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Abstract

Diet, especially seafood, is the main source of arsenic exposure for humans. The total arsenic 

content of a diet offers inadequate information for assessment of the toxicological consequences of 

arsenic intake, which has impeded progress in the establishment of regulatory limits for arsenic in 

food. Toxicity assessments are mainly based on inorganic arsenic, a well-characterized carcinogen, 

and arsenobetaine, the main organoarsenical in seafood. Scarcity of toxicity data for 

organoarsenicals, and the predominance of arsenobetaine as an organic arsenic species in seafood, 

has led to the assumption of their nontoxicity. Recent toxicokinetic studies show that some 

organoarsenicals are bioaccessible and cytotoxic with demonstrated toxicities like that of 

pernicious trivalent inorganic arsenic, underpinning the need for speciation analysis. The need to 

investigate and compare the bioavailability, metabolic transformation, and elimination from the 

body of organoarsenicals to the well-established physiological consequences of inorganic arsenic 

and arsenobetaine exposure is apparent. This review provides an overview of the occurrence and 

assessment of human exposure to arsenic toxicity associated with the consumption of seafood.
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1. INTRODUCTION

It is estimated that the ocean is inhabited by more than 1000 species of crustaceans and 

50000 species of mollusks, aside from the 13000 species of finfish.1 Marine species 
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including seafood and seaweed are deemed as essential portions of healthy diets as they 

comprise various nutrients linked with beneficial health effects2 and are widely used as 

dietary supplements. Human consumption of seafood has been increasing steadily mainly 

because of the reports of health benefits associated with their consumption.2–4

Like all mammals, humans lack enzymes for the synthesis of omega-3 (ω-3) and omega-6 

(ω-6) precursors of DHA and EPA, which are therefore essential fatty acids and need to be 

provided by dietary sources.5 Fish is the best dietary source of protein, long-chain omega-3 

polyunsaturated fatty acids (ω-3 LCPUFAs) and other nutrients which are linked to a range 

of health benefits.6 Long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFAs), 

particularly eicosapentanoic acids (EPA, 20:5ω-3) and decosahexanoic acid (DHA, 

22:6ω-3), have been demonstrated to have antiatherosclerotic and antithrombotic effects3 

and are linked to reduced risk of cardiovascular disease (CVD).7 Benefits on visual acuity 

and cognitive development have been largely established in term8,9 and preterm10,11 infants 

fed ω-3 LCPUFAs-supplemented formula.12

Typically, shellfish contain substantial quantities of digestible proteins, essential amino 

acids, bioactive peptides, ω-3 LCPUFAs, astaxanthin and other carotenoids, vitamin B12 and 

other vitamins, minerals, including copper, zinc, inorganic phosphate, sodium, potassium, 

selenium, iodine, and other nutrients, which offer a variety of health benefits to the 

consumer.13,14 Seafood is low in calories compared with other animal foods. For example, a 

100 g serving of shrimp provides approximately 106 kcal of energy, whereas the same 

amount of fish provides 110–150 kcal, lean beef 250 kcal, and roasted chicken 200 kcal of 

energy.15

Seaweed has been part of the human diet, especially in Asia, for centuries and has gained 

popularity in western countries.16,17 Seaweeds are extensively utilized in the food industry 

and are becoming increasingly commercially available because of their properties as food 

additives,18 their nutritional values,18,19 and implied medical applications.19,20 Seaweed 

intake has been linked with reduced risk of breast and colorectal cancers, perhaps owing to 

the extraordinary fiber and vitamin content.21 Both kelp and laver contain a large amount of 

iodine, a vital element for thyroid health.17 Laver is an excellent source of vitamins A and C, 

while kelp is a good source of folic acid.17 Human exposure to arsenosugars (AsSugars) is 

fairly high in Asia owing to a diet rich in seaweed.22 Fortunately, there are no indication for 

acute and chronic toxicity related to seaweed ingestion from epidemio-logical studies.21

According to the State of World Fisheries and Aquaculture, published by the United 

Nation’s Food and Agriculture Organization (FAO), in 2014, an amount of 167.2 million 

metric tons (MMT) of seafood was globally available, with landings of shrimp, American 

lobsters, and cephalopods at 3.5, 0.16, and 4.3 MMT, respectively.23 Total fish production in 

2016 reached an all-time high of 171 MMT, of which 88% was utilized for direct human 

consumption with per capita consumption of 20.3 kg and an export value of U.S. $143 

billion.24 An estimated 38% of the 23.8 MMT of seaweeds in the 2012 global harvest was 

eaten by humans.25 The global harvest of seaweeds in 2013 was estimated at U.S. $6.7 

billion.26
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Consumer demand for shellfish and other seafood has resulted in a significant rise in their 

wild catch and aquaculture in fresh, brackish, and marine waters, with a total production of 

73.8 MMT in 2014, at an estimated value of U.S. $160 billion. This included 16.1 MMT of 

mollusks composed of 104 species valued at U.S. $19 billion and 6.9 MMT of crustacean 

valued at U.S. $36.2 billion.23 Aquaculture is projected to grow at almost 39% annually, 

with an estimated production of about 102 MMT in 2025.23 Shellfish formed 38% of total 

seafood traded in 2013, with shrimp being the most popular shellfish.27

In the United States, where the per capita shrimp consumption of about 1.73 kg was 

recorded in 2012, almost 90% of the shrimp consumed came from imports.28 The per capita 

shellfish consumption in 2013 was 4.9 kg, subdivided into 1.8 kg of crustaceans, 0.5 kg of 

cephalopods, and 2.6 kg of other mollusks.23 In 2014, an amount of 146.3 MMT of seafood 

was used as human food, giving a global per capita seafood consumption of 20.1 kg and 

contributing to about 20% of total average per capita intake of animal protein.13 Per capita 

seafood consumptions of 25.8 and 35 kg were also reported in 2017 in the European Union 

(E.U.) and southern Europe, respectively.13

Evidently, seafood is a highly consumed and traded commodity, and therefore, intentional or 

unintentional contamination with toxic elements like arsenic may become technical barriers 

to trade. For example, in December 2013 China imposed a ban on all U.S. imports of 

geoduck clams (Panacea generosa), a large edible saltwater clam found along the Pacific 

Northwest extending from northern California to southeastern Alaska, citing high levels of 

arsenic contamination. Revenue from U.S. exports of geoduck clams are upward of $80 

million annually with about 90% of all exports going to China.29

Jennings et al. acknowledged the need for seafood supply to not only meet the needs and 

preferences of consumers but also for it to be sustainable and provide nutritional benefits 

while posing minimal health risks.30 Despite the many health benefits of seafood, they are 

unfortunately inherently contaminated with arsenic, especially organic arsenic species.31 It 

is therefore critical from a risk-based approach to conduct arsenic speciation analysis in 

order to determine the arsenic species present and their relative proportions consumed by 

humans and thus enable more accurate risk assessment.32–34

Seafood is the major dietary source of total arsenic in humans,35 excluding regions with 

widespread elevated drinking water contamination.36–39 Organic arsenic predominates in 

seafood; however, this is not always the case, as there are reported cases of elevated 

inorganic arsenic levels in seafood such as in edible seaweed Hijiki (60–150 μg g−1, iAs),40 

fish from Thailand,41 and mussel from Norway.42 Marine algae and shellfish are the seafood 

exposure sources with the greatest diversity of arsenicals.43 Among these arsenicals the 

potential for biotransformation upon ingestion varies considerably.44 Arsenic speciation 

