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Abstract

Obesity is becoming an epidemic in the United States and worldwide and increases risk for many 

diseases, particularly insulin resistance, type 2 diabetes, and cardiovascular disease. The 

mechanisms linking obesity with these diseases remain incompletely understood. Over the past 2–

3 decades, it has been recognized that in obesity, inflammation, with increased accumulation and 

inflammatory polarization of immune cells, takes place in various tissues, including adipose tissue, 

skeletal muscle, liver, gut, pancreatic islet, and brain, and may contribute to obesity-linked 

metabolic dysfunctions, leading to insulin resistance and type 2 diabetes. Therapies targeting 

inflammation have shed light on certain obesity-linked diseases, including type 2 diabetes and 

atherosclerotic cardiovascular disease, but remain to be tested further and confirmed in clinical 

trials. This review focuses on inflammation in adipose tissue and its potential role in insulin 

resistance associated with obesity.
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Introduction

Obesity is becoming a global epidemic and has nearly tripled worldwide since the 1970s. In 

2016, more than 1.9 billion adults—39% of the world adult population—were overweight 

and more than 650 million were obese.1 Of note, 340 million children and adolescents aged 

5–19 years and 41 million children under age 5 were overweight or obese worldwide.1 In the 

United States, more than 93 million adults—~40% of the adult population—and nearly 20% 

of children and adolescents aged 6–19 years were obese in 2015–2016.2

Obesity increases risks for many diseases, particularly insulin resistance and type 2 diabetes 

(T2DM). However, the underlying mechanisms remain incompletely understood. Over the 

last 2 decades, it has been recognized that obesity is associated with chronic low-grade 
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inflammation in a variety of tissues, including adipose tissue (AT), skeletal muscle, liver, 

pancreas islet, intestine, and even brain.3–9 Both innate and adaptive immune cells can 

participate in obesity-linked inflammation, which, importantly, may serve as a causal link 

between obesity and insulin resistance and T2DM.3–9 In this review, we will summarize 

some advances in obesity-linked metabolic inflammation, AT inflammation in particular, and 

its potential role in development of insulin resistance, the basis for T2DM.

Type 1 and type 2 inflammation

Inflammation can be broadly classified as type 1 and type 2 inflammation, as initially 

described for adaptive immune response of CD4+ T lymphocytes, i.e., T helper 1 (Th1) and 

2 (Th2) cells, respectively,10 depending on the stimuli/environments. Type 1 and type 2 

inflammation involves different types of inflammatory cells, which express or produce 

distinct panels of inflammatory molecules via specific transcription factors and exert 

different functions (Table 1) (see reviews10–12). The term “proinflammation” or 

“inflammation” (including in this review) generally refers to type 1 inflammation. In 

contrast, in certain cases, type 2 inflammation is described or generalized as “anti-

inflammation.”

Inflammation in obesity

The first evidence for obesity-linked inflammation was from a report of elevated TNFα in 

AT in obesity.13 Since then, numerous studies have consistently shown increased 

inflammation in AT in obese animals and humans. Although inflammation takes place in a 

variety of tissues when obesity occurs, most of our knowledge on obesity-linked 

inflammation still derives from studies of AT.

Inflammation in visceral (VAT) and subcutaneous (SAT) AT:

The initial study attributed AT inflammation to adipocytes, the main resident cells in AT.13 

Indeed, adipocytes can become inflamed and secrete a variety of inflammatory molecules.
13–16 However, since the identification of macrophages in AT,17,18 macrophages and various 

other immune cells (Supplemental Table I) have been demonstrated to be the main 

inflammatory cells that release the majority of inflammatory molecules in AT of obese 

animals and humans.3–9

Macrophages: The increase in macrophages is one of the hallmarks of obesity-linked 

inflammation in AT.3,17–22 Macrophages reside in AT, including VAT and SAT, in lean 

conditions and, with development of obesity, increase progressively and constitute the 

largest immune cell population in AT with established obesity.3,17,18,20,22 The initial study 

showed that the percentage of macrophages was positively correlated with adipocyte size 

and body mass in all AT depots examined, including VAT (perigonadal, perirenal, and 

mesenteric AT) and SAT in mice and SAT in humans.17 However, most studies of AT 

inflammation in mice have focused on perigonadal VAT.18,19,21 Histologically, in obesity, 

macrophages surround dead or dying adipocytes forming crown-like structures (CLS).17,21 

Besides the change in numbers, AT macrophages can switch phenotypes from M0- or M2-

like in lean conditions to M1-like in obesity, with increased expression of type 1 cytokines 
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such as TNFα, IL-1β, and IL-6.21,23 In obesity, AT macrophages express high levels of 

CD11c,19–21 a β2 integrin that is commonly used to define dendritic cells in mice. Indeed, 

CD11c+ cells in obese AT express high levels of MHCII and include macrophages and 

dendritic cells, both of which contribute to AT inflammation.19,24,25 Compared to CD11c− 

macrophages, CD11c+ cells in obese AT express higher levels of inflammatory markers,21 

contribute to obesity-linked AT inflammation,26 and therefore have been commonly 

considered “M1” macrophages in AT in obese mice. However, the phenotypic switch of AT 

macrophages may be more complex than the classical M1–M2 paradigm. Kratz et al showed 

that in obesity, macrophages in AT, including VAT in obese mice and VAT and SAT in obese 

humans, polarize into a “metabolically activated” phenotype, which is associated with 

elevated levels of type 1 inflammatory markers and also markers involved in lipid 

metabolism, such as CD36, ABCA1, and Plin2, that have been considered M2 markers.27 

CD11c+ macrophages in AT of obese humans mostly coexpress CD206, a pattern 

recognition receptor also commonly considered an M2 marker,28 supporting a mixed 

phenotype rather than distinct M1 or M2 phenotype of AT macrophages.28 Indeed, CD11c
+CD206+ macrophages from AT of obese humans express high levels of type 1 cytokines 

such as TNFα, IL-1β, and IL-6 and also IL-10, a type 2 cytokine.28 Of note, although most 

animal studies focus on VAT inflammation or indicate greater macrophage accumulation in 

VAT than SAT,18,19,21,27 SAT appears to contain more CD11c+CD206+ macrophages than 

