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Abstract

The objective of this work is to reduce the user effort required for 2D segmentation when building 

patient-specific cardiovascular models using the SimVascular cardiovascular modeling software 

package. The proposed method uses a fully convolutional neural network (FCNN) to generate 2D 

cardiovascular segmentations. Given vessel pathlines, the neural network generates 2D vessel 

enhancement images along the pathlines. Thereafter, vessel segmentations are extracted using the 

marching-squares algorithm, which are then used to construct 3D cardiovascular models. The 

neural network is trained using a novel loss function, tailored for partially labeled segmentation 

data. An automated quality control method is also developed, allowing promising segmentations to 

be selected. Compared with a threshold and level set algorithm, the FCNN method improved 2D 

segmentation accuracy across several metrics. The proposed quality control approach further 

improved the average DICE score by 25.8%. In tests with users of SimVascular, when using 

quality control, users accepted 80% of segmentations produced by the best performing FCNN. The 

FCNN cardiovascular model building method reduces the amount of manual segmentation effort 

required for patient-specific model construction, by as much as 73%. This leads to reduced 

turnaround time for cardiovascular simulations. While the method was used for cardiovascular 

model building, it is applicable to general tubular structures.
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1 Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide [16]. This has 

motivated the development of new simulation-based technologies to aid the prevention, 

diagnosis, analysis, and treatment of CVD [10]. With recent advances in cardiac and 
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vascular imaging, patient-specific simulations of cardiovascular hemodynamics are gaining 

increased clinical utility in relation to CVD [32, 46].

In the clinical workflow, the available time to produce simulation results is typically limited. 

Furthermore, to translate simulation tools to the clinic, studies and trials on large patient 

cohorts are required to statistically correlate simulation predictions with clinical outcomes. 

In both cases, lengthy simulation workflows are a prohibitive bottleneck. For cardiovascular 

simulation in particular, high-quality three-dimensional patient-specific models must be 

constructed for each patient, a process that requires substantial user input and delays 

simulation turnaround time [42, 46].

Patient-specific models typically include a network of vessels in specific anatomical regions 

of interest. Therefore, a common approach in cardiovascular modeling is to build the models 

vessel by vessel (Fig. 1). Often, specialized cardiovascular simulation software tools such as 

SimVascular1 [48, 49], Cardiovascular Integrated Modeling and Simulation (CRIMSON) 

[20], and the Vascular Modeling Toolkit (VMTK) [1] are used.

While this workflow offers the control and accuracy necessary to segment individual vessels, 

the segmentation step is particularly time consuming. Due to the importance of precisely 

identifying cardiovascular geometry, a large and diverse body of existing work has been 

dedicated to the acceleration of cardiovascular segmentation [27, 41, 43]. Early approaches 

made use of active contours [36, 50] and filtering techniques [12]. Later methods such as 

Optimally Oriented Flux [24, 25] and CURVES [30] included curvilinear structure 

information to improve segmentation accuracy. Other approaches have used stochastic 

methods [14] for segmentation. Another category of methods developed around modeling 

tubular structures such as intensity appearance models [23], 4D curves [3], circular and 

elliptical cross-sections [22, 45, 52], intensity-gradient profiles [35], vessel templates [55], 

and vessel tracking [13]. Modern methods leverage sophisticated statistical algorithms such 

as Random Sample Consensus (RANSAC) [19], machine learning techniques [2, 34, 39], or 

optimization methods tailored towards tubular structure segmentation [38, 47].

Recently, neural networks and deep learning have seen a surge of interest and development 

[26, 44]. Within medical imaging, numerous groups are making use of neural networks [4, 5, 

7, 11, 18, 33]. These studies have shown that neural network-based methods can outperform 

standard methods in segmentation accuracy. However, to our knowledge, no studies have 

shown the utility of neural networks for cardiovascular model building on general vascular 

anatomy. The closest works are the I2I network [33], which did not consider downstream 

applications and DeepLumen [37] which is closed-source and restricted to CT coronary 

artery segmentation. In this work, we use FCNNs trained for vessel enhancement to 

accelerate the cardiovascular model building workflow (Fig. 1). Our main contributions are

• A segmentation pipeline, based on fully convolutional neural networks, that 

produces automated segmentations as required in Fig. 1c.

1http://simvascular.github.io/
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• A novel loss function that can be used to improve vessel enhancement accuracy 

of neural networks with partially labeled data through the use of a binary dilation 

of the label image.

• An automated quality control system that can be used to identify and reject low 

quality predicted segmentations.

2 Methods

In this study, we use 2D convolutional neural networks to develop an accelerated 

cardiovascular model building workflow, implemented within the pathline-based model 

building pipeline developed for SimVascular [48] (Fig. 1). In particular, given a local 2D 

image of the vascular anatomy, the neural network should identify the vessel lumen at that 

location. Here, we outline how the neural network is used for cardiovascular model 

construction, the neural network architectures we selected, our training process, and the 

methods we developed for automated quality control of segmentations produced. We 

investigated the use of 3D convolutional neural networks for cardiovascular model building, 

but were unable to obtain acceptable performance, similar results were shown in [37]. As 

such we believe the use of 3D neural networks for cardiovascular model building is still an 

open avenue for further research.