(Figure 1) is complicated, and diverse arsenic species display great difference in toxicities.45

The chemical state of arsenic influences its bioavailability, mobility, and toxicity, among 

other properties.46 Arsenic exists in four oxidation states in the inorganic form as trivalent 

arsenite (iAsIII) and thermodynamically stable pentavalent arsenate (iAsV).47 Elemental 

arsenic (As0) and arsine, H3As (As−III), exist in strongly reducing conditions.48–50 Arsenic 
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exists in organic form where arsenic is bonded to carbon as low molecular weight 

compounds like monomethylarsonate (MMA), dimethylarsenate (DMA), arsenobetaine 

(AsB), arsenocholine (AsC), trimethylarsine oxide (TMAO), and tetramethylarsonium ion 

(TETRA); high molecular weight arsenosugars (AsSugar) and arsenolipids (AsLipids); and 

in complexed form as arsenopeptides (glutathione (As-GSH), and phytochelatins (AsPC)).
46,51,52

Arsenobetaine (AsB) is the main arsenical in seafood, commonly comprising in excess of 

90% of the total arsenic in fish.53–56 AsB is the major polar arsenical, which together with 

AsSugars and a range of other lipophilic arsenicals account for over 70 naturally occurring 

organoarsenicals found in seafood.34,37 There is great diversity in the level of arsenic in 

seafood, but arsenic in most samples falls within the mass fraction range of about 5 to 100 

μg g−1 dry mass.34 Sirot et al. reported the levels of inorganic arsenic (iAs) in 30 fish species 

collected in France as 0.005–0.073 μg g−1 on wet mass basis. This clearly demonstrated that 

the proportion of iAs to total arsenic content, mostly AsB, was 100-fold lower.57

The aim of this paper is to give a comprehensive summary of the current state of 

understanding of the various aspects of organoarsenical formation in the marine food chain 

in terms of occurrence, exposure, metabolic transformation, and toxicity of smaller-molecule 

oxo-arsenicals, arsenosugars, arsenolipids, and thio-arsenicals. A brief discussion about the 

mechanism of toxicity of inorganic arsenic is also presented in the paper because it is the 

arsenic species with well-understood adverse effects. This may seem out of place but is 

important for the understanding of the general behavior of organoarsenicals. Where the term 

arsenic is used, it means inorganic arsenic (iAs).

2. METABOLIC TRANSFORMATION AND TOXICITY OF ARSENIC

An enormous assortment of biologically relevant arsenic species has been characterized in 

samples of dietary sources.16,34,55,58–60 Arsenic toxicity, bioaccumulation, and mobility are 

greatly dependent on the chemical state in which the element appears and the extent of 

methylation through the metabolism process.38,43,61,62 iAsV and iAsIII are categorized as 

nonthreshold Class I carcinogens,63 with acute toxicity of LD50 = 15–42 mg/kg body mass, 

while simple methylated arsenicals are deemed to pose intermediary toxicity (LD50 = 890–

10600 mg/kg body weight), and the tetraalkylated compound AsB, present in fish and the 

principal dietary source of arsenic exposure for humans, is nontoxic with LD50 = >10000 

mg/kg body weight and is primarily eliminated intact by humans in the urine.56,64

Typically the lower the oxidation number is, the higher the toxicity is, and the higher the 

methylation is, the lower the toxicity is, thus producing the following order of toxicity for 

arsenic species in human cell lines: monomethylarsonous acid (MMAIII) > dimethylarsinous 

acid (DMAIII) > arsenite (AsIII) > arsenate (AsV) > trimethylarsine (TMA+) > 

dimethylarsinic acid (DMAV) = monomethylarsonic acid (MMAV) > trimethylarsine oxide 

(TMAO) > arsenocholine (AsC) > arsenobetaine (AsB).65–68 Moreover, AsB, AsC, TMAO, 

AsSugars, AsLipids, and other organoarsenicals are usually mildly toxic compared to iAs 

species.34,45,69
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Due to the extreme toxicity of iAs, microalgae and other living organisms may undergo 

dissimilar processes to lessen the toxic effects, including cell surface adsorption, arsenite 

oxidation and arsenate reduction,70,71 methylation,72 conversion to AsSugars or AsLipids,73 

chelation of iAsIII with glutathione and phytochelatins,74,75 and elimination from cells.45 

Arsenic detoxification occurs through a series of biotransformations in biotic systems which 

produce a wide range of organoarsenicals, whereby arsenic is covalently bonded with one or 

more carbon atoms containing functional groups.75,76 Toxicity is instituted once liver 

methylation ability is impeded or surpassed.77–79

It is important to note that discussions on arsenic toxicity are mainly in reference to 

inorganic arsenic and methylated arsenicals (MMA and DMA) since their toxicity 

mechanism is well established and understood unlike for AsSugars and AsLipids which are 

yet to be fully elucidated. Organoarsenicals have not demonstrated acute toxicity; therefore, 

their toxicity may arise from metabolic transformations that lead to formation of highly toxic 

metabolites.52,58,64 For example, the toxicity of AsSugar and AsLipids may arise from their 

metabolic breakdown to other arsenicals such as DMAV, which is also the metabolite of iAs 

found in urine and is a known tumor promoter and confirmed carcinogen in experimental 

animals.80,81

Liver, kidneys, heart, and lungs are main repository organs of arsenic, with slight buildup in 

brain and muscle tissues.62 This buildup is linked with a variety of ailments including 

diabetes, hepatotoxicity, cancer, and nephrotoxicity. Arsenic can cause thiamine deficiency 

by lowering its accessibility, leading to lactic acidosis by enhancing lactic acid 

concentration.62 In addition, arsenic may cause genotoxicity by impeding DNA repair 

mechanism and further stimulates oxidative stress by producing reactive nitrogen species 

(RNS) and reactive oxygen species (ROS).62,82,83

In biological systems, arsenate can replace phosphate and form esters that resemble 

phosphate esters, which are abundant in biomolecules, from the sugar phosphates of 

intermediary metabolism, to membrane phospholipids, to the phosphate backbone of genetic 

materials like deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).84 However, these 

compounds are less stable because they are more delicate than the subsequent phosphate 

esters, which is partly attributed to the bond lengths and bond angles.85 The P-O bond length 

in phosphates is almost 1.5 Å, whereas the bond length of As-O in arsenates is roughly 1.6 

Å to 2.0 Å. Arsenic usually form lengthier bonds than phosphorus (Figure 2).85 In addition, 

arsenic angles are considerably less obtuse than the phosphorus angles,84 i.e., the O-P-O 

bond angle is about 117°, whereas the O-As-O bond angle is roughly 100°, with minor 

variabilities in diverse compounds. Therefore, since longer bonds are fragile, arsenate esters 

disintegrate more easily than phosphate esters.