VAT in obese women.28

Recent studies employing single-cell RNA-seq identified a CD9- and CD63-expressing 

macrophage population that expands in VAT of mice and humans with obesity.29,30 

Compared to another macrophage population, which expresses Ly-6C and is also increased 

in AT of obese mice, CD9+ macrophages, which are Ly-6c−, are the predominant 

macrophages forming CLS, express high levels of type 1 cytokines such as MCP-1, IL-1, 

and TNFα, and can initiate inflammatory responses in lean AT, supporting an important role 

of CD9+ macrophages in AT inflammation.29 CD9+ macrophages also express Trem2, have 

a transcriptional signature of lipid metabolism and lysosomal pathways, are filled with 

intracellular lipids, and are therefore termed Trem2+ lipid-associated macrophages,29,30 

perhaps similar to a metabolically activated phenotype.27 The relation of CD9+Trem2+ 

macrophages with CD11c+ macrophages remains to be determined. However, an earlier 

study indicated that obesity initiates lysosome biogenesis associated with lipid accumulation 

in AT macrophages, CD11c+ macrophages in particuar,31 suggesting that the newly 

identified CD9+ macrophages may share large similarities with the early described CD11c+ 

macrophages in obese AT.

T lymphocytes: T cells are also increased in AT, with higher frequency in VAT than in 

SAT, of obese mice and humans14,32,33 and highly correlated with systemic inflammation in 

humans.32 Increases in AT T cells may precede and contribute to the increases in AT 

macrophages in mice fed high-fat diet (HFD).34–39 αβT cells as compared to γδT cells 

appear to have greater increases in obese AT.40 Within αβT cells, CD8+ T cells show greater 

increases than CD4+ T cells in AT of obese mice.36,38
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CD8+ T cells:  In mice fed HFD, CD8+ T cells increase early in VAT, but not SAT, and, 

along with macrophages, participate in CLS formation.36 In obesity, VAT CD8+ T cells 

polarize into effector memory or effector phenotypes expressing high levels of IFNγ and 

activation markers such as CD69.36,38,41 In mice, depletion of CD8+ T cells attenuates and 

adoptive transfer of CD8+ T cells exacerbates obesity-associated macrophage accumulation 

and inflammation in VAT,36 supporting an important role of CD8+ T cells in AT macrophage 

accumulation and inflammation in obesity.

CD4+ T cells:  Within AT CD4+ T cells, the frequency of IFNγ-expressing Th1 cells is 

increased with obesity and is higher in VAT than SAT in both mice and humans.32,40,42 

However, Th1 frequency in both AT depots correlates positively with inflammation in mice 

and humans.32,35,40,43–46 Ablation of the Th1 cytokine IFNγ attenuates AT inflammation, 

suggesting a crucial role of Th1 in AT inflammation.37,40 In contrast, regulatory T cells 

(Treg), usually a small portion of CD4+ T cells in lymphoid organs, are enriched in AT, 

particularly VAT, in lean conditions but dramatically decreased in VAT with obesity. 

Induction of AT Treg protects against obesity-associated AT inflammation.47,48 The 

proportion of Th2 cells in both VAT and SAT negatively correlates with systemic 

inflammation and insulin resistance in humans, indicating a protective role of Th2 cells in 

inflammation and metabolic dysfunction.32 Indeed, a study showed that with adoptive 

transfer into obese Rag1-null T cell–deficient mice, CD4+ T cells polarized into Th2, which 

was associated with reversal of enhanced weight gain and insulin resistance in recipient 

mice.42 However, another study indicated that transfer of naive CD4+ T cells in Rag1-null 

mice resulted in a Th1 response in AT.25 In addition, IL-17–producing Th17 cells and 

IL-22–expressing Th22 are increased in SAT in humans with obesity.25,32 Nevertheless, 

Th17 frequency is higher in VAT than SAT of obese humans.32

γδT cells:  γδT cells account for approximately 30% of total CD3+ T cells in VAT in lean 

conditions and may increase in AT with obesity.40,49,50 HFD-induced obesity in mice 

increased TNFα-expressing γδT cells in VAT.50 Deficiency of γδT cells or only Vγ4 and 

Vγ6 subsets reduced AT inflammation, with decreased accumulation of macrophages, 

CD11c+ M1-like macrophages in particular, in VAT of mice, supporting an essential role of 

γδT cells in obesity-linked inflammation.50 γδT cells may also be a major source of IL-17A 

in AT, and IL-17A–expressing γδT cells are increased in both VAT and SAT of mice with 

obesity induced by HFD or associated with aging.39,49,51

NKT cells:  NKT cells are a heterogeneous subset of T cells that express markers for αβT 

cells, αβTCR, and NK cells and can produce both Th1 and Th2 cytokines. Depending on the 

TCR repertoire, NKT cells can be classified into type I NKT cells, which express the 

invariant TCRα (Vα14-Jα18 in mice, Vα24-Jα18 in humans) and are therefore also called 

invariant NKT (iNKT), and type II NKT, which do not express this invariant TCRα chain.39 

Studies of the change and role of NKT in AT inflammation have generated inconsistent data. 

Some studies indicated that HFD in mice increased or activated VAT NKT, including iNKT, 

and that deficiency of NKT or iNKT reduced and activation of iNKT cells enhanced 

macrophage infiltration and inflammation in VAT in mice, indicating a promoting role of 

NKT, including iNKT, cells in obesity-linked AT inflammation.52–54 In contrast, other 
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studies showed that iNKT cells are enriched in lean VAT, decreased with obesity, and may 

play a protective role in obesity-linked AT inflammation, by producing type 2 cytokines 

such as IL-10 and IL-4.55–57

B lymphocytes: B cells, particularly B2, are also elevated in VAT of mice on HFD and 

present in CLS in SAT of obese humans.33,58–60 Compared to those from lean mice, B cells 

from obese mice exhibit a type 1 inflammatory phenotype with increased production of type 

1 cytokines such as IL-6 and pathogenic IgG antibodies.58,61 Deficiency or depletion of B 

cells decreases and adoptive transfer of B2 cells increases AT inflammation in obese mice.
58,59,61,62 B cells, particularly B2 cells, may contribute to AT inflammation by producing 

type 1 cytokines and pathogenic IgG antibodies, activation of macrophages and T cells, and 

modulation of Treg.58,61 In contrast, B1 cells and regulatory B cells reside in VAT and SAT 

of mice and humans in normal conditions, are reduced with obesity, and may play a 

protective role in obesity-linked inflammation, possibly by producing IgM antibodies and 

IL-10 and suppressing CD8+ T cell activation.62–64 In lean mice, SAT appears to contain 

more B cells, with higher expression of IL-10, than VAT.64

Neutrophils: Neutrophils are the most abundant leukocytes in peripheral blood in humans. 