With the proposed FCNN segmentation pipeline, the first few steps of model building 

remain the same: users first load medical image volume data and indicate points along the 

pathline of the vessel of interest (Fig. 2) and 2D images are extracted along pathline at 

discrete intervals. However, then the extracted 2D images are automatically preprocessed 

and input to a FCNN that has been trained to output vessel enhancement images. Vessel 

segmentationss are then automatically computed by applying the Marching-Squares 

algorithm to each FCNN output image. Using the pathline, the produced contours are 

reoriented in 3D space and interpolated to form the final vessel surface, after which the 

vessel models are merged as described above.

2.1 Vessel image enhancement with fully convolutional neural networks

The main component of our proposed model building workflow is an FCNN that computes 

vessel enhancement images from 2D input medical image slices. The main advantage of 

FCNNs is that they can be trained to directly produce enhanced images, from which vessel 

segmentations can be extracted with the marching-squares algorithm. Therefore, we can 

train the FCNN using a labeled dataset and provide the trained network to users such that 

they can immediately use it to construct cardiovascular models more efficiently.

For our particular use-case, the FCNN operates on the 2D cross-sectional images extracted 

along the vessel pathlines. In particular, given a grayscale image x ∈ ℝH × W , first we 

compute a normalized image x by normalizing x to have zero mean and unit variance pixel 

values, so that

x = x − μx
σx

(1)
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where μx and σx are the mean and standard deviation of the pixel values of x and are given 

by

μx = 1
HW ∑

i = 1

H
∑
j = 1

W
xij (2)

and

σx = 1
HW ∑

i = 1

H
∑
j = 1

W
xij − μx

2
1/2

. (3)

The output of the neural network is a function of x, and is an image where pixels containing 

vessel tissue have been enhanced. To be precise, the neural network output is denoted by 

y = ℎθ(x), where y ∈ [0, 1]H × W , hθ is the neural network function, and θ are the trainable 

parameters of the neural network. y is where binary classification has been applied to each 

pixel, i.e., each pixel has values between 0 and 1, indicating the probability of that pixel 

being inside the structure of interest, in this case blood vessels. H and W denote the height 

and width, in pixels, of the input and output image. As such the FCNN enhances the input 

images by setting the vessel pixel values close to 1 and the non-vessel pixel values close to 

0.

The final vessel segmentation is then extracted by applying the marching-squares algorithm 

to y, and is represented as a set of n points

c = p1, …, pn , (4)

where p ∈ ℝ2 is a vector indicating the x- and y-coordinates of the ith point. Finally c is 

repositioned in 3D space using the supplied pathline point and tangent.

2.2 Neural network architecture

Neural networks are typically constructed by composing so-called neural network layers into 

a computational graph [26]. Each neural network layer contains parameters with values that 

are optimized using example input-output pairs from a training dataset and an optimization 

algorithm to minimize a selected loss function. For image segmentation tasks, feedforward 

fully convolutional networks [29, 53] have shown promising results and therefore we restrict 

ourselves to this class of network. In feedforward networks, a series of layers is sequentially 

applied to a given input, where the output of a given layer is used as input for the next layer. 

Each layer typically consists of a transformation, e.g., linear transformation or cross-

correlation, followed by a nonlinear function referred to as an activation function. 

Convolutional neural networks are neural networks in which convolutional layers are 

primarily used and they typically operate on input images or tensors. For the sake of brevity, 

we do not provide a detailed description of neural network layers here; the interested reader 

is referred to the Appendix and the reviews in [26, 44].
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With fully convolutional neural networks (FCNN), typically both their input and output are 

images or tensors, whereas convolutional networks typically produce vector-valued outputs 

such as classification probabilities. In general, the best combination of layers is a-priori 

unknown. Furthermore, the neural network design can have a large influence on its 

performance. Here we have selected three existing FCNN architectures that have previously 

shown good performance in medical imaging and segmentation tasks. The first network is 

the I2INet architecture [33], which was originally designed to operate on 3D medical image 

volumes and to detect blood vessel edges. The original motivation for the I2INet architecture 

was to preserve small scale image features which are often important in medical imaging. 

For our application, the network has to detect the entire blood vessel and operate on 2D 

images; therefore, we modified the I2INet for this purpose.

We replicated the I2INet architecture while replacing all 3D convolution and pooling layers 

with their 2D counterparts. Converting I2INet from vessel edge detection to vessel 

enhancement was accomplished through using blood vessel labeled training images, 

described in Section 2.4. The second network selected for comparison is the UNet 

architecture [40]. UNet was originally designed for 2D image enhancement; therefore, we 

did not need to modify the network architecture for our application. Both the modified 

I2INet and UNet architectures are shown in Fig. 3. The final selected network is the 

DeepLab network with Atrous Spatial Pyramid Pooling (DeepLab-ASPP) [6]. DeepLab-

ASPP consists of a 101 layer Residual Network [15] with its fully connected layers replaced 

by multiple atrous convolution layers with different dilation rates. DeepLab-ASPP was 

selected due to its exceptional performance on semantic image segmentation tasks and the 

fact that the atrous spatial pyramid pooling processes features at multiple resolutions. For the 

sake of brevity, the reader is referred to [6, 15] for a full description of the DeepLab-ASPP 

architecture.