Within the cell, metabolic enzymes which utilize phosphate may also incorporate arsenate in 

alkylation, acylation, or phosphorylation reactions because of their isosteric and 

isoelectronic nature.86 For example, arsenate inhibits the formation of ATP as a result of 

generation of delicate anhydrides and also uncouples ATP synthesis during oxidative 

phosphorylation by coupling with adenosine diphosphate (ADP) in the presence of succinate 

in the mitochondria to form ADP-arsenate rather than ATP.87–89 This disrupts phosphorus 
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metabolism since ADP-arsenate may be utilized as a substrate for hexokinase, which under 

normal conditions produces glucose-6-phosphate, the first intermediary in the glycolytic 

pathway.87 This inhibits hexokinase by negative feedback. The glucose-6-arsenate produced 

by hexokinase is then transformed to glucose-1-arsenate by phosphoglucomutase, proving 

that intermediary metabolism can produce arsenicals.86 The rate constant for spontaneous 

breakdown of glucose-6-arsenate has been shown to be 4 × 10−4 s−1, compared to 4 × 10−9 s
−1 for glucose-6-phosphate. Therefore, the short half-life of arsenate ester causes it to 

spontaneously hydrolyze 105 times faster than the phosphate ester, which is the major cause 

of decoupling action of arsenate in oxidative phosphorylation,87 and therefore cells 

essentially starve for scarcity of metabolic intermediates.45,75,84,86,90

The other factor that potentially contributes to the instability of arsenicals is the fact that 

iAsV is swiftly reduced to iAsIII within the cells.84 The biological half-life of As is roughly 

4 days, which is dependent on the manner of exposure as iAsIII is considered to have a 

shorter half-life in comparison to iAsV.91 iAsIII is the most hazardous and toxic form of 

inorganic arsenic, which block sulfhydryl (−SH) groups by creating robust bonds of metallic 

nature with thiols in proteins and small molecules.84 iAsIII toxicity is due to its high affinity 

for thiol groups, causing allosteric inhibition of respiration by binding to vicinal thiols in 

pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase,90 with resultant 

membrane destruction and cell death by generating reactive oxygen species (ROS).45,92 The 

allosteric inhibition of PDH, a vital precursor of acetyl-CoA, not only restricts the 

generation of ATP in the electron transport chain but also impedes the formation of 

gluconeogenesis intermediaries.93–96 Moreover, research findings indicate that arsenite is 

able to traverse across the blood-brain barrier.97–99

Due to scarcity of toxicity and long-term exposure data for organoarsenicals in humans or 

other mammals, health hazards from exposure to organoarsenicals are challenging to 

evaluate. Most of the injurious effects of inorganic arsenic have been documented, but the 

uncertainty concerning the threat to the people exposed to organic arsenic, especially from 

seafood, and the dosage needed to trigger these effects still linger. Numerous investigations 

have contemplated the latent carcinogenicity from the formation of the metabolite DMAV,
100–104 centered on elevated dose exposure studies in rats to DMA in water81 or diet.105 

There is, however, compelling indication that the rat model is invalid for human exposure to 

DMA, because of the difference in the metabolic pathways of rats and humans and also 

because these studies are not capable of evaluating the pathway to DMA (from iAs or orgAs 

compounds) and the intermediary effects.106

On the basis of projected exposure level and expected metabolism, it seems unlikely that 

arsenic in seafood can significantly promote arsenic-associated carcinogenic effects.100 The 

bulk of arsenic in seafood exist as AsB, which is benign and is rapidly excreted from the 

body intact. Amounts of TETRA resulting from dry cooking or AsB-containing fish are 

unlikely to reach toxic levels. In addition, levels of iAs and methylarsenicals in seafood are 

relatively low to allay suspicions of their potential detrimental effects in seafood consumers.
100,107
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Whereas no deductions can be made regarding the effects of organoarsenicals, proof of 

toxicity from AsLipids and organoarsenic metabolic intermediates from in vitro assessment 

confirms the necessity for animal and human research to assess probable health impact of 

arsenic in seafood.108,109 The majority of research on natural AsLipids has focused on the 

polar lipids, leading to the characterization of arsenic-containing fatty acids (AsFAs) and 

arsenic-containing hydrocarbons (AsHCs). Profound discernment of arsenic biochemistry 

may perhaps be garnered from characterization of the additional lipid fractions.110

2.1. Methylated Arsenicals.

Methylarsenicals are present in marine food as MMA and DMA at low levels. Other 

methylated arsenicals include TMAO, AsB, AsC, and TETRA. Methylarsenicals in marine 

ecosystem are generated by phytoplankton, bacteria, and microbial breakdown of botanical 

matter from iAs and are introduced into the seafood food chain.70,111 Phytoplankton absorb 

iAsV in the euphotic surface waters and successively transform it to DMA and MMA.112–116 

Anaerobic members of archaea and bacteria are known to biotransform iAs into both volatile 

(methylarsines) and nonvolatile (MMA and DMA) species.117–120

Three metabolic pathways have been proposed for arsenic biotransformation.112,121–123iAs 

undergoes enzymatically biotransformation into several methylated metabolites following 

the classical Challenger’s metabolic pathway as follows: [iAsV] → [iAsIII] → [MMAV] → 
[MMAIII] → [DMAV].121,122,124–126 DMAV can be reduced to DMAIII and further 

methylated to trimethylarsine (TMAIII) via TMAO intermediate.127 Mammalian systems do 

not subsequently produce arsines except under extraordinary conditions.128,129

The Challenger pathway illustrates the reduction of pentavalent iAsV and MMAV to their 

trivalent species, iAsIII and MMAIII, followed by an oxidative methylation phase where S-

adenosylmethionine (SAM) acts as the methyl donor, producing MMAV and DMAV as 

major metabolites. Although the precise pathway in humans has never been entirely 

understood,62,130 it has for long been deemed as a detoxification process.131–133 

Biotransformation on iAs results in the production of MMAIII and DMAIII,134,135 which are 

more toxic than iAs, and therefore, biotransformation of iAs should be generalized as a 

detoxification process in micro-organisms.93 The Challenger pathway is coherent with the 

distribution of arsenicals in urine and can be entirely verified using (CH3) 3S+ as a CH3
+ 

donor and SO2 as the reducing agent in likeness with the Meyer reaction, which is an 

uncatalyzed oxidative addition reaction employed in the preparation of MMAV from iAsIII 

and methyl halide.91,121,126,127

Other pathways proposing glutathione- or protein-conjugated intermediaries have been 

advanced by Hayakawa et al.126 in 2005 and Naranmandura et al.125 in 2006, respectively, 

though their chemical basis is questionable because they involve accepting CH3
− group.136 

They, however, appear to be in agreement with the belief that trivalent arsenicals were 

confirmed to be readily absorbed by the organs/tissue and linked to cellular proteins, as a 

substitute to elimination.137 The two pathways propose that DMAV and MMAV ought to be 

final products (instead of intermediaries) of arsenic biotransformation,138 because trivalent 

arsenic, whether in glutathione or protein complex states, is subjected to reductive 

methylation without being oxidized.91 MMAIII that has long been considered as an 
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transitory intermediate in the methylation pathway is rather a stable metabolite of iAs and 

has been detected in appreciable (e.g., effect levels) concentrations in hamster liver, rat bile, 

and human urine following exposure to iAs.127,139

Production of methylarsenicals is linked to the growth phase or phytoplankton nutritional 

state.112 Production of DMAV increases gradually, while DMAIII and MMAIII remain fairly 

constant during the lag phase of phytoplankton growth. Formation of DMAV is elevated 

when the proportion of phosphate-to-arsenate declines implying enhancement of production 

at phosphate-replete conditions.112,140

MMA and DMA are generally available in trace amounts or are not present in seafood.100 

Measurable amounts have mainly been detected in fatty types of fish.141 Extremely low 

amounts (i.e., μg As/kg) of DMA have been detected in mackerel and herring and in prawns 

but were not measurable in cod, dab, haddock, sole, plaice, tuna, or whiting.100,141–143 

DMA has also been detected in seaweed like kelp.