HFD feeding in mice resulted in an early and sustained infiltration of neutrophils in AT, 

mainly VAT.65–68 Neutrophils may contribute to AT inflammation by secreting elastase, 

myeloperoxidase, and IL-1β and interacting with adipocytes recruiting monocytes/

macrophages. Ablation of neutrophil elastase or myeloperoxidase reduces AT inflammation 

with decreased macrophage content and expression of inflammatory molecules.66,67,69 

Neutrophils are also activated in peripheral blood and present in both SAT and VAT of 

humans with morbid obesity.33 Weight loss by bariatric surgery in humans reduced 

neutrophil content in both fat pads.33

Eosinophils: Eosinophils, usually a small portion of leukocytes in peripheral blood, are 

enriched in both VAT and SAT in normal conditions but drastically reduced with obesity.
70–72 In lean mice, VAT appears to contain more eosinophils than SAT.70,73 Caloric 

restriction, microbiota depletion, helminth infection, or CCR2 deficiency in obese mice 

elevates AT eosinophils, which positively correlate with M2-like macrophages and type 2 

cytokines.70,73–75 Further studies show that AT eosinophils may play a role in inducing M2-

like macrophages and suppressing type 1 inflammation via IL-4– and IL-13–mediated 

mechanisms.70,76–78 However, another study showed that elevating AT eosinophils in obese 

mice by administering recombinant IL-5 did not alter AT M2-like macrophages and other 

inflammatory markers, suggesting that eosinophils may not have a direct role in promoting 

macrophage M2-like phenotype and regulating inflammation in obese AT.71

Mast cells: Mast cells are a type of immune cells that participate in allergic responses and 

inflammation by releasing a variety of inflammatory molecules, including cytokines/

chemokines, histamine, serotonin, and proteases. Studies show that mast cells are also 

elevated and activated in VAT and SAT of mice and humans with obesity79–81 and may 

contribute to AT inflammation by producing various inflammatory mediators such as IL-6 
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and IFNγ.79,80 Genetic ablation or pharmacological stabilization of mast cells in mice 

decreases AT inflammation.79,80

Innate lymphoid cells (ILCs): ILCs are a heterogeneous group of immune cells of the 

lymphoid lineage but lack the antigen-specific B or T cell receptors. Based on the cytokine 

and transcriptional signatures, ILCs can be classified into 3 subsets: group 1 ILCs (ILC1 and 

NK cells), group 2 ILCs (ILC2), and group 3 ILCs (ILC3), which simulate Th1, Th2, and 

Th17 and express Th1 cytokines, type 2 cytokines, and IL-17A, respectively. Obesity 

increases VAT, but not SAT, NK cell numbers and NK cell expression of type 1 cytokines, 

including IFNγ and TNFα. Genetic ablation or antibody depletion of NK cells reduces and 

expansion or adoptive transfer of NK cells exaggerates macrophage accumulation and 

inflammation in VAT with obesity.82–84 Obesity may also enhance ILC1 in SAT and VAT, 

which produces IFNγ and can therefore accelerate M1-like polarization of macrophages and 

contribute to AT inflammation.85–87 In contrast, ILC2 reside in VAT and SAT of both mice 

and humans in lean conditions, decrease with obesity, and may play an important role in 

normal AT homeostasis, including maintenance of eosinophils and M2-like macrophages.
76,88,89

Inflammation in intermuscular/perimuscular AT:

In addition to expansion of VAT and SAT, obesity is also associated with expansion of AT in 

skeletal muscle between muscle fibers, so-called intermuscular/intermyocellular AT (IMAT), 

and AT surrounding skeletal muscle, so-called perimuscular AT (PMAT).6,17,20,22,26,45 

IMAT and PMAT are extramyocellular fat but different from SAT, and expand with obesity 

and also aging.6,51,90–92 IMAT/PMAT are highly correlated with insulin resistance and may 

directly regulate muscle insulin sensitivity.90–93 A large number of studies indicated that 

inflammation also occurs in IMAT/PMAT in humans and mice with obesity. Similar to 

inflammation in VAT or SAT, IMAT/PMAT inflammation is mainly evidenced by increased 

immune cells, particularly macrophages and T cells,6,7,17,20,22,26,45,94–96 which can also 

form CLSs surrounding dead or dying adipocytes.45 Immune cells in IMAT/PMAT also 

show type 1 inflammatory phenotypes in obesity, with macrophages mostly expressing 

CD11c and exhibiting M1-like phenotypes, and T cells (CD4+) exhibiting Th1 phenotype 

with reduction in Treg.6,20,45,95 Consistently, type 1 cytokines such as TNFα and IFNγ are 

increased and type 2 cytokines such as IL-10 are decreased in skeletal muscle in obesity.
6,20,45,94–96

Mechanisms for obesity-linked inflammation

The mechanisms underlying obesity-linked inflammation remain poorly understood and may 

vary depending on tissue types and location. Immune cell recruitment, interactions, and 

activation releasing inflammatory molecules may constitute the major component of AT 

inflammation; however, the causal factors for these processes are largely unknown. Below, 

we discuss potential mechanisms for obesity-linked inflammation in AT (Figure 1).
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Immune cell recruitment:

During obesity development, inflammation and recruitment of immune cells, mainly type 1 

inflammatory cells, start early in AT.65,66,68,96–98 In particular, neutrophils start to increase 

in VAT of mice after 3 days on HFD.65,66 Increases in T cells appear to precede and 

contribute to the increases in macrophages in VAT of mice with diet-induced obesity.34–36 

However, increases in macrophages occur earlier than increases in T cells in IMAT/PMAT 

during obesity development in mice.45 Macrophages that expand in obese AT appear to be 

mainly derived from recruited monocytes, including Ly-6Chigh, which are CD11c−, and 

Ly-6Clow, which are CD11c+,99,100 monocytes.19,21,23,29,30,101–103

For immune cell recruitment, interactions of chemokines with chemokine receptors on 

immune cells play crucial roles. Indeed, a large number of chemokines such as MCP-1, 

