanced T2D, biasing CHD associations. Recent trials 

finding similar rates of CV outcomes for the dipeptidyl peptidase-4 inhibitor linagliptin, the 

sulfonylurea glimepiride, and placebo are reassuring.190,191

GLP-1 Agonists and CHD

Unlike the uncertainty with sulfonylureas, recent randomized clinical trials have firmly 

established specific glucagon like peptide-1 (GLP-1) agonists as cardioprotective agents. 

This has been demonstrated for liraglutide, semaglutide, albuglutide, and dulaglutide, but 

not exenatide or lixisenatide.192–197 Given this picture, it is noteworthy that GLP-1 agonists 

are based on two distinct molecular structures. Liraglutide, dulaglutide, and albiglutide are 

covalently modified analogs of human GLP-1 while exenatide and lixisenatide are based on 

the Gila monster exendin-4, which possesses a nine amino acid C-terminal extension that is 

absent from human GLP-1 and increases affinity for binding to GLP-1 receptors.198 Perhaps 

these structural differences explain the different CV outcomes. It has also been suggested 

that the CV outcome trial results are related to the glycemic efficacy of the doses tested. 

Nevertheless, a meta-analysis combining positive and negative trials found that compared 

with placebo, GLP-1 agonist treatment yielded a 10% relative risk reduction in the CVD 

primary outcome (CV mortality, non-fatal MI, non-fatal stroke; HR 0.9, 95% CI 0.82-0.99, 

p=0.033); cardiovascular mortality (HR 0.87, 95% CI 0.79-0.96, p=0.007) and all-cause 

mortality (HR 0.88, 95% CI 0.81-0.95, p=0.002) were also reduced, with low-to-moderate 

between-trial heterogeneity, suggesting the benefit may be a class effect.199 The latter notion 

is supported by genetic studies. In the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) Consortium, we assessed association of exonic variants with 

fasting glucose (~60,000 non-diabetic individuals) and fasting insulin (~48,000 non-diabetic 

individuals) from 23 cohorts. We found a variant coding variant (rs10305492, A316T) in the 

gene for the GLP-1 receptor (GLP1R) associated with fasting glucose, with the threonine 

allele associated with lower fasting glucose.200 Additional examination of this variant found 

that the threonine allele was associated with reduced T2D (OR 0.86, 95% CI 0.76-0.96), 

reduced insulin secretion (insulinogenic index from oral glucose tolerance testing) but 

increased 2 hour glucose. We hypothesized that the threonine allele confers a gain-of-
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function that consitutively activates the GLP-1 receptor, causing beta-cells to secrete insulin 

at a lower ambient glucose level, thereby maintaining a lower fasting glucose, which in turn 

causes down-regulation of the receptors over time, causing incretin resistance and a higher 2 

hour glucose after an oral carbohydrate load. A subsequent analysis examined coding 

variation in six genes for drug targets for obesity or T2D, including GLP1R, for association 

with disease outcomes to predict cardiovascular safety of those drugs.201 This analysis found 

that the threonine allele at rs10305492 was associated with reduced CHD (OR 0.93, 95% CI 

0.87-0.98), along with the previously noted association with lower fasting glucose and 

protection against diabetes. This is elegant example of genetic findings paralleling drug 

effects, in this case the glucose-lowering and cardioprotective effects of GLP-1 agonists, 

which act on the GLP-1 receptor.

CONCLUSIONS

There have been dramatic advances in our understanding the genetic basis of T2D and of 

other cardiovascular risk factors. The data reviewed herein indicate that not only is T2D an 

epidemiologic risk factor for CHD, but that it is a genetic risk factor for CHD as well. 

Elucidating this relationship has identified shared genes between T2D and CHD with 

noteworthy examples being the 9p21 locus, the IRS1 locus, and the LPL and ANGPTL4 
genes involved in triglyceride metabolism. Formal Mendelian randomization analyses are 

beginning to clarify the relationship between T2D, its underpinnings and related traits 

(fasting glucose, fasting insulin, HbA1c, insulin resistance, and insulin secretion), and the 

various pathophysiologic pathways of CHD development. Finally, genetic studies helped to 

clarify whether CHD therapies (e.g., lipid lowering) are diabetogenic, whether diabetes 

therapies increase CAD risk (e.g., sulfonylureas), and whether certain diabetes therapies 