The International Agency for Research on Cancer (IARC) classification of the 

carcinogenicity of arsenic species categorizes MMA and DMA as Group 2B (possible 

carcinogen to humans).63 In vivo studies have demonstrated that methylated arsenic 

metabolites can traverse the placental barrier, although the methylation capacity is enhanced 

during gestation as a protective measure for the developing fetus.134

It has been suggested that MMAIII is more hazardous and toxic than iAs to the liver, skin, 

and lung cells.144 In addition, DMAIII is more toxic than DMAV and iAs145 because DMAIII 

has neutral charge and can readily permeate cells (up to 16%), but DMAV which has a 

negative charge can scarcely enter cells (0% to 2%).146 The methylated trivalent arsenicals, 

MMAIII and DMAIII, have higher cytotoxicity than AsIII and AsV, which are more cytotoxic 

than the methylated pentavalent arsenicals, MMAV and DMAV.91 The adverse effects of 

arsenic are therefore intimately connected to its metabolism and is significantly reliant on 

the methylation level and the valence state of the metabolites.147

2.2. Trimethylarsine Oxide (TMAO).

TMAO has been isolated in various species of aquatic organisms as a minor arsenic species, 

seldom identified except in miniscule amounts.51,148 Quantities are much lower in stored, 

frozen fish than in fresh fish, likely due to post-mortem degradation, but dietary ingestion of 

TMAO is most likely small.51,100,149 TMAO is fundamentally benign, with an acute oral 

LD50 for arsenic in mice of 5500 mg/kg.100,150

2.3. Arsenocholine (AsC).

Arsenocholine is a metabolic predecessor for AsB in aquatic animals.100,151,148 After 

inoculation of labeled AsC, it is swiftly taken up and converted to AsB with minimum 

breakdown to iAs, MMA, or DMA.100,151,152 Even though findings on AsC toxicity are 

scanty, it is deemed to be benign.100 The acute oral LD50 for arsenocholine in mice was 

6500 mg/kg, whereas the acute intravenous LD50 was 187 mg/kg.100,152
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2.4. Arsenobetaine (AsB).

Seawater contains traces of arsenic (~2 μg/L), which is bioaccumulated by aquatic 

organisms by up to 5 orders of magnitude.51 The bulk of arsenic in aquatic organisms exist 

as AsB, mainly found in fish and shrimp, and as AsSugars, mainly found in marine algae.21 

AsB is an arsenic analogue of the amino acid derivative, glycine betaine, and it is extremely 

stable to hydrolysis or metabolism.43 The source of AsB in the food web is vague, though 

various speculations concerning its biosynthetic pathway have been proposed.153,154 

Arsenic, in AsB, is oxidized with four stable carbon bonds which are enzymatically or 

thermally recalcitrant. Even though AsB can be degraded by microflora existing in human 

gut, their incubation time (7 days)155 is lengthier than practical gut retention, and this 

metabolic pathway has not been witnessed in vivo; thus, AsB is usually not converted in 

humans and other mammals.43,51,100

This makes AsB biochemically quasi-inert, which may explain why this species, though 

readily accessible, does not convert into other metabolites when consumed by humans and is 

swiftly eliminated from the mammalian body intact.54 The postulation that the four stable 

As-C bonds account for the innocuous nature of AsB earns credence from the fact that 

tetramethylarsonium ion (TETRA) and arsenocholine (AsC), both of which are structurally 

analogous to AsB, also display no indication of toxicity (Table 1, Figure 1).54,69 AsB is 

nonmutagenic and does not show cytotoxicity, immunotoxicity, or biotransformation in 

mammalian cells. The acute oral LD50 of AsB in mice is more than 10000 mg As/kg.64

There is adequate proof that higher aquatic animals do not produce AsB, but the complete 

description of its formation remains unclear.148 Experimentally, AsB has been proven to be 

efficiently assimilated from seawater by mussels, whereas shrimp and fish accumulate AsB 

efficiently only from food, which includes phytoplankton, among others.156,157 In mussels, 

retention of AsB is dependent on the salt content of their ambient water, which supports the 

notion that AsB can mimic an osmolyte.43 Likewise, the tendency to increase total arsenic 

with salinity was witnessed among three species of pelagic fish, where AsB is presumed to 

be the main arsenic species, also implying AsB absorption and retention is linked to salinity.
43,157 This experiment gains credence from data that show a positive correlation between 

arsenic content and salinity of mussels kept in aquatic environment of changing salinities.156

2.5. Tetramethyl Arsonium Ion (TETRA).

TETRA is a minor arsenical in finfish but the main species in various mollusks.51,148,161 

Amounts ranging from 0.2 to 16 μg/g were reported in different organs of a few clams.148 

Concentrations of TETRA can be enriched by freezing or dry cooking (grilling, roasting, 

and baking) at temperatures above 160 °C, particularly in burnt meat, possibly owing to 

thermal decarboxylation of AsB.162 Consequently, TETRA concentrations above 1.0 μg/g 

dry mass have been documented in cooked fish where TETRA was not present before 

cooking.100 The halogenated TETRA has substantial acute toxicity; in mice, the acute oral 

LD50 of TETRA-chloride was 890 μg/g. Conversely, such toxicity may arise from the 

halogen anion and not TETRA as analyses of synthetic TETRA-hydroxide have revealed 

nontoxicity.160 Because of the reduced amounts of TETRA in ingested fish, acute toxicity by 
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TETRA is improbable; the highest documented amounts in grilled or roasted fish are 0.571 

μg/g wet basis and 1.79 μg/g dry basis.100,162,163

2.6. Thioarsenicals.

Thio-arsenicals and oxo-arsenicals are structurally similar with sulfur replacing oxygen and 

are produced when oxo-arsenicals are exposed to hydrogen sulfide (H2S).164 Knowledge of 

thio-organoarsenicals is fairly recent, and few studies have examined their production 

processes and detection techniques.165 The main focus of arsenic speciation has been on 

oxo-arsenicals, owing to their abundance in nature.166 Speciation analysis of thio-arsenicals 

is a challenging task, and there is need to exercise caution during sample storage, 

pretreatment, extraction, separation of arsenic species, and detection.91

Despite the latest advances in characterization and detection of thioarsenicals, there are 

lingering intricacies in their analysis in biological matrices, especially seafood and seaweed, 

owing to the complexity of arsenic metabolism, the homophyly of oxo-arsenicals and thio-

arsenicals,166 and lack of standards for thio-arsenicals.91 Many thio-arsenical standards must 

be produced in specific laboratories, and in certain instances, the production is grueling 

owing to the instability of species, like DMMTAIII.91 Figure 3 enumerates the names, 

abbreviations, and chemical structures of the main trivalent and pentavalent arsenicals 

involved in arsenic metabolism.91

Presence of dimethylmonothioarsinic acid (DMMTAV) and dimethyldithioarsinic acid 

(DMDTAV) in human and animal urine, which may cause interferences with metabolic 

processes, after ingestion of AsSugars has led to the recent upsurge in the research on thio-

arsenic species.165,166 Methylated thio-arsenicals have been identified in urine samples 

following long-term ingestion of iAs-contaminated drinking water or intake of AsSugars.133 