RANTES, fractalkine, KC, and MIP-2α are increased early and persistently in AT with 

obesity.14,65,68,96–98,104 Both immune cells and adipocytes/preadipoctyes can produce 

chemokines,13–16,45,69,96 which may play key roles in immune cell recruitment and 

inflammation in AT in obesity. MCP-1/CCR2 and RANTES/CCR5 pathways contribute to 

obesity-linked AT inflammation by recruiting immune cells such as macrophages and T 

cells14,45,104–107 whereas MIP-2α may be essential for neutrophil recruitment in AT in 

obesity.68 In addition, the arachidonic acid–derived leukotriene LTB4 is upregulated in VAT 

of obese mice and mediates macrophage recruitment in VAT in obesity.108 Interactions of 

adhesion molecules on immune cells and their receptors on endothelial cells also play 

pivotal roles in immune cell migration. Lymphocyte function-associated antigen–1 (LFA-1), 

a β2 integrin, plays an essential role in T cell infiltration and accumulation in VAT and 

IMAT/PMAT of obese mice, likely by interacting with ICAM-1 on endothelial cells or 

antigen-presenting cells.38,45 ICAM-1 may also play an important role in neutrophil 

recruitment in AT in obesity.68 α4 integrin and PSGL-1, a primary ligand on immune cells 

for P-selectin and E-selectin, may contribute to HFD-induced AT inflammation by mediating 

monocyte recruitment.109,110 In addition to recruitment, increased proliferation and impaired 

egress of macrophages and T cells may also contribute to accumulation of these immune 

cells in VAT in obesity.38,44,103,111,112

Immune cell interaction and activation:

Once recruited into AT, immune cells and also adipocytes can interact with each other 

through secreted molecules or direct cell–cell contact, leading to immune cell (and 

adipocyte) activation, polarization, and inflammation (Figure 1).

Cytokines/chemokines are important mediators for immune cell activation. A variety of type 

1 cytokines such as TNFα, IFNγ, and IL-12 are increased in AT in obesity and are involved 

in obesity-linked AT immune cell activation and type 1 inflammation.13,37,45,94,113,114 

TNFα, the signature cytokine of M1 macrophages, and its downstream intracellular 

IKK/NF-κB and JNK pathways, and IFNγ, the signature cytokine of Th1 that is also 

produced by ILC1 and mast cells, with its intracellular JAK/STAT1 pathway, are crucial for 

obesity-induced AT macrophage M1-like polarization and inflammation.37,45,79,83,115–117 

IL-12, mainly produced by M1 macrophages/dendritic cells, and its downstream signaling 

molecule STAT4, play crucial roles in Th1 polarization and CD8+ T cell activation and also 
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contribute to ILC1 accumulation in AT with obesity.38,85,114 In addition, elastase, 

myeloperoxidase, and cathelicidin produced by neutrophils may contribute to AT 

macrophage accumulation and activation in obesity.66,67,118

In contrast to AT type 1 inflammation in obesity, type 2 inflammation dominates in AT in 

lean healthy conditions, in which type 2 cytokines play essential roles in AT immune 

homeostasis. For example, IL-33, which is mainly produced by AT stromal cells, is 

important for maintenance of Treg and ILC2 in AT. Treg are protective against type 1 

inflammation and autoimmunity, and ILC2 may play a role in accumulation and 

maintenance of eosinophils, Th2 cells, and M2 macrophages by producing type 2 cytokines 

such as IL-5, IL-4, and IL-13.47,70,76,89,119 In contrast, IFNγ may suppress AT ILC2 

activation and Treg accumulation in obesity.89

Immune cells can also interact with each other and with adipocytes through direct contact. In 

mice with obesity, AT macrophages/dendritic cells and also adipocytes can activate T cells 

and induce T cell proliferation and Th1 polarization through the MHCII-TCR pathway.
24,35,43,44 Further, costimulators/coinhibitors expressed on antigen-presenting cells and T 

cells are important for antigen-presenting cell–T cell interaction. CD40 and B7 molecules 

(CD80 and CD86) are induced in AT of obese mice.120–122 CD40 ligand may play a 

promoting role in T cell and M1-like macrophage accumulation and inflammation in AT of 

obese mice.123 However, CD40 may function as an inhibitor for AT inflammation in obesity.
120,121 Similarly, CD80/CD86 may have a protective role in AT inflammation in mice with 

obesity.122 In contrast, OX40, a costimulatory molecule that is increased on AT CD4+ T 

cells in obesity, and CD11c expressed mainly on macrophages/dendritic cells may promote 

T cell activation and Th1 polarization in obese mice.19,124 In addition, ILC2 can interact 

with AT macrophages upon HFD feeding through the PD-1–PD-L1 pathway, leading to 

impaired ILC2 function,125 and with Treg via ICOSL-ICOS or with AT stromal cells via 

LFA-1–ICAM-1 in normal conditions sustaining ILC2 and Treg cells and type 2 

inflammatory environment in AT.89,119

Triggers and sustainers:

Despite the above discussion on AT immune cell accumulation and activation in obesity, the 

signals that trigger and maintain these inflammatory changes are not well unknown and may 

include multiple factors, which are discussed below.

Dietary component and fatty acids (FAs): In mice with diet-induced obesity, 

inflammation in AT starts early after initiating HFD and persists as long as HFD is 

maintained.65,66,96–98 On the other hand, AT inflammation is reduced quickly after 

switching from HFD to normal chow.126,127 These data suggest that diet may play an 

important role in regulation of AT inflammation. Indeed, the main HFD-derived dietary 

component, long-chain saturated FAs such as palmitic acid, induces inflammation including 

expression of chemokines and type 1 cytokines in a variety of cell types, including 

adipocytes and macrophages, possibly by interaction with pattern recognition receptors such 

as TLR4 and TLR2 and activation of NF-κB and JNK pathways and the NLRP3 

inflammasome, which all indeed play essential roles in obesity-linked AT inflammation.
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6,15,20,128–131 Adipocyte-derived chemokines may play an important role in initiation of 

immune cell accumulation and inflammation in AT upon HFD feeding.14–16 With the 

progression of obesity, dietary FAs and other signals such as damage-associated molecular 