We note the similarities and differences between the I2INet and UNet architecture. Both 

make extensive use of pooling and transpose convolution layers to operate on multiple 

resolutions of the network’s hidden state. Applying the downsampling and upsampling 

layers to the hidden state allows the resolution of the input image to be preserved, while 

simultaneously enabling processing at multiple resolutions. I2INet makes use of average-

pooling layers whereas UNet uses max-pooling. Furthermore, the UNet network 

downsamples four times whereas I2INet downsamples three times. Following transpose 

convolutions, I2INet uses 1 × 1 convolutions to compute linear combinations of the 

upsampled inputs, whereas UNet inputs the upsampled input to a 3 × 3 convolution. 

Performance of these networks is compared in Section 4.

2.3 Loss function for partially labeled images

Optimal values for the neural network’s parameters are found by minimizing a loss function 

using example input and output images from a training dataset. The loss function should be 

chosen such that, when it is minimized using the example dataset, the neural network’s 

outputs resemble the output examples. For binary pixel classification problems, the pixel 

values of the output image of the neural network are interpreted as indicating the probability 

of that pixel being the target structure. A commonly used loss function in this scenario is the 
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sigmoid cross-entropy loss function which indicates the log-likelihood of the neural network 

output pixels compared with the label pixels. For a neural network output y and label image 

y, the sigmoid cross-entropy loss function is

L(y, y) = −1
HW ∑

i = 1

H
∑
j = 1

W
yijlog yij + 1 − yij log 1 − yij . (5)

The distribution of classes in labeled image segmentation data is typically skewed. The 

sigmoid cross-entropy is not well suited for the unbalanced class case, but can be modified 

to take the class imbalance into account [53]. A common approach is to use a balanced loss 

function that re-weighs the contribution of each class, such that all classes contribute equally 

to the loss. The balanced sigmoid cross-entropy loss is formulated as

L(y, y) = −1
HW ∑

i = 1

H
∑
j = 1

W
βyijlog yij +(1 − β) 1 − yij log 1 − yij (6)

with

β = ∑i, jyij
HW (7)

where β is the fraction of pixels with a positive label and is used in Eq. 6 to compensate for 

the fact that there are typically many pixels with the negative class. However, balanced loss 

functions can cause the network to oversegment, leading to an increased false-positive error 

rate. This is problematic for blood vessel segmentation of small vessels, e.g., coronary 

arteries, with typical cross sections of only a few pixels.

Furthermore, in our dataset, not all blood vessels in every image volume have been 

segmented. Therefore, a naive implementation of assigning the positive class to every 

segmented vessel pixel and negative class to every pixel that was not segmented will 

increase the error rate of the network. Various methods exist to handle partially labeled data 

[8]; however, these approaches are not applicable to our use-case where the same tissue may 

appear labeled and unlabeled in an image.

To resolve the issues of imbalanced classes and partially labeled data, we introduce a new 

loss function that ignores regions of images that were not labeled during the labeling 

process. Let y ∈ 0, 1 H × W  be a partially labeled image, a pixel value of 1 indicates that the 

labeler designated that pixel as the structure of interest and a pixel value of 0 indicates a 

pixel that was not labeled.

Let y be a binary dilation of y by K pixels. Given a predicted image y, our new loss function 

is then

L(y, y) = −1
∑ijyij

∑
i = 1

H
∑
j = 1

W
yij yijlog yij + 1 − yij log 1 − yij (8)
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The intuition behind the above loss function is that labelers tend to focus on specific vessels 

in an image and their surroundings, in regions close to the vessel pathlines. Therefore, other 

pixels that are far away from all labeled pixels were likely ignored during the labeling 

process. y thus indicates the area of the image that the labeler focused on and only this 

region is considered in our loss function. For simplicity, we use a binary dilation y to 

produce y. The process of generating y from y has been illustrated in Fig. 4.

2.4 Neural network training process

During training, the network’s weights are initialized with small random parameter values 

drawn from a normal distribution. We then find optimized values for the weights using a 

dataset of medical image volumes and corresponding cardiovascular binary image volumes 

and vessel pathlines. The weights are optimized using a stochastic gradient-descent 

algorithm to minimize the selected loss function over the training dataset. We describe the 

training data collection process for a single-labeled image volume, as it is straightforward to 

extend to multiple images (Fig. 5).

Let X denote a grayscale medical image volume with Nx, Ny, Nz voxels in the height, width, 

and depth directions, respectively. Y is a labeled binary image volume, with the same 

dimensions as X, with pixel values indicating whether that pixel is part of a blood vessel. 

Finally the vessel pathlines are denoted by a set of Np points, P = v1, …, vNp , with each 

vi ∈ ℝ3 indicating a 3D point in physical space along the pathlines (Fig. 5a).