Following intake of AsSugars, DMMTAV appeared at trace levels in the urine of Japanese 

males.167,168 In sheep consuming algae with elevated AsSugars content, 2-

dimethylarsinothioyl acetic acid (thio-DMAA) was identified in urine.166 Trace amounts of 

thio-DMAA and thio-DMAE were detected in the serum following intake of an oxo-

AsSugar.169 Wang et al. reported the presence of thio-DMAA in human saliva samples 

following ingestion of Chinese seaweed, with the usual excretion profile observed in urine.
170

The toxicological significance of thio-arsenicals to organisms is still uncertain, but there are 

indications that methylated thio-arsenicals have appreciable toxicity compared to their oxo-

anion counterparts.171 As regards human epidermoid carcinoma, DMMTAV has higher 

cytotoxicity than DMAV (LD50 = 10.7 and 843 μmol/L, respectively).172 DMDTAV has 

injurious consequences in culture cells that result in DNA impairment.173 Thio-DMAV has 

been observed as a product of both iAs133 and AsSugar metabolism.168,169 Considerable 

toxicity from thio-DMAV has been witnessed in skin, bladder, liver, and lung cells, which is 

partly linked to its extreme cellular bioavailability.174–179 Thio-DMAV has been proven to 

generate ROS in healthy cells174–176 and to disturb cellular stress response, even at 

picomolar levels, in oxidatively stressed cells.101–103 Thio-DMAV exhibited no genotoxic 

mode of action in lung cells,177 but DNA injury and alterations in gene expression were 
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witnessed in bladder cells exposed to such species.176 Epigenetic effects from long-term 

exposure to thio-DMAV have also been detected at low picomolar levels.180

2.7. Arsenosugars (AsSugars).

AsSugars is a general expression that jointly denotes ribofuranosides containing arsenic.21 

There are at least 20 known AsSugars in different molecular forms, of which four 

(AsSugars-OH, PO4, SO3, and SO4) are the most commonly occurring in aquatic systems.
21,43,54,100 Arsenosugars are the predominant arsenicals present in macroalgae159,181–193 

and have also been reported in clam,194,195 gastropods,196 shrimp,197 mollusks,198 and 

oyster tissue.199

Most AsSugars contain a dimethylarsinoyl group, where arsenic is pentavalent and connects 

to two methyl moieties, at C5 of the ribose ring and to oxygen, with a variety of substituents 

at the C1 position of the sugar backbone shown in Figure 4. The dimethylarsinoyl moiety of 

the oxo-AsSugars is prone to be protonated at low pH (below 3), thus bestowing a cationic 

and polar nature to the molecule. However, this property is countered by the aglycone 

moiety if it holds an acidic moiety because the acid-base characteristics witnessed are 

essentially regulated by the aglycone.16 With the exception of AsSugar-glycerol, the other 

oxo-AsSugars with widespread occurrence possess a strongly acidic group. The acidic 

potency intensifies from the phosphoric acid ester, followed by the sulfuric acid ester 

through to the sulfonic acid ester.200,201

AsSugars may occur as thio-AsSugar where the oxygen is replaced by sulfur and as 

trimethylarsonium compounds, as shown in Figure 4.21,54 Naturally, corresponding oxo and 

thio analogues are present, though the pentavalent dimethylated oxo species predominate.16 

Most AsSugars are polar. There are several other lipophilic arsenic-containing oxo-

ribofuranoside. The molecular structure of the first arsenosugar phospholipid (AsPL) 

identified by Morita et al. in 1988 is shown in Figure 5.183 Garćia-Salgado et al. identified 

additional AsPLs from two species of brown macroalgae in 2012.184

The polarity of AsSugars, which is based on their behavior in reversed-phase (RP) 

chromatography, shows that oxo-AsSugars are more polar than their thio analogues, with the 

AsSugar-glycerol being the species with the highest polarity.16,168 The presence of 

diastereomeric sulfonate and carboxylate oxo-AsSugar species in natural samples was 

revealed following NMR studies.16,19

AsSugars are substantially more chemically labile than AsB, and biodegradation is probable 

when they are exposed to an acid or base hydrolysis or modeled gastric-type environment.
202–204 However, degradation of AsSugars is not entirely stimulated by the chemical 

conditions and may be initiated by enzymatic and/or microbial activity.205 Only limited 

information is available with regards to temperature stability of AsSugars which are neither 

decomposed by cooking of seaweed nor by stomach acid digestion, which suggests that the 

occurrence of DMAV after AsSugars ingestion is attributable to either enzymatic or 

microbial activity in the human body.202,206 Oxo-AsSugars stability persisted during 

transitory heating to 100 °C for 10 min even though this does not demonstrate normal 

cooking conditions. At elevated temperatures and under acidic conditions, some AsSugars 
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undergo acid hydrolysis to yield the disintegration product AsSugar 254 

(DMAsSugarHydroxy) shown in Figure 6.205

Not much is known concerning the source or potential function of AsSugars in biological 

systems, though it is assumed to be produced in organisms because of detoxification and 

excretion after ingestion of iAsV naturally occurring in seawater.207,208 Probable pathways 

for their formation and conversion have been illustrated in literature.21,207,209 AsSugars are 

not just the major arsenicals in seaweed but also exist in an enormous quantity in filter 

feeding herbivorous mollusks and gastropods from consuming algae or phytoplankton.
16,43,100,210 The focus of research has been on the characterization and quantitation of 

AsSugars present in diverse aquatic macroalgae, regularly referred to as seaweed or kelp, 

and commercially accessible algae products, whose intake is promoted for their health 

benefits but may be a cause of exposure to arsenic that is intrinsically present in them.
16,211,212 Aquatic organisms have higher levels of AsSugars compared to the freshwater and 

terrestrial organisms where the top-most detected amounts in sea algae and commercial kelp 

powders were 10–40 μg As/g (dry weight).18

In cells of mammals, generated AsSugar was not cytotoxic at micromolar levels.36 Of the 

four AsSugars with widespread occurrence in seaweed, only two (AsSugar-OH101,102,21,213 

and AsSugar-SO3 101–103) have been assessed and demonstrated significantly reduced 

cytotoxicity in comparison to iAs. However, a trivalent derivative of AsSugar-OH (DMAIII-

AsSugar-OH) displayed substantial toxicity to the cell, but this arsenic species has at no time 

been witnessed in biological systems.21 DMAV-AsSugar-OH has been assessed with cell 

cultures and presented no cytotoxicity at the micromolar level, indicating that the AsSugars 

in their native state in dietary sources have extremely decreased toxicity and are likened to 

AsB, though this conclusion was made upon the evaluation of a single AsSugar.54

AsSugars that were previously reported in literature as not exhibiting cytotoxic or mutagenic 

activities187 have demonstrated bioaccessibility following metabolism within the human 

body.202 The high intake of AsSugar and the resemblance they share with iAs with regards 

to metabolism and accumulation suggest that AsSugar may display more toxicity than 

earlier assumed.21 For example, trivalent AsSugar is more cytotoxic (IC50 = 200 μmol/L, 48 

h exposure) than the corresponding pentavalent species (IC50 > 6000 μmol/L, 48 h exposure) 

in typical human epidermal keratinocytes. AsSugar metabolites may also occur in trivalent 

forms, which have thus far not been identified in biota, likely as a result of their reactivity, 

but have demonstrated elevated cytotoxicity while directly linked to plasmid DNA at the 