patterns, which are produced by stressed or damaged cells and bind to pattern recognition 

receptors, may play pivotal roles in maintenance of AT inflammation by inducing 

macrophage M1 polarization.6,20,21,128–131

Hypoxia: During obesity development, rapid expansion of AT (adipocyte hypertrophy), 

with insufficient AT vascularization and also increased adipocyte oxygen consumption, 

results in AT hypoxia,132–134 which can activate hypoxia-inducible factors (HIFs), a family 

of transcription factors.135 Indeed, obesity in mice induces early and consistent upregulation 

of HIF1α in AT, associated with AT inflammation.132,133 Deletion of HIF1α in adipocytes 

reduces and overexpression of HIF1α in AT exacerbates HFD-induced AT inflammation in 

mice.132,134,136 By activating HIF-1α, hypoxia can induce adipocyte expression of 

chemokines such as MCP-1 and LTB4,132 which may contribute to AT inflammation by 

initiating immune cell accumulation and inflammation in AT. In addition, AT hypoxia may 

also contribute to AT inflammation by enhancing macrophage M1-like polarization, in 

which HIF1α and other signaling molecules such as JNK play essential roles.137–139 These 

studies indicate that similar to FAs, hypoxia may play a crucial role in initiation and 

maintenance of AT inflammation by inducing adipocyte expression of chemokines recruiting 

immune cells and by inducing macrophage M1-like polarization, mainly via HIF1α- and 

JNK-mediated mechanisms.

Intestinal microbiota and LPS: Large numbers of studies show that obesity or HFD 

feeding is associated with alterations in intestinal microbiota, with increases in LPS-

containing microbiota, and increased intestinal permeability,140,141 which can raise plasma 

levels of LPS leading to so-called metabolic endotoxemia.142,143 Experimental endotoxemia 

induced by low-dose injection of LPS induces AT inflammation in healthy humans and 

animals, supporting a direct role of metabolic endotoxemia in AT inflammation.142,144,145 

LPS in metabolic endotoxemia may contribute to AT inflammation by eliciting type 1 

inflammation including inducing expression of type 1 cytokines and chemokines in 

adipocytes and macrophages via interactions with TLR4 and CD14.142,146 In support of this 

hypothesis, germ-free mice or mice with antibiotic treatment to reduce metabolic 

endotoxemia or deletion of CD14, TLR4, or the related signaling molecule have ameliorated 

AT inflammation induced by HFD or obesity.128,146 Therefore, metabolic endotoxemia, 

resulting from alterations in intestinal microbiota and increased intestinal permeability, may 

also play a role in triggering and maintaining obesity-linked AT inflammation by impacting 

adipocytes, macrophages, and other immune cells.140,141

Inflammation and metabolism

Inflammation and insulin resistance:

As described above, in healthy conditions, normal AT homeostasis is associated with type 2 

inflammatory environment (Figures 1 and 2). In contrast, obesity with insulin resistance is 

associated with type 1 inflammation in AT. While insulin resistance may precede and 
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contribute to AT (type 1) inflammation,147 most studies still support that inflammation plays 

a causal role in the development of insulin resistance. Alternatively, inflammation may play 

differential roles at different conditions or stages of obesity. Once initiated, inflammation 

and insulin resistance may exacerbate each other. AT inflammation may contribute to local 

(AT) and systemic insulin resistance through autocrine effects of inflammatory cells/

molecules on insulin signaling and metabolism in adipocytes and endocrine effects of 

inflammatory molecules secreted by AT (known as adipokines) on insulin sensitivity in other 

tissues, particularly skeletal muscle and liver. In addition, adverse effects of inflammation on 

preadipocyte/adipocyte metabolism can accelerate fat spillover from AT to skeletal muscle 

and liver, resulting in ectopic fat deposition and insulin resistance in these tissues, which 

play vital roles in systemic insulin resistance and T2DM.5,6,22,148,149

Contributions of AT inflammation to insulin resistance: Since the report of 

increased inflammation in AT in obesity, the association and potential contribution of AT 

inflammation to obesity-linked insulin resistance and T2DM have been revealed by 

numerous studies (Figure 2).

Earlier studies showed associations of increased AT TNFα and macrophages with insulin 

resistance in obese mice and humans.13,17,18 The increase in AT macrophages appears to 

precede insulin resistance in mice with HFD-induced obesity.18 Increasing AT macrophage 

content in mice by overexpressing MCP-1 was associated with exacerbated insulin 

resistance.106 Increasing AT inflammation by experimental endotoxemia also induces insulin 

resistance in healthy humans and mice.142,144,145 On the other hand, reductions in AT 

macrophages or TNFα by depletion of macrophages or TNFα or ablation of MCP-1 or its 

receptor in mice was associated with improved insulin resistance.26,106,107,113 All these data 

support a casual role of AT macrophages and TNFα in development of insulin resistance.

Increased AT T cells, particularly CD8+ effector/effector memory T cells and CD4+ Th1 

cells, are associated with insulin resistance in both mice and humans.14,32,35,40,43–46 Genetic 

deficiency of CD8+ T cells or Th1 cells in αβT cell–null mice or ablation of IFNγ or T-bet, 

the master transcription factor for Th1 polarization, improves insulin resistance in obese 

mice, whereas adoptive transfer of Th1 or CD8+ T cells exacerbates insulin resistance in 

mice fed HFD,36,37,40,45,150 supporting contributions of Th1 cells and CD8+ T cells to 

development of obesity-linked insulin resistance. In contrast, adoptive transfer or expansion 

of Th2 cells or Treg prevents obese mice from developing insulin resistance,42,47,48 

suggesting a protective role of type 2 immune cells in obesity-linked insulin resistance.