Given X, Y, and P, we then extract a dataset of Nd pairs of 2D input and label images,

D = x1, y1 , …, xNd, yNd . (9)

We obtain the image and label pairs by first moving through each point along the vessel 

pathlines and interpolating the local pixel values in X and Y in the plane perpendicular to the 

vessel pathline at that point to obtain the local image patches xi and yi (Fig. 5b).

With our training dataset D, we can then optimize the weights of our FCNN using a 

stochastic gradient-descent algorithm (Fig. 5c). Here we use the ADAM algorithm [21].

2.5 Adaptive segmentation with automated quality control

Due to the black-box nature of neural networks, it is difficult to control the quality of 

segmentations produced. We implemented an automated method to control segmentation 

quality by eliminating undesirable segmentations.

Our approach for automated quality control differs from existing methods [54], in that we 

use the output information from our FCNN as a quality indicator. In particular, we found the 

center pixel confidence of the FCNN output to be correlated with segmentation accuracy. 

Furthermore, the segmentations should be approximately centered on the pathline. As a 

result, we found the distance of the center of the extracted vessel segmentation from the 

pathline to be an indicator of quality. Finally as blood vessel surfaces are roughly circular, 

we developed a metric to measure the deviation of the predicted surface (Fig. 6).
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The first metric is defined as

CP = y H
2

w
2 (10)

where CP denotes the center pixel value of y.

For the second metric, we first compute the center of the vessel lumen

μc = 1
n ∑

i = 1

n
pi . (11)

where pi is the ith point on the vessel lumen. If the vessel is exactly centered on the current 

pathline then μc 2 ≈ 0. Therefore, the second metric denotes the distance from the center of 

the image and is

CD = μc 2, (12)

where CD denotes center distance.

For the third metric, we compute an approximate radius

r = 1
n∑

i = 1

n

pi − μc 2 . (13)

We finally compute the normalized average square difference between the distance of each 

point pi from the center and the approximate radius

RD =
1
n ∑i = 1

n
pi − μc 2 − r 2

1/2

r
(14)

where RD has been used as an abbreviation for radius difference. We develop our automated 

quality control system by specifying threshold values for CP, CD, and RD beyond which 

segmentations are rejected.

3 Experimental setup

We want to determine if the FCNN cardiovascular model building workflow provides an 

improved user-experience over current approaches. Therefore, our first experiment is 

designed to evaluate the segmentation accuracy of each algorithm in isolation. In particular, 

we also investigate different combinations of the neural network architectures and loss 

functions. The networks were trained and evaluated using a desktop computer with an i7 

3.0GHz 8-core CPU, 64Gb of DDR4 RAM and 3 Nvidia Titan X GPUs with 12Gb of RAM 

each. With this hardware and the chosen training parameters, training each network takes 

approximately 24 h.
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The ground-truth data that we use to measure segmentation accuracy is subject to both 

measurement and human sources of uncertainty. Therefore, we conducted experiments to 

measure the degree of uncertainty in our ground-truth data.

Finally we performed end-to-end user experiments in SimVascular, comparing the proposed 

approach and current approaches when constructing full cardiovascular models. Here, we 

measure the degree of user interaction needed to produce acceptable models so that we can 

determine which method reduced user interaction.

3.1 Dataset and vascular model repository

We evaluate our method using 104 contrast-enhanced medical image volumes, evenly split 

between CT and MR acquisition. All medical image volumes are publicly available from the 

Vascular Model Repository (VMR)2 [51]. This dataset contains image data, pathlines, 

segmentations, models, and simulation results for a range of anatomic regions. All 

segmentations were created in SimVascular, by expert curators, using the pathline-based 

model building approach in Fig. 1, and verified by clinical experts. Most image volumes in 

the VMR have anisotropic pixel spacing. Here, we resampled all volumes to a spacing of 

0.029 cm in all directions. The volumes are split into mutually exclusive training, validation, 

and testing sets, of 86, 4, and 14 volumes, respectively.

2D training, validation, and testing image patches were extracted using the process described 

in Section 2.4. We selected 160 × 160 pixels as the window size as this size allowed the full 

range of vessel sizes in our dataset to be fully visible. In total, 16,004 training, 239 

validation, and 6317 input and label images were extracted.

3.2 Reference segmentation methods

We compared the proposed FCNN method against two reference 2D segmentation 

algorithms. The first is a thresholding algorithm, which is widely used in many existing 

medical imaging software applications. Active contour methods such as level sets are also 

widely used. Due to availability of recent open-source implementations, the distance 

regularized level set [28] (DRLS) is used here. For both algorithms, input images are 

preprocessed to have zero mean and unit-variance pixel values as described in Section 2.1. 

We note that we attempted to compare against multiscale vessel enhancement filters [12] as 

a third reference segmentation method, but were unable to obtain acceptable performance 

despite investigating a range of different scale parameters.

Threshold: Given a 2D input image x ∈ ℝℎ × w, and a specified threshold value t, the 

threshold algorithm outputs a segmented binary image y ∈ ℝℎ × w where

yij =
1, xij > t
0, xij ≤ t . (15)

The threshold value t is optimized for segmentation accuracy using the training dataset.