μmolar level.21 Reduction of DMAV-AsSugars is envisaged to happen promptly in vivo via 

reaction with thiol compounds, thus making these AsSugars hazardous to human health.
21,214,215

AsSugars are metabolized and biodegraded to various minor compounds after retention in 

the body.202 Assimilation and elimination of AsSugars167,202,210 is much slower than AsB 

or AsLipids216,217 and is highly variable between individuals.202 Volunteers from single 

consumption studies of seaweed showed either no buildup or just a slight elevation in 

urinary arsenic content, while others eliminated up to 95% of the consumed arsenic.,
167,169,202,203,210,218 The same consumption experiment was repeated with volunteers who 
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showed the least (4%) and the most (95%) recovery of the consumed AsSugars, and 

consistent outcomes were reported.169 Difference in metabolism by gut microflora, 

permeation past intestinal barriers, and conversion within the liver may provide explanations 

for the retention variabilities between individuals.43,219

DMAV is the main metabolite for AsSugar in human urine, although the transformation sites 

are yet to be confirmed.21 Feldmann et al. studied sheep, which perennially fed on seaweed 

and therefore were chronically exposed to AsSugars, to provide further insight into the 

metabolism of AsSugars because of their metabolic similarity with humans.214 Elevated 

urinary arsenic concentration peaked about 20 h after ingestion and were reported in all 12 

sheep in the study.215 However, tissue arsenic concentrations were not significantly elevated,
214 and only 4–20% of consumed arsenic was detected in feces, indicating that most arsenic 

was eliminated via urine.215 Assuming that this interpretation is accurate, the results could 

not be verified due to challenges in acquiring 24 h urine samples from the sheep.215 

Unfortunately, sheep that were used as proxies to study human susceptibility to cancer risks 

have a limited lifespan of four to six years, which is not sufficient to assess the long-term 

exposure effects. However, the sheep study underscores the need for thorough investigation 

of foodstuff that contains arsenic in a state that is metabolized, but whose toxicological 

latency is unknown.54

2.8. Arsenolipids (AsLipids).

Human exposure to AsLipids arises from ingestion of seafood for example fatty fish,56 

algae,184,220 and crustaceans.51,221 However, there is scarce knowledge with regard to 

abundance, identity, and toxicity of these compounds.56,222 AsLipids are an emerging 

species of interest that have relatively high natural levels in marine animals and algae.223 In 

seafood, AsLipids comprise up to 70% of the total arsenic content,224 with amounts between 

0.3–3.6 mg As/kg dry weight.225 The greatest quantities are obtained in fatty fish like 

herring and mackerels.56 AsLipids are believed to move upward in the food chain, starting 

with algae to higher organisms such as fish, with the possibility of endogenous production in 

the organism since the detected arsenic-containing fatty acids (AsFAs) show similarities to 

common fatty acids found in aquatic organisms.56,108 Arsenic-containing hydrocarbons 

(AsHCs) are present in various aquatic systems, such as herring,225 tuna,226 cod,227 fish oils,
224,228,229 and edible brown algae.220,223,230

AsLipids occur as derivatives of fatty acids (AsFAs),37,110,220,225,228,229,231–237 

hydrocarbons (AsHC),37,110,220,225,228,229,231,233–238 phosphatidylethanolamine (AsPE),
239,240 phosphatidylcholine (AsPC),239–241 fatty alcohols,231 and AsSugar-PLs.184,220 The 

existence of arsenic in lipid extracts of fish and algae was originally documented by Lunde 

in 1968,242 but their structures remained unknown.234 Several molecular structures of 

AsLipids have been elucidated based on their exact mass and their product ion mass spectra, 

demonstrating the chemical complexity of these compounds in seafood.37,184,220,232,235 

Subsequent biochemical studies showed that AsLipids in unicellular algae involved three 

main lipid types,243 and similar species were also detected in clam tissues resulting from 

algal-clam symbiosis.234,244
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Morita and Shibata in 1988 successfully purified and determined the structure of the main 

AsLipids in the brown macroalga, Wakame (Undaria pinnatifida), which was found to be a 

phospholipid with an AsSugar headgroup (Figure 4).183 Garcia-Salgado et al.184 and Raab et 

al.220 were able to extract AsPLs and other arsenicals from brown macroalgae species. 

AsLipids were first detected and identified in fish oils in 2008, where arsenic was directly 

linked to either a long chain fatty acid232 or a hydrocarbon224 (Figure 7). Characterization of 

AsLipids is work in progress with more than 50 known AsLipids.43

AsLipids primarily elicited research interest due to their novel structures, their likely role in 

membrane biochemistry, and since they exist in ordinary seafood with potential health 

concerns based on arsenic toxicity.34 Advances in the biochemistry and toxicology of 

AsLipids has been impeded by the difficulty related to separation and analysis of AsLipids,
245 trace amounts of AsLipids in marine samples compared to polar arsenicals,56 limited 

knowledge on the stability of the analytes in the course of ordinary sample preparation steps,
246 and absence of standards and quantitative analytical methods.223

The identification and quantification of AsLipids has been made possible by concurrent 

analysis using LC-ICP-MS for element specific detection and ESI-MS for structural 

determination.233–238 Several AsHCs and AsFAs have been synthesized for confirmation of 

identity.234,247–249 However, there are still no standards or reference materials accessible for 

AsLipids and AsSugar phospholipids (AsSugar-PLs). For example, standards for unsaturated 

AsLipids are not available, which incidentally are difficult to synthesize and therefore must 

be isolated from fish muscle.225

Lack of standards is a progressive challenge because as more compounds get identified there 

is a higher demand for new standards. Pure compounds are necessary for accurate 

quantification and to aid in the investigation of their metabolic transformation and potential 

toxicities.46 Improved knowledge with regards to chemical structures, amounts, 

bioavailability, and toxicity of the specific AsLipids is necessary for a more comprehensive 

risk assessment of arsenicals found in food and feed.43

AsLipids are of toxicological concern because their metabolites are similar to iAsIII a well-

characterized carcinogen.217,222 However, the molecular modes of action regarding their 

toxicity as well as their metabolism in liver remain unclear.250 AsHC 332, AsHC 360, and 

AsHC 444 have recently shown substantial toxicity in various in vitro and in vivo systems.61 

In an in vitro blood-brain barrier model, it was shown that AsHC 360 [1-

(dimethylarsinyl)heptadecane] was up to 5-fold more cytotoxic than iAsIII, followed by 

AsHC 332 [1-(dimethylarsinyl)pentadecane)] and AsHC 444 [1-(dimethylarsinyl)tricosane], 

which were 3.7-fold and 1.8-fold more cytotoxic than iAsIII, respectively.222 AsHC 332 and 