(GLP-1 agonists) are cardioprotective. The increased understanding of the shared genetics 

between T2D and CHD will provide tools to subdivide diabetes patients into those who will 

need interventions to prevent CHD and help identify the therapeutic agents that will be most 

effective in such patients. That is, with continued success in identifying the genes and the 

variants in those genes that predispose to T2D and CHD, we are starting to subdivide T2D 

loci into various pathophysiologic subsets. It is likely that these different subsets will confer 

different risks for CHD, and that the elucidation of the responsible genes will provide clues 

to the mechanisms of CHD risk. These concepts lead to the following priorities for future 

research: (a) conduct large-scale genetic epidemiologic investigations of CHD occurring in 

patients with T2D; (b) test defined subsets of the T2D loci as risk factors for CHD; (c) 

examine the molecular mechanisms of the loci that link T2D subsets to CHD; and (d) 

genotype participants of large-scale therapeutic clinical trials of T2D and of CHD to 

examine the effect of these diabetogenic loci. The ultimate goal is improved therapy and 

even prevention in those at risk for T2D and CHD.
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Non-standard Abbreviations and Acronyms

ACCORD Action to Control Cardiovascular Risk in Diabetes

ADVANCE Action in Diabetes and Vascular Disease: Preterax and 

Diamicron - MR Controlled Evaluation

ANGPTL4 angiopoietin like 4

ANRIL antisense non-coding RNA in the INK4 locus

APOE apolipoprotein E

ASO antisense oligonucleotide

C4D Coronary Artery Disease Genetics

CARDIoGRAM Coronary Artery Disease Genome-wide Replication and 

Meta-analysis

CHARGE Cohorts for Heart and Aging Research in Genomic 

Epidemiology

CHD coronary heart disease

CIHDS Copenhagen Ischemic Heart Disease Study

CKB China Kadoorie Biobank

CV cardiovascular

CVD cardiovascular disease

DCCT Diabetes Control and Complications Trial

DIAGRAM Diabetes Genetics Replication and Meta-Analysis

DIAMANTE DIAbetes, Meta-ANalysis Trans-Ethnic

EPIC Interact, European Prospective Investigation into Cancer 

and Nutrition-Interact Study

eQTL expression quantitative trait locus

FG fasting glucose

FHS Framingham Heart Study

FI fasting insulin

FSIGT frequently-sampled intravenous glucose tolerance test

GLGC Global Lipids Genetics Consortium

GLP-1 glucagon like peptide-1
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GLP1R glucagon like peptide-1 receptor

GWAS genome-wide association study

HbA1c hemoglobin A1c

HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase

IMT intima-media thickness

IRS1 insulin receptor substrate 1

ISGC International Stroke Genetics Consortium

LD linkage disequilibrium

LPL lipoprotein lipase

MAGIC Meta-Analyses of Glucose and Insulin-Related Traits 

Consortium

MI myocardial infarction

MR Mendelian randomization

NINDS-SiGN National Institute of Neurologic Disorders and Stroke-

Stroke Genetics Network

PCSK9 proprotein convertase subtilisin/kexin type 9

REACTION Risk Evaluation of Cancers in Chinese Diabetic 

Individuals: a Longitudinal Study

SNP single nucleotide polymorphism

T2D type 2 diabetes

UKBB United Kingdom Biobank

UKPDS United Kingdom Prospective Diabetes Study

VADT Veterans Affairs Diabetes Trial

WHR waist hip ratio
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Figure 1. 
Regional association plot of the chromosome 9p21 locus for CHD and T2D. In these plots, P 

values are plotted as -log10 values as a function of genomic position. Each dot represents 

one SNP, with the index variant represented as a purple diamond. Color of other SNPs 

indicates their LD with the index SNP, per the scale on the top left. Recombination rates are 

represented by the blue line and genes in the region are shown at bottom. Plots were 

generated using publicly available summary statistics for CHD77 and T2D.41 A. Association 

with CHD, where the index SNP rs4977574 is the top known signal. Note that the CHD 

association lies proximal to a recombination hotspot; B. Association with T2D, index SNP 

rs10811660 is the top signal, in a region delimited by two recombination hotspots; C. 