In addition, B2 cells, neutrophils, NK cells, and ILC1 have been shown to contribute to 

development of insulin resistance in obesity.58,59,61,66,67,82–87 In contrast, B1 cells, Breg 

cells, and ILC2 may protect against obesity-linked insulin resistance.62–64,76,88,89 A role of 

mast cells was demonstrated in development of obesity-linked insulin resistance in some,79 

but not other,80,151 studies. Whereas some studies revealed a promoting role of NKT, 

including iNKT and type II NKT, in development of insulin resistance in obesity,52–54 other 

studies showed a protective role of iNKT cells against this effect.55–57 Eosinophils were 

initially demonstrated to protect against obesity-induced insulin resistance.70 However, 
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elevation of AT eosinophils in obese mice by administering recombinant IL-5 did not 

improve insulin resistance.71

Molecular mechanisms: The molecular mechanisms by which AT inflammation 

contributes to insulin resistance are not well understood and may be multifactorial. Most 

immune cells may contribute to obesity-linked insulin resistance through macrophages and 

T cells,53,58,61,82,84,87 which release type 1 cytokines such as TNFα, IL-1β, and IFNγ that 

can adversely regulate metabolism and cause insulin resistance in a variety of cell types, 

including adipocytes and skeletal muscle myocytes, by paracrine or endocrine effects. These 

cytokines act through interactions with their receptors on the cells, activating a series of 

intracellular signaling pathways (see below), which impair insulin signaling and induce 

insulin resistance in the cells (see the detailed review6).

IKK/NF-κB pathway:  The IKK/NF-κB pathway is mainly activated by cytokines such as 

TNFα and IL-1β and also by saturated FAs and damage-associated molecular patterns such 

as high-mobility group box 1 released from stressed or damaged cells. This pathway exhibits 

enhanced activation in various tissues including AT in obesity and may contribute to insulin 

resistance via IKK-mediated serine phosphorylation of insulin receptor substrate-1 (IRS-1) 

or insulin receptor (IR), with inhibition of insulin-induced tyrosine phosphorylation and 

downstream signaling.

JNKs and MAPKs:  JNKs and other MAPKs such as p38 MAPK can be activated by 

TNFα, IL-1β, ER stress, and saturated FAs and may induce insulin resistance by mediating 

serine and threonine phosphorylation of IRSs, leading to impairment in the interaction of 

IRSs with IR and downstream insulin signaling.

PKCs:  Both conventional PKCs and novel PKCs rely on diacylglycerol for full activation. 

Studies show that obesity or HFD feeding can activate PKCs, which may contribute to 

insulin resistance by inducing serine or threonine phosphorylation of IR or IRS-1, resulting 

in impairment of downstream insulin signaling.

JAK/STAT/SOCS pathways:  The main signaling for IFNγ, the Th1 signature cytokine, is 

the JAK1/JAK2/STAT1 pathway, whereas IL-6 mainly activates the STAT3 pathway. Both 

STAT1 and STAT3 pathways can become activated in obesity and may contribute to insulin 

resistance through their downstream molecules, suppressor of cytokines signaling (SOCS) 

proteins, particularly SOCS1 and SOCS3, which can repress IR tyrosine kinase activity, 

interrupt the interaction of IR with IRSs, and promote IRS degradation, thereby impairing 

insulin signaling.

“Noninflammatory role” of AT macrophages in insulin resistance: In addition to 

their inflammatory role, AT macrophages may impact insulin sensitivity and glucose 

homeostasis via other pathways that are not directly related to inflammation. Obesity 

induces lysosome biogenesis associated with lipid catabolism and accumulation in AT 

macrophages, particularly CD11c+ macrophages31 or the recently identified Trem2+ 

macrophages.29,30 Deficiency of Trem2 in mice on HFD leads to reversal of the phenotype 

and reduction of lipid accumulation in AT Trem2+ macrophages, which are associated with 
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exacerbated adipocyte hypertrophy, accelerated adiposity, and exaggerated glucose 

intolerance,30 indicating that lipid metabolism and accumulation in AT macrophages may 

play a role in control of HFD-induced adiposity and metabolic disease. Consistently, lipid 

storage in AT macrophages can regulate systemic glucose homeostasis and insulin 

sensitivity.152,153

Immunoregulation of AT browning (Figure 2):

Recent studies show that immune cells can regulate brown AT activity or white AT 

browning, thereby influencing adiposity and metabolism.154 An initial study showed that 

cold exposure increased M2-like macrophages in AT, which released catecholamines that 

activated brown AT and white AT browning.155 Eosinophils and type 2 cytokines, including 

IL-4 and IL-13, can promote white SAT browning and protect against obesity by inducing 

macrophage M2 polarization.78 Type 2 immune cells and cytokines may also mediate AT 

browning elicited by caloric restriction, microbiota depletion, or meteorin-like, a circulating 

factor that is induced in muscle by exercise and in AT with cold exposure.74,75,77 However, 

the studies on the role of eosinophils and M2 macrophages in promoting AT browning have 

been challenged by other studies that showed no or minimal role of M2 macrophages or 

eosinophils in AT browning.71,154,156 ILC2 can promote AT browning and protect against 

obesity by producing methionine-enkephalin peptides that can directly induce UCP1 

expression in white AT88 or through type 2 signaling.157 iNKT cells may promote white AT 

browning by inducing FGF21 production.154 In addition, PLZF+ γδT cells, a subset of γδT 

cells, increase thermogenic activity in brown and white AT under cold exposure.49

In contrast to type 2 inflammation, type 1 inflammation has mostly been shown to suppress 

AT browning induced by cold or β3 agonist. M1-like macrophages and the cytokines TNFα 
and IL-1β inhibit UCP1 expression in AT/adipocytes in vitro and in vivo.158–160 Direct 

macrophage–adipocyte contact mediated by interaction of α4 integrin on macrophages and 

VCAM-1 on adipocytes also plays a role in M1-like macrophage-mediated suppression of 

AT browning.160 In addition, IFNγ inhibits adipocyte UCP1 expression and browning in 

tissue culture161,162 and may mediate the inhibitory effects of CD8+ T cells on AT browning 

in mice.163 Importantly, reduction in type 1 inflammation or anti-inflammatory (type 1 

inflammation) drugs enhance (“derepress”) AT browning or brown AT activity.116,164 Of 

note, IL-10, usually functioning as an anti-inflammatory cytokine, inhibits AT browning by 

repressing thermogenic gene expression in adipoctyes.165 In addition, Pirzgalska et al 

described a type of macrophage in AT that is tightly associated with sympathetic neurons, 

so-called sympathetic neuron-associated macrophages, which are increased in obesity and 

inhibit thermogenesis by clearing noradrenaline.166 Mast cells may inhibit AT browning by 

releasing serotonin in obesity,167 but they promote AT browning by secreting histamine in 

cold.168

Inflammation and AT remodeling (Figure 2):

AT remodeling is a complex process by which AT is adapted to various stimuli including 

HFD feeding and obesity. During obesity development, adipocytes quickly become enlarged 

and hypertrophic. At same time, extracellular matrix remodeling and angiogenesis are 

initiated to accommodate AT expansion. Appropriate remodeling is essential for healthy AT 
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expansion over excessive nutrients. Dysfunctional remodeling may contribute to 

development of obesity-linked metabolic disorders.