2http://www.vascularmodel.com
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Level set method: Level sets define a segmentation boundary as the zero level set of a 

function and then evolve the function according to a partial differential equation. The DRLS 

further regularizes the length of the zero level set to prevent large fluctuations in 

segmentation boundaries. In particular, given an initial level set ϕ(x, 0), DRLS solves the 

equation

∂ϕ
∂t = μ∇ ⋅ dp( ∇ϕ )∇ϕ + λδϵ(ϕ)∇ ⋅ g ∇ϕ

∇ϕ + αgδϵ(ϕ), (16)

where ϕ(x,t)is the level set function, δϵ is an approximate Dirac delta function, g is an 

approximate image edge-indicator function, and dp is a derivative function defined using a 

potential function p. μ, λ, and α are tunable constants. The first term in Eq. 16 regularizes 

the length of the zero level set boundary. The second term regularizes the curvature. The 

third term attracts the level set function to edges in the image. Parameter values for the 

DRLS were found empirically using the training dataset; these were α = 0.25, λ = 1, ϵ = 

1.5, μ = 0.2, and 100 iterations.

3.3 Performance metrics

Segmentations generated by the above methods, and by the users, were compared using the 

following metrics.

DICE—The DICE coefficient values range from 0 (no overlap) to 1 (no error) which 

measures the similarity between two segmentations and is given by:

DICE(A, B) = 2 A ∩ B
A + B . (17)

Hausdorff distance (HD)—The Hausdorff distance has a lower bound of 0 (perfect 

match) with no upper bound. This metric measures the maximum minimum distance 

between two sets of points and is given by:

dH(A, B) = max sup
a ∈ A

inf
b ∈ B

d(a, b), sup
b ∈ B

inf
a ∈ B

d(a, b) , (18)

where d(a, b) is a distance function, for which we use the euclidean norm d(a, b) = a − b 2.

Average symmetric surface distance (ASSD)—The average symmetric surface 

distance computes the average minimal distance between the surface points of two sets A 
and B. Let A and B be sets of the surface points in A and B, respectively. The ASSD is then:

ASSD(A, B) = 1
A + B ∑

a ∈ A
min
b ∈ B

d(a, b) + ∑
b ∈ B

min
a ∈ A

d(b, a) , (19)

where d is again the Euclidean norm.
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3.4 Neural network hyperparameters and nomenclature

The neural networks and training procedures require specification of a number of so-called 

hyperparameters. For our training process, we used L2 regularization with a coefficient of 

0.0001, and a starting learning rate of 0.0001, with the learning rate decreased stepwise by a 

factor of 10 every 10,000 batches. Training was run for 35,000 batches with a batch size of 

4. No pretraining was performed. The ADAM [21] algorithm was used to minimize the 

prescribed loss function. For the masked loss function, y was computed by dilating y by 30 

pixels.

In our experiments, we investigate the influence of the chosen loss functions and neural 

network architectures. The used neural network architectures employed the previously 

described modified I2INet, UNet, and DeepLab-ASPP networks. For loss functions, we 

compared sigmoid cross-entropy, balanced sigmoid cross-entropy, and the proposed masked 

loss function with sigmoid cross-entropy. The labels for each network and loss function we 

compared are listed in Table 1.

3.5 Automated segmentation quality control

To perform quality control experiments, we further split the testing dataset into two mutually 

exclusive sets of equal size. On the first half, we examined the effectiveness of different 

statistics of the input image and neural network prediction as an indicator of produced 

segmentation quality. Once we identified a suitable set of statistics and cutoff values, the 

second test set was used to determine the percentage of accepted versus discarded 

segmentations and corresponding improvement in metric scores.

3.6 Measuring ground-truth segmentation uncertainty

As the ground-truth images were labeled by human experts, they are subject to a certain 

amount of error. Despite expert knowledge of anatomy, users may have different 

interpretations of the image due to factors such as low image resolution or measurement 

noise. To measure the uncertainty in ground-truth segmentation images, an additional 

experiment was performed. One hundred eighty-seven cross-sectional images were selected 

from the model of a Coronary Artery Bypass Graft patient. This model was selected as it 

contains vessels across a range of sizes. Each image was segmented by three expert users of 

SimVascular. The segmentations were then compared using the DICE, HD, and ASSD 

metrics to measure variation between users. The results of this experiment will quantify the 

limit of attainable accuracy in our dataset. Assuming that users will expect segmentation 

algorithms to produce comparably accurate segmentations, we can measure the number of 

segmentations produced by each algorithm that were at or above the threshold of human 

accuracy. This measurement can be used to indicate of the percentage of useful 

segmentations produced by each algorithm.

3.7 End-to-end model building workflow testing

To fully assess the end-to-end accuracy of the proposed FCNN-based model building 

method in practice, an experiment was performed with three expert users of the SimVascular 

software. Each user was assigned one of a cerebrovascular MR image, MR image of patient 
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with Kawasaki disease, and a CT image of a coronary artery bypass graft patient (Fig. 7). 