Association with T2D at a second locus in the region, indexed by rs1063192, and 

independent of the first T2D signal; D. Association with CHD, indexed to the T2D SNP 

rs1063192. The cluster of SNPs constituting the second T2D signal is in LD with the CHD 

signal.
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Figure 2. 
Regional association plot of the LPL locus for T2D and CHD. In these plots, P values are 

plotted as -log10 values as a function of genomic position. Each dot represents one SNP, 

with the index variant represented as a purple diamond. Color of other SNPs indicates their 

LD with the index SNP, per the scale on the top right. Recombination rates are represented 

by the blue line and genes in the region are shown at bottom. Plots were generated using 

publicly available summary statistics for CHD77 and T2D.41 A. Association with T2D, 
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indexed to rs10096633. B. Association with CHD indexed to rs17091891. The two index 

SNPs are highly linked (r2=0.97 in Europeans).
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Figure 3. 
Different types of shared loci for CHD and T2D. A. IRS1 locus where the same variants are 

associated with CHD and T2D. B. More complex structure of chromosome 9p21 locus, 

which houses overlapping signals for CHD and T2D as well as an independent signal for 

T2D (see also Figure 1). C. Loci involved in triglyceride metabolism. D. Multi-locus 

colocalization approach97 that revealed seven signals with consistent direction of effect and 

one locus with opposite effects on CHD and T2D.
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Figure 4. 
Illustrations of the core assumptions of Mendelian randomization. 1. The instrument 

variables must be strongly associated with the risk factor of interest, 2. Variants must not be 

associated with confounders of the risk factor and the outcome. 3. Variants are associated 

with disease through that risk factor and not through other mediators.
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Figure 5. 
Summary of Mendelian randomization literature examining T2D and related traits as risk 

factors for CVD. Solid lines represent compelling evidence for causality. Dotted lines 

represent mixed results.
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Table 1.

SNPs that are associated with both T2D and CHD with genome-wide significance on bivariate scan

SNP
Nearest 
genes

Effect 
allele/
other 
allele CHD: OR

CHD: P 
value T2D: OR

T2D: P 
value

Bivariate P 
value

Colocalization 
probability

rs7903146 TCF7L2 T/C
1.04 
(1.02-1.05) 2.87E-05

1.35 
(1.33-1.38) 1.33E-219 2.64E-212 0.95

rs1169288 
(I27L) HNF1A C/A

1.04 
(1.03-1.06) 3.86E-07

1.06 
(1.04-1.08) 9.25E-10 1.98E-12 0.69

rs7202877
CTRB1, 
CTRB2 C/T

1.06 
(1.04-1.09) 2.90E-06

1.06 
(1.03-1.08) 3.92E-09 6.33E-11 0.97

rs2306374 MRAS C/T
1.06 
(1.04-1.08) 2.35E-08

1.05 
(1.02-1.07) 6.51E-04 9.76E-09 0.55

rs11556924 
(R342H) ZC3HC1 C/T

1.08 
(1.06-1.10) 3.28E-20

1.03 
(1.01-1.05) 4.94E-04 1.38E-19 0.63

rs7985179
GPC5, 
MIR17HG T/A

1.05 
(1.02-1.08) 6.37E-04

1.07 
(1.05-1.10) 3.72E-09 1.54E-09 0.54

rs825476 CCDC92 T/C
1.03 
(1.02-1.05) 2.96E-07

1.04 
(1.03-1.06) 2.21E-06 2.71E-09 0.98

rs4420638
APOE, 
APOC1 G/A

0.89 
(0.85-0.93) 1.76E-06

1.08 
(1.05-1.11) 8.82E-08 2.59E-13 0.99

Data are from Zhao et al.97 All loci have r2>0.7 between T2D and CHD associations and colocalization probability >0.5. Individual associations 

have P<1x10−3.
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Table 2.

Summary of Mendelian randomization studies examining T2D and related traits as causal for CHD or MI

Risk factor Outcome Year Authors Cohorts Number 
of SNPs

OR 
for 
CHD

95% CI Increment

T2D CHD 2015 Ross et al. DIAGRAMv3, 
CARDIoGRAMplusC4D 
(n=344,248)

59 1.63 1.23-2.07 Not specified

T2D CHD 2015 Ross et al. DIAGRAMv3, 
CARDIoGRAMplusC4D 
(n=344,248)

26 (BC) 1.83 1.19-2.62 Not specified

T2D CHD 2015 Ross et al. DIAGRAMv3, 
CARDIoGRAMplusC4D 
(n=344,248)