Inflammation plays important but complex roles in AT remodeling. Studies from Scherer’s 

group indicated that inflammation in adipocytes is essential for healthy AT expansion, 

extracellular matrix remodeling, and angiogenesis and that suppression of adipocyte 

inflammation results in AT dysfunction and systemic metabolic disease.169 Macrophages 

may contribute to AT remodeling in several different ways. At the tips of growing AT, 

macrophages may promote AT angiogenesis and extracellular matrix remodeling by 

producing VEGF, MMP1, and MMP12.170,171 Several cytokines such as TNFα and IL-8 

secreted by macrophages have proangiogenic roles, thereby possibly contributing to healthy 

AT expansion and remodeling.171 M2-like macrophages may support adipogenesis during 

AT remodeling.170 In obesity, macrophages, by secreting cytokines such as TNFα and 

TGFβ or expressing macrophage-inducible C-type lectin, may suppress adipogenesis but 

promote AT fibrosis, which is generally considered to contribute to AT dysfunction in 

obesity.170–172 In mice with diet-induced obesity, macrophage inflammation is associated 

with widespread fibrosis and adipocyte death in VAT.173 Certain chemokines such as 

CXCL10 and CXCL11, which are upregulated in obese AT and possibly produced by T cells 

and macrophages, suppress angiogenesis,174 thereby possibly contributing to AT hypoxia in 

obesity. AT ILC1 may contribute to AT fibrosis by activating TGFβ signaling.86 Mast cells 

may play a role in fibrosis by releasing MCP-6 that induces collagen V expression in AT.175 

T cells, particularly activated T cells, and the Th1 cytokine IFNγ adversely regulate 

adipogenesis.14,40 T cells may also regulate fibrosis in other tissues, but it remains to be 

determined whether T cells have the same effects in AT.

Targeting inflammation to treat obesity-linked metabolic disease

Because of the role of inflammation in obesity, targeting inflammation represents a new 

therapy for obesity-linked diseases, including insulin resistance and T2DM. Indeed, 

numerous animal studies have shown benefit of reduction or suppression of inflammation for 

obesity-linked insulin resistance and metabolic disease. Moreover, multiple antidiabetic 

drugs possess anti-inflammatory properties. Importantly, (pre)clinical trials testing the 

efficacy of anti-inflammatory drugs in treating insulin resistance and T2DM have generated 

some promising results. However, in general, the clinical approach of specifically targeting 

inflammation to treat metabolic disease remains challenging (see reviews176,177).

The classical broad spectrum anti-inflammatory drugs, salicylates, reduce inflammation and 

lower blood glucose levels in humans with obesity and/or insulin resistance and T2DM.
176–180 Another generic anti-inflammatory drug, methotrexate, lowers HbA1c levels in 

patients with rheumatoid arthritis.181 However, the recent Cardiovascular Inflammation 

Reduction Trial (CIRT) revealed that low-dose methotrexate did not reduce IL-1β, IL-6, or 

CRP levels, failed to show benefits on cardiovascular effects, and had more adverse events in 

individuals with a history of myocardial infarction or multivessel coronary disease and with 

either T2DM or metabolic syndrome,182 making this drug unlikely to be used to treat 

cardiovascular disease and perhaps also T2DM. Colchicine, another anti-inflammatory drug, 
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was recently shown to lower risk of cardiovascular disease in secondary prevention.183 

Whether colchicine is effective in treating T2DM remains to be determined.

Several other anti-inflammatory drugs targeting specific pathways have also been tested for 

treatment or prevention of T2DM. Given the role of the NLRP3 inflammasome in obesity-

linked AT inflammation,130,131 targeting the NLRP3 inflammasome or its downstream 

molecules including IL-1β and IL-18 may represent a potential therapeutic approach for 

obesity-related inflammation and metabolic dysfunctions. Indeed, IL-1β antagonists, 

including canakinumab, an anti-IL-1β antibody, and anakinra, an IL-1R antagonist, have 

been shown to reduce inflammation and lower blood levels of glucose or HbA1c in several 

trials.176,177,184–187 However, IL-1β inhibition by canakinumab in the CANTOS trial did not 

show long-term benefits in reducing HbA1c and reductions in incident T2DM.186 The 

potential of other therapies targeting the NLRP3 inflammasome pathway in treating T2DM 

remains to be assessed. Treatment with inhibitors for TNFα did not generate consistent 

results for glucose- or HbA1c-lowering effects.176,177 In addition, targeting immune cell 

infiltration represents another type of anti-inflammatory therapy. Indeed, antagonists for 

chemokine receptors such as CCR2 or CCR2 and CCR5 have been shown to reduce AT 

inflammation and improve insulin sensitivity in animal models of obesity188 and modestly 

improved glycemia in humans with T2DM in a small cohort.189 Clinical trials are also 

testing effects of anti-inflammatory drugs on diabetic complications. CCR2/CCR5 dual 

antagonists showed efficacy in treating diabetic nephropathy and nonalcoholic 

steatohepatitis with fibrosis in humans.190,191 A Jak1/Jak2 inhibitor, which inhibited 

inflammation and improved insulin resistance in obese mice,45 decreased inflammation, 

reduced albuminuria, and also lowered HbA1c in humans with T2DM and diabetic kidney 

disease.192

Additionally, caloric restriction or intermittent fasting has been shown to benefit health, 

including reducing obesity and improving metabolism.126,193–195 Caloric restriction or 

intermittent fasting also reduces AT inflammation,126,127,196 which may, at least partially, 

contribute to the beneficial effect of the dietary intervention on obesity-related metabolism.

Conclusion and Perspectives

A large body of evidence has shown increased inflammation in varieties of tissues in obesity, 

which is mainly characterized by increased accumulation and type 1 inflammatory 

polarization of various immune cells, including innate and adaptive immune cells. Diets, 

tissue microenvironment, and other factors such as gut microbiota may all contribute to 

initiation and maintenance of tissue inflammation. Inflammation, particularly long-term 

chronic inflammation, may play important roles in development and progression of obesity-

linked insulin resistance and T2DM through multiple pathways regulating metabolism. 