For each image, vessel pathlines were created and locations marked for segmentation. 

Segmentations were generated using the three best performing neural networks and the best 

performing reference segmentation algorithm. Users inspected all automatically generated 

segmentations and corrected them if necessary. Comparing the number of segmentations that 

were accepted by users to the total then indicates the acceptance probability for each 

method.

4 Results

We compare the DRLS, threshold, and each FCNN architecture (listed in Table 1) via the 

average DICE, HD, and ASSD scores on the test set (Table 2). All p values were calculated 

using a one-sided t test for paired samples. We also measure results on small and large 

vessels separately by splitting the test dataset on vessel radius. The split point is chosen at a 

vessel radius of 0.55 cm, where vessels with a smaller radius are designated as small vessels 

and those with a larger radius as large vessels. The splitting point was chosen at 0.55 cm as 

it represents a middle point between radius measurements for typical small and large vessels 

such as coronary arteries and the aorta [9, 31].

UNet-M and DeepLab-M scored better than UNet and DeepLab respectively across all 

metrics (p < 0.001). I2I-M produced better scores than I2I for all metrics when measured on 

small vessels (r ≤ 0.55cm, p < 0.001). Furthermore I2I-B and UNet-B produced consistently 

worse average scores across all metrics when compared with I2I and UNet (p < 0.001). 

DeepLab-B and DeepLab did not produce significantly different DICE scores, but DeepLab-

B produced worse HD and ASSD scores for small vessels but improved HD for large vessels 

(p < 0.001). I2I-M and UNet-M did not produce significantly different scores (p < 0.05). 

DeepLab-M significantly improved HD for small vessels when compared with I2I-M and 

UNet-M (p < 0.001). Compared with reference methods, I2INet-M, UNet-M, and DeepLab-

M produced better average scores than DRLS and Threshold across all metrics (p < 0.001).

From a cardiovascular model building perspective, we also examine the number of usable 

segmentations produced by each method (Fig. 8). Here, usable is defined as segmentations 

with a DICE score exceeding the average DICE agreement between segmentations produced 

by expert users (0.94 for large vessels, r ≥ 0.55cm, and 0.78 for small vessels, r < 0.55cm). 

The percentage of usable segmentations produced using I2I-M, UNet-M, and DeepLab-M 

were 54.6%, 54.9%, and 50.4% respectively for large vessels and 26.5%, 25.6%, and 28.8% 

respectively for small vessels. I2I-M and UNet-M produced more usable segmentations than 

all other methods for large vessels (p < 0.001), but did not differ significantly from each 

other (p > 0.05). When considering small vessels, DeepLab-M produced more usable 

segmentations than all other methods (p < 0.001). Additionally I2INet-B, UNet-B, and 

DeepLab-B produced fewer usable segmentations than their masked loss counterparts. This 

demonstrates the importance of the choice of network architecture and loss function as well 

as the fact that classical image segmentation algorithms tend to perform better when the 

structures to be segmented are well-resolved, such as with large vessels. For small vessels, 

the threshold, DRLS, and methods produced comparably fewer usable segmentations, 

showing that without specific parameter tuning, the performance of classical segmentation 
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methods degrades. I2INet-B, UNet-B, and DeepLab-B similary produced fewer usable 

segmentations for small vessels, highlighting the oversegmentation effect of balanced loss 

functions.

In Fig. 6, we examine example vessel surfaces produced by each algorithm; in general the 

neural network methods resemble the user ground truth in all cases presented. Additionally, 

the common failure mode of the threshold and level set algorithm occurred when the 

algorithms segmented additional surrounding structures, or bright spots that are not part of 

the vessel. Both neural network methods are more robust and do not exhibit a similar failure 

mode. The typical failure mode for the neural networks was failure to identify the central 

vessel to be segmented, leading to misplaced segmentations. When the neural networks 

failed, it was typically for smaller vessels with poor resolution.

4.1 Ground-truth segmentation uncertainty

Comparisons of segmentations produced by users is reported in Table 3. The degree of 

uncertainty depends on the size of the vessel being segmented by the user. For large vessels, 

the average DICE between users was 0.94, whereas for smaller vessels there is more 

uncertainty with the DICE dropping to 0.79. Similar trends were observed for all other 

metrics. Figure 9 shows that the variation in uncertainty increases substantially as the vessel 

size decreases.

4.2 Automated quality control results

To perform quality control experiments, we selected the I2I-M segmentations and computed 

the CP, CD, and RD metrics, testing various acceptance threshold values. Our results (Table 

4) show that using different numbers of quality metrics and cutoff values affects the fraction 

of segmentations accepted and corresponding quality improvement. For example, using the 

CP metric and accepting only segmentations with CP > 0.3, the average DICE across all 

vessel sizes improved to 0.68, and 80.8% of the segmentations were accepted. The average 

DICE can be improved by 25.8% to 0.73, by restricting to CP > 0.5; however, now only 

59.3% of segmentations are accepted. Combining all three metrics, the same DICE 

improvement can be reached while accepting 74.8% of segmentations.