AsHC 360 are effective permeability enhancers that would allow other food borne toxicants 

easy access to the brain.222 Cytotoxic latency of AsFAs and their water-soluble metabolites 

were much lower in comparison to iAsIII and AsHCs. No substantial cytotoxicities were 

detected for AsFA 362 [15-(dimethylarsinyl)pentadecanoic acid] or AsFA 388 [17-

dimethylarsinyl-9-heptadecenoic acid].222,251
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Elevated cellular bioavailability in human differentiated neurons, liver, and bladder cells,
61,252 together with the detected increased intestinal bioavailability in the Caco-2 intestinal 

barrier model,251 implies that AsHCs appear to effortlessly permeate cell membranes, along 

with other physiological membranes, which explains how AsHC 332 is able to transport into 

the brain of Drosophila melanogaster;109 this suggests that these compounds are 

bioaccessible to the brain.43,248,253 In the same way, iAsIII and DMAV have been 

demonstrated to traverse the blood-brain barrier in mice and rats.97–99

Due to their amphiphilic structure, intact AsLipids are seemingly able to substantially 

transfer across physiological barriers, such as intestinal barriers251 and the blood-brain 

barrier.253 The blood-brain barrier is a physiological barrier comprising capillary endothelial 

cells that separates the circulatory system from the brain parenchyma.222 Interestingly, 

AsHCs were neither metabolized in the in vitro blood-brain barrier model222 nor in the in 

vitro intestinal barrier model.251 In contrast, arsenolipids present in cod liver oil ingested by 

humans were biotransformed to small arsenic-containing fatty acids and DMA, which is a 

similar metabolite for iAsIII.217 AsHCs have been shown to disturb mitochondrial function, 

leading to decreased cellular ATP levels in fruit flies;61 while in humans, AsHCs not only 

reduced the mitochondrial membrane potential but also induced apoptosis, and such effects 

were not observed with iAsIII.108,254

A small number of studies have looked into bioaccessibility and metabolism of AsLipids, 

and the data suggest that AsLipids are swiftly taken in via the gut and, as opposed to AsB, 

are metabolized before excretion in urine within 6–15 h of consumption.43 Following 

ingestion of cod liver oil mainly consisting of AsLipids by two human subjects, more than 

85% of the ingested arsenic was eliminated after 2 days. DMAV constituted up to 70% of 

the arsenic excreted in urine with no intact AsLipids detected.216,217 Other metabolites 

included short-chain AsFAs derivatives like dimethylarsenopropanoic acid (DMAPr), 

dimethylarsenobutanoic acid (DMAB), and their thio-analogues (thio-DMAPr and DMAB).
108,216,217 DMAPr and thio-DMAPr did not trigger any adverse effects in human liver cells 

(HepG2), human bladder cells (UROtsa), or differentiated neurons.108,251,252 The fact that 

AsLipids can occur at high levels in food and have been shown to be bioavailable to humans 

and extensively degraded to small arsenic species justifies the great interest on the possible 

toxicities of these compounds.234

The latest study performed by Al Amin et al. projected the daily consumption of AsLipids in 

the Japanese population conducted on 17 food composites, and the results showed that the 

population is exposed to AsHCs, AsFAs, and AsSugar-PLs.255 AsLipids were identified 

mainly in algae, fish, and shellfish of the 17 dietary composites with amounts between 4.4 

and 233 ng As/g fresh weight (fw).255 Of concern was that two AsLipids, AsHC332 and 

AsHC360, with known cytotoxic effects were identified in algae, fish, and shellfish in 

amounts in the range of 33–40 ng As/g fw and with an approximated mean daily 

consumption of about 3000–360 ng As/person/ day or 50–6.0 ng As/kg bw/day. From these 

findings, it is apparent that diet contributes to the daily intake of toxic AsHC; fortunately, the 

margin of exposure does not seem to present a health risk with respect to the IC50 values of 

3.05 and 1.73 μg As/g for human liver and bladder cells exposed to AsHC 332 or AsHC 360, 

respectively.61,255
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3. CONSIDERATIONS FOR RISK ASSESSMENT

Seafood is a highly traded and consumed product with implications on commerce and food 

safety. There is need for regulatory limits based on speciated data, especially for seafood, 

because data based on total arsenic only as an indicator for risk assessment is inadequate. 

Detection of arsenic species that exceed regulatory limits can become a technical barrier to 

trade as was witnessed in 2013 when China imposed a ban on all U.S. imports of geoduck 

clams (Panacea generosa) with an annual value of $80 million.

The European Food Safety Agency (EFSA) provided a risk profile for arsenicals in diet that 

highlighted the need to legislate in relation to toxic arsenic in food and to generate more 

speciated arsenic data. Currently, there is no tolerable intake level set for As, since the latest 

EFSA scientific opinion on As concluded that the previous provisional tolerable weekly 

intake (PTWI) of 15 μg kg−1 bw was no longer appropriate. The EFSA review was an 

important instrument that stimulated appropriate allocation of resources to more detailed 

scientific assessments that led to the generation of relevant information. However, this 

information needs to be systematically collated and evaluated with the objective of 

establishing regulatory limits, especially for organoarsenicals in seafood, which do not 

currently have set limits.

The review article by Feldmann et al. highlighted lack of structural and toxicity data on 

organic arsenic species and suggested the categorization of food samples into three fractions 

based on the International Agency for Research on Cancer (IARC) classification that 

classifies all organoarsenicals as potentially toxic. New information has emerged since then 

with the identification and characterization of some novel organoarsenicals having toxicities 

like iAsIII, a known carcinogen. The molecular structures of more than 50 lipophilic 

organoarsenicals have been assigned, and new analytical methods have been developed. This 

information has changed the landscape of risk assessment with respect to organoarsenicals in 

food, especially seafood.

Risk assessment is a scientifically based process consisting of four main stages, namely, 

hazard identification, hazard characterization, exposure assessment, and risk 

characterization. Hazard identification entails the screening process with the purpose of 

ascertaining the presence of a hazard. For the purpose of this review, a hazard will be 

defined as a biological or chemical agent capable of causing an adverse health effect and that 

may be present in a food or group of foods. In the case of arsenic, iAsIII is a well-

characterized carcinogen. Other toxic arsenicals include arsenic-containing hydrocarbons 

like AsHC 332, AsHC 360, and AsHC 444, arsenic-containing fatty acids like AsFA 362 and 

AsFA 388, and methylated trivalent arsenicals like MMAIII and DMAIII. DMAV is also a 

known tumor promotor in rat liver.

There is need for more toxicity studies on the new organoarsenicals to identify all the 

potential sources of hazards. Toxicity studies aim at establishing the severity and frequency 

of the associated adverse health effect (response). Toxicity studies should not only be limited 

to the organoarsenicals but also should be extended to their metabolites, because it has been 

established that most arsenicals are not acutely toxic but that toxicity usually emanates from 
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metabolic transformations. For example, AsSugars have metabolites similar to iAsIII, which 

is a known carcinogen. There are still many organoarsenicals that have not been tested for 

toxicity and are assumed to be nontoxic because of the benign nature of some of the known 

organoarsenicals such as AsB. However, these compounds are not known to be nontoxic. It 

is therefore imperative that toxicity studies are performed for these recently identified 

organoarsenicals.

Most arsenic toxicity information was garnered from studies using laboratory animals. This 

information is important but not necessarily useful in its current form for establishment 

and/or accurate simulations of regulatory limits. It is therefore imperative that the LD50 

values obtained from laboratory animals are converted to enforceable limits for human 

subjects. This call for additional data and information that has been systematically obtained 

to enable the setting of exposure metrics that can practically be implemented in regulatory 

practices.