11 (IR) 2.35 1.46-3.53 Not specified

T2D CHD 2015 Ahmad et al. DIAGRAMv3, 
CARDIoGRAMplusC4D 
(n=344,248)

26 1.11 1.05-1.17 Unit increase 
in odds of 
T2D

T2D CHD 2015 Ahmad et al. DIAGRAMv3, 
CARDIoGRAMplusC4D 
(n=344,248)

8 (BC) 1.07 1.01-1.14 Unit increase 
in odds of 
T2D

T2D CHD 2019 Gan et al. CKB (n=159,528 Chinese) 48 1.12 1.02-1.23 1 unit log-
odds of T2D

T2D CHD 2019 Gan et al. DIAGRAMv4, 
CARDIoGRAMplusC4D 
(n=343,513)

86 1.11 1.05-1.17 1 unit log-
odds of T2D

T2D CHD 2019 Gan et al. CKB (n=159,528 Chinese) 24 (BC) 1.13 1.02-1.25 1 unit log-
odds of T2D

T2D CHD 2019 Gan et al. CKB (n=159,528 Chinese) 6 (IR) 1.43 0.88-2.31 1 unit log-
odds of T2D

T2D CHD 2017 Zhao et al. Several cohorts (n=526,043) 16 (T2D 
only)

1.26 1.16-1.37 Not specified

Nonfasting 
glucose

CHD 2012 Benn et al. CIHDS (n=80,522) 5 1.25 1.03-1.52 1 mmol/L

Nonfasting 
glucose

MI 2012 Benn et al. CIHDS (n=80,522) 5 1.69 1.28-2.23 1 mmol/L

HbA1c CHD 2015 Ross et al. MAGIC, 
CARDIoGRAMplusC4D 
(n=240,795)

9 1.53 1.14-2.05 1%

HbA1c CAD 2018 Au Yeung et 
al.

MAGIC, UKBB (n=515,693) 14 2.24 1.55-2.35 1%

HbA1c CAD 2018 Au Yeung et 
al.

MAGIC, 
CARDIoGRAMPlusC4D 
(n=307,960)

14 1.27 0.90-1.78 1%

HbA1c CHD 2019 Leong et al. MAGIC, 
CARDIoGRAMPlusC4D, 
UKBB (n=819,131)

50 1.61 1.40-1.84 1%

HbA1c CHD 2019 Leong et al. MAGIC, 
CARDIoGRAMPlusC4D, 
UKBB (n=819,131)

16 (Gly) 2.23 1.73-2.89 1%

HbA1c CHD 2019 Leong et al. MAGIC, 
CARDIoGRAMPlusC4D, 
UKBB (n=819,131)

20 (Ery) 1.30 1.08-1.57 1%

FG CHD 2015 Ross et al. MAGIC, 
CARDIoGRAMplusC4D 
(n=327,437)

30 1.18 0.97-1.42 1 mmol/L
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Risk factor Outcome Year Authors Cohorts Number 
of SNPs

OR 
for 
CHD

95% CI Increment

FG CHD 2015 Ahmad et al. MAGIC, 
CARDIoGRAMplusC4D 
(n=327,437)

24 1.15 1.00-1.32 1 mmol/L

FG CAD 2017 Merino et al. MAGIC, 
CARDIoGRAMplusC4D, 
FHS (n=332,550)

12 1.43 1.14-1.79 1 mmol/L

FG CAD 2017 Merino et al. MAGIC, 
CARDIoGRAMplusC4D, 
FHS (n=332,550)

5 1.33 1.02-1.73 1 mmol/L

FI CHD 2016 Tikkanen et 
al.

Finnish cohort (n=26,554) 20 1.06 1.02-1.10 SD

FI CHD 2017 Zhan et al. MAGIC, CARDIoGRAM 
(n=195,552)

12 2.64 1.55-4.48 Not specified

FI MI 2019 Zhao et al. MAGIC, UKBB (n=500,567) 7 2.87 1.30-6.33 1 pmol/l

FI MI 2019 Zhao et al. MAGIC, UKBB (n=500,567) 
(men only)

7 4.27 1.60-11.3 1 pmol/l

FI MI 2019 Zhao et al. MAGIC, 
CARDIoGRAMplusC4D 
(n=292,862)

7 1.90 1.04-3.49 1 pmol/l

FI MI 2019 Zhao et al. MAGIC, UKBB + 
CARDIoGRAMplusC4D 
(n=684,872)

7 2.21 1.37-3.58 1 pmol/l

All cohorts are European or majority European unless otherwise indicated.