4.3 User-testing results

When testing our complete proposed model building workflow, users corrected significantly 

fewer segmentations, when using the FCNN-based methods, than with the threshold 

algorithm (p < 0.001) (Table 5). Users accepted a similar percentage of large vessel 

segmentations for I2I-M, UNet-M, and DeepLab-M. However, for smaller vessels, more 

segmentations were accepted for DeepLab-M, 71%, versus 65% for I2I-M and 58% for 

UNet-M. Using our quality control system to screen for unsuitable segmentations, it 

improved the acceptance fraction for each algorithm. Using the I2I-M network, the 

acceptance fractions for smaller vessels improved more than for larger vessels, e.g., 

increasing from 65 to 79% for small vessels compared with 83 to 85% for larger vessels. For 

DeepLab-M, the acceptance probability improvement with quality control was not as large 

as for I2I-M, 0.04 vs 0.11 increase, respectively.
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As a final test, users were allowed to edit segmentations and add segmentations to construct 

final cardiovascular models in SimVascular. The ground-truth models and those built using 

the proposed FCNN method with I2I-M are visually similar (Fig. 7). Inspecting the 

kawasaki disease case, we see that essential features of the model such as aneurysms in the 

coronary arteries are preserved. Furthermore, both small and large vessels were accurately 

captured. For the coronary artery bypass graft patient, when using the FCNN method, 125 

segmentations were used for the final model, 34 of which were produced through manual 

segmentation. For the cerebrovascular MR case, 107 segmentations were produced, 47 of 

which were manual. For the kawasaki disease case, 68 total segmentations were produced, 

20 of which were manually produced. As such using the FCNN method resulted in 

reductions of manual segmentations required of 73%, 57%, and 71%, respectively.

4.4 Runtime performance and segmentation time savings

On a laptop with a 2.4Ghz i7 CPU, computing 100 segmentations, without use of a GPU, 

with I2I-M took, on average, 13.6 s. As such the time to compute a single segmentation is on 

the order of 0.1 s. Manual segmentation takes on average, an order of 5–10 s for a single 

segmentation. As such the FCNN computation time is not a bottleneck even with standard 

computer hardware.

Assuming an average manual segmentation time of 5 s, considering the user-testing results 

(Fig. 7), use of I2I-M thus saved 432.5 s, 290.3 s, and 233.2 s for each of the three cases, 

respectively. The cases considered for the user test were limited to a small number of 

vessels. In more realistic simulation scenarios, models can contain 10–30 times more vessels 

(100–300 vessels), showing that our FCNN segmentation approach can save on the order of 

hours of manual segmentation effort.

5 Conclusion

Comparisons of the FCNN segmentation methods and the reference Threshold and DRLS 

algorithms demonstrated that neural networks improved overall performance. All FCNN 

methods significantly improved average metric scores over the reference methods, 

illustrating that standard algorithms such as thresholding and level sets need to be 

recalibrated for each image, whereas neural networks provide more automated approaches.

Our results further showed that the proposed masked loss function did indeed improve the 

performance of all neural networks, in particular the improvement was larger for small 

vessels than for large vessels, achieving more precise vessel delineation in regions that are 

typically difficult to segment.

We further validated our hypothesis that balanced loss functions lead to oversegmentation. 

Here the balanced loss function significantly degraded average metric scores, especially for 

small vessels.

The automated quality control experiments showed that the output information from the 

neural networks is a useful metric to identify good segmentations. We further showed that a 

combination of metrics rejects fewer segmentations, compared with using a single metric, 
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for the same degree of accuracy improvement. Substantial performance improvement was 

obtained with a handful of relatively simple metrics, requiring only incrementally additional 

computational cost. However, the improvement with quality control varied depending on the 

used neural network architecture, showing that optimal improvement requires network 

specific tuning of the quality metric threshold levels.

Our results demonstrated that FCNNs are an effective method for automated cardiovascular 

segmentation and reduce the user interaction needed to build cardiovascular models.
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Appendix:: Neural networks and deep learning

Neural networks are nonlinear function approximators. In their most general form, neural 

networks are constructed as computational graphs, where each edge in the graph is a 

parametrized function that operates on a subset of the nodes in the graph. However, typically 

a simplified form of neural network, known as a feedforward neural network, is used. 

Feedforward neural networks are created by composing a sequence of parameterized 

functions into a chain, where each subsequent function operates on the output of the 

previous function in the chain. The parameterized functions are often referred to as layers, 

and the parameters as the weights of the network. The particular choice of layers is what 

denotes the neural network, or network architecture. It can be shown that feedforward 

networks can approximate any function to arbitrarily small error, given enough weights [17]

Developing a neural network for a particular application then involves determining a suitable 

network architecture, and finding weight values that lead to good performance. Typically 

performance is measured on a sample of input-output pairs using metrics that measure the 

error between predicted outputs and ground-truth outputs. Values for the network weights 

are found using optimization algorithms that minimize a specified, often differentiable, loss 

function and a training set of input-output pairs. The training set is separate from the set that 

is used to measure performance so that the measured performance represents an accurate 

measurement of out-of-sample performance.