Reduction or inhibition of inflammation is mostly associated with improvements in insulin 

resistance and metabolic functions in animal models of obesity and therefore holds promise 

as a new therapy for obesity-linked metabolic disease. To date, clinical studies testing the 

efficacy of therapies targeting inflammation for human metabolic disease have generated 

some promising results, but, in general, remain challenging and unsatisfactory. Inflammation 

is a very complex process involving a wide variety of inflammatory cells and pathways. Our 
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current knowledge about the particular pathways for obesity-linked inflammation, especially 

related to human obesity, is still limited and hinders the development of novel, specific 

“obesity-targeted” anti-inflammatory approaches. Future studies will need to focus on 

identification of new pathways and related candidate targets specific for obesity-linked 

inflammation, which may lead to development of new therapies for obesity-related 

metabolic disease. Furthermore, obesity and most related diseases involving inflammation 

are a long-term, chronic process. The potential benefits versus side effects, impairment of 

host immunity in particular, of long-term systemic use of inflammation-targeting therapies 

will need to be carefully evaluated. Future studies will also need to explore the potential of 

targeting inflammation in specific organs/tissues to treat obesity-linked metabolic disease. 

Further advances in our knowledge of the role and mechanism of inflammation in metabolic 

disease and development of new technologies will create new opportunities to develop novel 

therapies for metabolic disease associated with obesity.
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Non-standard Abbreviations and Acronyms

AT adipose tissue

CIRT Cardiovascular Inflammation Reduction Trial

CLS crown-like structures

FAs fatty acids

HFD high-fat diet

HIF hypoxia-inducible factor

ILC innate lymphoid cells

IMAT intermuscular/intermyocellular adipose tissue

iNKT invariant NKT cells

IR insulin receptor
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IRS insulin receptor substrate

LFA-1 lymphocyte function-associated antigen–1

PMAT perimuscular adipose tissue

SAT subcutaneous adipose tissue

T2DM type 2 diabetes

Th T helper

Treg regulatory T cells

VAT visceral adipose tissue
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Figure 1. Regulation of inflammation in adipose tissue (AT).
In lean conditions, AT is enriched with type 2 immune cells, including alternatively activated 

M2-like macrophages (M2), innate lymphoid type 2 cells (ILC2), regulatory T cells (Treg), 

T helper type 2 cells (Th2), eosinophils, and others, which interact with each other by 

producing type 2 cytokines such as interleukin-4 (IL-4), IL-5, and IL-13 and also by direct 

contact via interactions of cell surface molecules, to maintain a type 2 immune environment. 

With the development of obesity, particularly induced by high-fat diet (HFD), dietary 

saturated fatty acids, along with AT hypoxia, danger-associated molecular patterns 

(DAMPs), and “metabolic endotoxemia” with increased plasma levels of lipopolysaccharide 

(LPS) that develop in obesity, may promote type 1 inflammation in AT, with increased 

inflammation in adipocytes and elevated number and type 1 inflammatory polarization or 

“metabolically activated” activation of a variety of immune cells, including macrophages, T 

cells, B cells, neutrophils, and others, which produce a large number of type 1 inflammatory 

molecules and also interact directly with each other to induce a type 1 inflammatory 

environment in AT. ICAM-1 indicates intercellular adhesion molecule–1; ICOS, inducible 

costimulator; ICOSL, inducible costimulator ligand; IFNγ, interferon-γ; ILC, innate 

lymphoid cells; iNKT, invariant natural killer T cells; LFA-1, leukocyte function-associated 

antigen–1; MCP-1, monocyte chemoattractant protein–1; MHC, major histocompatibility 

complex; MPO, myeloperoxidase; NK, natural killer cells; RANTES, regulated on 

activation, normal T cell expressed and secreted; TCR, T-cell receptor; and TNFα, tumor 

necrosis factor–α. (Illustration Credit: Ben Smith).
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Figure 2. Impact of inflammation on AT metabolism and remodeling.
A. In lean conditions, with a type 2 immune environment, various immune cells through 

different mechanisms contribute to maintenance of normal AT functions including adipocyte 

insulin sensitivity and beige adipogenesis. B. In obesity, type 1 inflammatory or 

metabolically activated immune cells may contribute to AT dysfunctions by adversely 

regulating adipocyte metabolism and AT remodeling, including induction of insulin 

resistance in adipocytes, suppression of beige adipogenesis, and induction of dysfunctional 

AT remodeling. Studies also show that in obesity, adipocyte inflammation may be essential 

for healthy AT expansion and remodeling and that lipid storage within AT macrophages may 

protect against obesity-linked adipocyte dysfunctions. ECM indicates extracellular matrix; 

MET-ENK, methionine-enkephalin; MMPs, matrix metalloproteinases; NE, norepinephrine; 

TGFβ, transforming growth factor–β; and VCAM-1, vascular cell adhesion molecule–1. 

(Illustration Credit: Ben Smith).
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Table 1.

Comparison of type 1 and type 2 inflammation

Type 1 Type 2

Stimuli LPS, IFNγ, TNFα, IL-12 IL-10, IL-4/IL-13, allergens

Major cells Th1, CD8+ TEM/TE, M1 macrophages, neutrophils Th2 cells, M2 macrophages, eosinophils, ILC2

Secreted cytokines IFNγ, TNFα, IL-1β, IL-6, IL-12 IL-4, IL-5, IL-10, IL-13, TGFβ

Transcription factors T-bet (Th1), STAT1, NF-κB, IRF5 STAT3, STAT6, IRF4, GATA3, PPARγ

Major functions Defense against intracellular pathogens Immunoregulation, tissue remodeling, allergy, defense against 
extracellular parasites

GATA3 indicates GATA binding protein 3; IFNγ, interferon-γ; IL, interleukin; ILC, innate lymphoid cells; IRF, interferon regulatory factor; LPS, 
lipopolysaccharide; NF-κB, nuclear factor–κB; PPARγ, peroxisome proliferator–activated receptor–γ; STAT, signal transducer and activator of 
transcription; TE, effector T cells; TEM, effector memory T cells; Th, T helper; and TNFα, tumor necrosis factor–α.
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