BC, SNPs implicated in beta-cell dysfunction; CARDIoGRAMplusC4D, Coronary Artery Disease Genome-wide Replication and Meta-Analysis 
(CARDIoGRAM) Consortium plus the Coronary Artery Disease Genetics (C4D) Consortium; CIHDS, Copenhagen Ischemic Heart Disease Study; 
CKB, China Kadoorie Biobank; DIAGRAM, Diabetes Genetics Replication and Meta-Analysis; Ery, SNPs that affect HbA1c via erythrocytic 
pathways; FHS, Framingham Heart Study; FI, fasting insulin; Gly, SNPs that affect HbA1c via glycemic pathways; IR, SNPs implicated in insulin 
resistance; MAGIC, Meta-Analyses of Glucose and Insulin-Related Traits Consortium; MI, myocardial infarction; NINDS-SiGN, National Institute 
of Neurologic Disorders and Stroke-Stroke Genetics Network; SD, standard deviation in genetic risk score; REACTION, Risk Evaluation of 
Cancers in Chinese Diabetic Individuals: a Longitudinal Study; UKBB, UK Biobank
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Table 3.

Summary of Mendelian randomization studies examining T2D and related traits as causal for cerebrovascular 

disease

Risk 
factor

Outcome Year Authors Population Number 
of SNPs

OR for 
outcome

95% CI Increment

T2D Ischemic 
stroke

2019 Gan et al. CKB (n=159,528 
Chinese)

48 1.08 1.02-1.14 1 unit log-odds 
of T2D

T2D Intracerebral 
hemorrhage

2019 Gan et al. CKB (n=159,528 
Chinese)

48 1.01 0.94-1.10 1 unit log-odds 
of T2D

T2D Ischemic 
stroke

2019 Gan et al. DIAGRAMv4, ISGC 
(n=233,661)

86 1.13 1.05-1.21 1 unit log-odds 
of T2D

T2D Intracerebral 
hemorrhage

2019 Gan et al. DIAGRAMv4, ISGC 
(n=162,234)

86 1.12 0.94-1.34 1 unit log-odds 
of T2D

T2D Ischemic 
stroke

2017 Larsson et 
al.

DIAGRAM, 
METASTROKE, 
NINDS-SiGN 
(n=205,593)

49 1.12 1.07-1.17 1 unit log-odds 
of T2D

T2D Large vessel 
stroke

2017 Larsson et 
al.

DIAGRAM, 
METASTROKE, 
NINDS-SiGN 
(n=205,593)

49 1.28 1.16-1.40 1 unit log-odds 
of T2D

T2D Small vessel 
stroke

2017 Larsson et 
al.

DIAGRAM, 
METASTROKE, 
NINDS-SiGN 
(n=205,593)

49 1.21 1.10-1.33 1 unit log-odds 
of T2D

T2D Intracerebral 
hemorrhage

2018 Liu et al. DIAGRAMv4, UKBB, 
2 studies (n=169,657)

84 1.07 0.95-1.20 Not specified

T2D Lacunar 
stroke

2018 Liu et al. DIAGRAMv4, 3 
studies (n=188,696)

84 1.15 1.04-1.28 Not specified

FI Ischemic stroke 2017 Larsson et 
al.

MAGIC, 
METASTROKE, 
NINDS-SiGN 
(n=164,329)

18 1.03 0.78-1.37 0.6 pmol/L

FI Large vessel 
stroke

2017 Larsson et 
al.

MAGIC, 
METASTROKE, 
NINDS-SiGN 
(n=164,329)

18 1.42 0.80-2.50 0.6 pmol/L

FI Small vessel 
stroke

2017 Larsson et 
al.

MAGIC, 
METASTROKE, 
NINDS-SiGN 
(n=164,329)

18 1.15 0.65-2.02 0.6 pmol/L

FI Lacunar stroke 2018 Liu et al. MAGIC, 3 studies 
(n=138,045)

18 1.52 0.45-5.08 Not specified

FG Ischemic stroke 2017 Larsson et 
al.