In order to appreciate the exposure level to organoarsenicals, there is need to conduct 

exposure assessment studies, which entail dietary studies considering the potential sources 

of exposure with regards to seafood. Exposure assessment requires data from the number of 

servings of potentially dangerous food ingested (provided from dietary studies) and the level 

of contamination (provided by information from arsenic speciation analysis), which 

determines the magnitude of exposure (dose). A few dietary studies have been performed 

targeting certain foods in different countries. Dose-response assessment links the amount of 

the hazard ingested (dose) with the chance of developing adverse health effects and the 

severity of the same. These studies enable the establishment of exposure metrics like PTWI 

and allowable dietary intake (ADI) which are important in establishing regulatory limits.

The current identification of organoarsenicals have been based on expensive instrumental 

setups that are beyond the reach of many laboratories. It would be beneficial to have access 

to an instrument that can concurrently identify and quantify novel organoarsenicals without 

the need for standards. Even with standards available there is still the challenge of coelutions 

and isobaric interferences that significantly affect quantification by LC-ICP-MS. There is 

therefore great need for an element-sensitive detector with a high resolving power and mass 

accuracy. This will hopefully enable the concurrent identification and detection of 

organoarsenicals. Such an instrument should be affordable, robust, and with high sensitivity.

The identification of arsenic-containing hydrocarbons (AsHCs), arsenic-containing fatty 

acids (AsFAs), arsenic-containing fatty alcohols (AsFOHs), and arsenosugar phospholipids 

(AsPLs) has been aided by high-resolution mass spectrometers with high resolving power 

and mass accuracy. Mass spectrometers such as the quadrupole ion trap (QITMS), 

quadrupole time-of-flight (Q-ToFMS), Orbi-trapMS, and Fourier transform ion cyclotron 

mass spectrometers (FT-ICT-MS) have been used. These instruments are not affordable and 

require a high level of expertise for operation, which makes them beyond the reach of many 

laboratories. In addition, the structural information for the identified organoarsenicals need 

to be confirmed, which requires the use of techniques like nuclear magnetic resonance 

(NMR) spectroscopy. Additional information can be provided by X-ray crystallography, X-

ray absorption near-edge spectroscopy (XANES) or infrared spectroscopy, and mass 
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spectrometry. Unfortunately, these techniques require analytes at high concentrations, yet the 

amounts of AsLipids present in the seafood samples are usually very low. Therefore, the 

arsenicals must be synthesized and characterized in the laboratory for synthetic protocols 

and characterization of the synthetic products.

It is almost impossible to synthesize standards for all known arsenicals. A pragmatic 

approach would be to synthesize the standards for arsenicals with known toxicities and to 

also synthesize their labeled analogues. Due to the monoisotopic nature of arsenic, it is 

impossible to find labeled As standards. However, for organoarsenicals, the heteroatoms of 

the synthetic standards can be labeled with 13C or 2H, thus enabling their use as internal 

standards for identification and quantification of analytes of interest. Concurrent use of these 

synthetic standards can also be useful in overcoming coelutions and isobaric and polyatomic 

interferences associated with quantification of organoarsenicals using ICPMS.

There is currently no agreement on a method that is internationally acceptable for arsenic 

speciation analysis. There is an urgent need for higher-order analytical protocols for the 

detection and structural assignment, especially for the novel organoarsenicals. There are 

currently no certified reference materials (CRMs) for the new organoarsenicals. Access to 

CRMs can be helpful in the validation of analytical methods. Interlaboratory comparisons 

like proficiency testing (PT) schemes can also provide an additional level of confidence in 

the measurement results as a tool for assessing the robustness of the validated analytical 

protocols and for evaluating the equivalence of measurement results.

The concurrent use of the synthetic standards and labeled synthetic standards as internal 

standard in combination with reliable and robust analytical method for exact quantification 

of selected arsenicals will play an important role in the establishment of regulatory limits for 

the toxic organoarsenicals. With reliable analytical methods and availability of standards, 

development of matrix-matched CRMs will then become a reality.

As an initial step, further effort should be expended in the characterization of lipophilic 

organoarsenicals in order to obtain a more exhaustive list that can then be tested for toxicity. 

There is still a lot more to be learnt from the hexane extracts of fatty and oily fish that is 

mostly discarded because of the high matrix effect. Improvement in the sample cleanup 

techniques may also allow access to more information from the nonpolar portions of the 

samples. Another area that might require attention is analysis of samples with high organic 

content because analysis of intact AsLipids requires them to be dissolved in organic solvents 

that are not amenable with ICP-MS. The importance of arsenic speciation data cannot be 

overemphasized. The current approaches for simultaneous identification and quantification 

will play a critical role in arsenic speciation. Analytical instruments have enabled species 

identification and structural elucidation; however, there is still need for standards and 

certified reference materials. These materials will be used for the identification and 

quantification of arsenolipids in food samples.

Once the hazard identification, hazard characterization, and exposure assessment have been 

concluded, then the information thereof is used as an input for risk characterization, which is 

simply the estimation of risk that informs the setting of regulatory limits. Some of the 
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implementation consid-erations include availability of standards, certified reference 

materials, validated analytical methods, and established regulatory limits.
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Figure 1. 
Structures of common arsenic compounds.
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Figure 2. 
Structures of deprotonated oxo-anions of arsenate and phosphate.
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Figure 3. 
Structures, names, and abbreviations of methylated thioarsenical compounds.
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Figure 4. 
Structures, names, and abbreviations of arsenosugars.
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Figure 5. 
Chemical structure of lipophilic oxoribofuranoside extracted from the brown algae U. 
pinnatifida (Wakame).
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Figure 6. 
Structure of AsSugar 254, DMAsSugarHydroxy.
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Figure 7. 
Structures, names, and abbreviations of arsenolipids.
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Table 1.

Experimental Biological Activities of Different Arsenicals

no. arsenic species

LD50

(mg kg−1)
a

animal ref

1 MMAIII 2 mice Petrick et al.158

2 MMAV 916 mice Kaise et al.150

3 DMAV 648 mice Kaise et al.150

4 AsC 6500 mice Kaise et al.152

5 AsB > 10000 mice Kaise et al.64

6 TMAO 5500 mice Kaise et al.150

7 TETRA as TMA-chloride 890 mice Shiomi et al.159

8 TETRA as TMA-hydroxide no toxicity mice Sakurai et al.160

9 DMAsIII-sugar-glycerol 6.56 × 10−2b human UROtsa Andrewes et al.21

10 DMAsV-sugar-glycerol 1.968
b human UROtsa Andrewes et al.21

11 AsHC 332
3.25 × 10−3b human UROtsa Meyer et al.61

12 AsHC 360
1.73 × 10−3b human UROtsa Meyer et al.61

13 AsHC 444
2.31 × 10−3b human UROtsa Meyer et al.61

a
LD50: Concentration at which 50% of a population dies.

b
IC50: Concentration at which the cell viability is reduced by 50%.

J Agric Food Chem. Author manuscript; available in PMC 2021 January 29.


	Abstract
	INTRODUCTION
	METABOLIC TRANSFORMATION AND TOXICITY OF ARSENIC
	Methylated Arsenicals.
	Trimethylarsine Oxide (TMAO).
	Arsenocholine (AsC).
	Arsenobetaine (AsB).
	Tetramethyl Arsonium Ion (TETRA).
	Thioarsenicals.
	Arsenosugars (AsSugars).
	Arsenolipids (AsLipids).

	CONSIDERATIONS FOR RISK ASSESSMENT
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table 1.