MAGIC, 
METASTROKE, 
NINDS-SiGN 
(n=188,782)

36 1.12 0.98-1.28 0.65 mmol/L

FG Large vessel 
stroke

2017 Larsson et 
al.

MAGIC, 
METASTROKE, 
NINDS-SiGN 
(n=188,782)

36 1.42 1.08-1.85 0.65 mmol/L

FG Small vessel 
stroke

2017 Larsson et 
al.

MAGIC, 
METASTROKE, 
NINDS-SiGN 
(n=188,782)

36 1.09 0.83-1.43 0.65 mmol/L
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Risk 
factor

Outcome Year Authors Population Number 
of SNPs

OR for 
outcome

95% CI Increment

FG Lacunar stroke 2018 Liu et al. MAGIC, 3 studies 
(n=162,498)

36 1.10 0.63-1.90 Not specified

All cohorts are European or majority European unless otherwise indicated.

BC, SNPs implicated in beta-cell dysfunction; CARDIoGRAMplusC4D, Coronary Artery Disease Genome-wide Replication and Meta-Analysis 
(CARDIoGRAM) Consortium plus the Coronary Artery Disease Genetics (C4D) Consortium; CIHDS, Copenhagen Ischemic Heart Disease Study; 
CKB, China Kadoorie Biobank; DIAGRAM, Diabetes Genetics Replication and Meta-Analysis; Ery, SNPs that affect HbA1c via erythrocytic 
pathways; FHS, Framingham Heart Study; FI, fasting insulin; Gly, SNPs that affect HbA1c via glycemic pathways; IR, SNPs implicated in insulin 
resistance; ISGC, International Stroke Genetics Consortium; MAGIC, Meta-Analyses of Glucose and Insulin-Related Traits Consortium; MI, 
myocardial infarction; NINDS-SiGN, National Institute of Neurologic Disorders and Stroke-Stroke Genetics Network; SD, standard deviation in 
genetic risk score; REACTION, Risk Evaluation of Cancers in Chinese Diabetic Individuals: a Longitudinal Study; UKBB, UK Biobank
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Table 4.

Mendelian randomization studies of relevance to lipid lowering therapy

Risk factor Outcome Year Authors Cohorts Number 
of SNPs

OR 
for 
T2D

95% CI Increment

NPC1L1 T2D 2016 Lotta et al. EPIC-Interact, 
DIAGRAM, UKBB 
(n=321,044)

2 2.42 1.70-3.43 −1 mmol/L in LDL-C

HMGCR T2D 2016 Lotta et al. EPIC-Interact, 
DIAGRAM, UKBB, 
11 studies 
(n=376,217)

3 1.39 1.12-1.73 −1 mmol/L in LDL-C

PCSK9 T2D 2016 Lotta et al. EPIC-Interact, 
DIAGRAM, UKBB 
(n=321,044)

1 1.19 1.02-1.38 −1 mmol/L in LDL-C

ABCG5/G8 T2D 2016 Lotta et al. EPIC-Interact, 
DIAGRAM, UKBB 
(n=321,044)

1 1.15 0.89-1.48 −1 mmol/L in LDL-C

LDLR T2D 2016 Lotta et al. EPIC-Interact, 
DIAGRAM, UKBB 
(n=321,044)

1 1.13 1.00-1.29 −1 mmol/L in LDL-C

HMGCR T2D 2015 Swerdlow et al. 43 studies 
(n=223,463)

1 1.02 1.00-1.05 −0.06 mmol/L in 
LDL-C

PCSK9 T2D 2017 Schmidt et al. GLGC, DIAGRAM, 
UKBB, 50 studies 
(n=568,448)

4 1.29 1.11-1.50 −1 mmol/L in LDL-C

LDL-C T2D 2016 White et al. GLGC, DIAGRAMv3 
(n=338,398)

130 0.79 0.71-0.88 +38 mg/dl in LDL-C

LDL-C T2D 2015 Fall et al. GLGC, DIAGRAMv3 
(n=338,398)

139 0.81 0.75-0.89 +40 mg/dl in LDL-C

LDL-C T2D 2016 Tragante et al. GLCG, DIAGRAMv3 
(n=245,275)

197 0.86 0.81-0.91 +1 SD in LDL-C

All cohorts are European or majority European.

DIAGRAM, Diabetes Genetics Replication and Meta-Analysis; EPIC-Interact, European Prospective Investigation into Cancer and Nutrition-
Interact Study; GLGC, Global Lipids Genetics Consortium; UKBB, UK Biobank
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