Determining suitable network architectures is the subject of a large body of research. For a 

feedforward network, the number of layers can be varied, as well as the type of layer to be 

used at each step. Developing neural network layers is an active research area; however, the 

most commonly used layers for image segmentation purposes are convolutional layers. 

Typically a layer will perform an operation on its input followed by an elementwise 

nonlinear function known as an activation function. Using nonlinear activation, functions are 

essential as it allow the neural network to become a universal function approximator [17]. In 
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this work, we used the leaky rectified linear unit (leaky-RELU) for all except the final layer. 

For the final layer, we used a sigmoid activation function to ensure the output values of the 

network lie between 0 and 1. The leaky-RELU and sigmoid activation functions are given by

leaky‐RELU(x) = x, x > 0
γx x ≤ 0 (20)

and

sigmoid(x) = 1
1 + e−x . (21)

We can then formulate a typical layer as

z(l) = ℎθl
(l) a(l − 1) (22)

a(l) = σ(l) z(l) (23)

where l denotes the layer index, θl are the weights of layer l, ℎθl
(l) is the operation applied by 

layer l, parameterized by θl, σ(l) is the activation function of layer l, and a(l) is the final 

output of layer l.

A 2D convolutional layer uses a 4D tensor of weights Θ(l) ∈ ℝHl × W l × Cl × Fl, where Hl, 

Wl, Cl, and Fl are the height, width, number of channels, and number of filters, respectively. 

Intuitively weights for a convolutional layer can be thought of as Fl filters with a shape of Hl 

× Wl × Cl stacked on top of each other. The input to a 2D convolutional layer is a 3D tensor 

a(l − 1) ∈ ℝH × W × C, where C = Cl is necessary to ensure the convolution is compatible. 

The output of a convolutional layer is the result of the chosen activation function applied to 

the cross-correlation of Θl and a(l−1):

zijk
(l) = ∑

a = 1

Hl
∑

b = 1

W l
∑

c = 1

Cl
Θl, abck ⋅ ai + aj + bc

(l − 1) + b

a(l) = σ(l) z(l) .
(24)

The outputs of a convolutional layer are again 3D tensors, which allows convolutional layers 

to be chained to form a convolutional network.

Pooling layers are used to subsample network layer inputs, typically to reduce computational 

burden or to allow processing inputs at different resolutions. A max-pooling layer 

subsamples its input by using a strided cross-correlation where each output element is the 

maximum of all elements within the domain of the filter for that step of the cross-

correlation. That is, given a filter size of Hl × Wl and a stride K, a max-pooling layer outputs
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zijk
(l) = max

a = iK, …, iK + Hl b = jK, …, jK + W l
aabk

(l − 1) . (25)

An average-pooling layer will output the empirical mean of all elements within the filter 

domain

zijk
(l) = ∑

a = iK

iK + Hl
∑

b = jK

jK + W l
aabk

(l − 1) (26)

Note that typically the activation function is omitted for pooling layers.
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Fig. 1. 
The cardiovascular model construction workflow used in SimVascular [48]. Starting from a 
image data, b users manually generate pathlines, c use these pathlines to segment 2D cross-

sectional contours, d loftsegmented contours into a 3D model, e generate a numerically 

stable 3D geometric mesh, and finally f computational flow simulations are calculated
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Fig. 2. 
Our proposed FCNN-based cardiovascular model building pipeline. a Image data and vessel 

pathline supplied by the user. b Path information is used to extract image pixel intensities in 

plane perpendicular to the vessel path. c 2D images extracted along vessel pathlines are 

input to the FCNN. d FCNN acts on the input images to compute local vessel enhancement 

images. e Vessel enhancement images computed by the FCNN, the pixel values are between 

0 and 1 indicating vessel tissue likelihood. f The marching-squares algorithm is applied to 

each enhanced image to extract the central vessel segmentation. g 2D extracted vessel 

surface points overlayed on original input images. h The 2D vessel surface points are 

transformed back to 3D space. i 3D cross-sectional vessel surfaces are interpolated along the 

pathline to form the final vessel model
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Fig. 3. 
I2INet and UNet networks. Number labels indicate the number of channels in that layer. The 

input image and output segmentation have the same dimensions
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Fig. 4. 
Illustration of the masked loss function generation, note how, in the label image y, some but 

not all vessel pixels have been labeled. a Example 2D cross-sectional input image x. b 
Corresponding partially labeled binary image y. c Mask image, y, generated through binary 

dilation of label image y by a set number of pixels
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Fig. 5. 
Illustration of the FCNN training process for a single image volume and binary label volume 

pair (X, Y). a Original 3D medical image volume X, associated 3D binary label image Y 
with blood vessel pixels labeled and selected vessel pathlines. b Extraction of 2D input and 

label images along selected centerline points by interpolating pixel values in the plane 

perpendicular to the pathline at each point. c FCNN training loop, at each iteration several 

input and label image pairs are used to calculate the gradient of the loss function with 

respect to the FCNN weights and the gradient is used to update the weights according to a 

gradient-descent update rule
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Fig. 6. 
Selected example vessel surfaces detected by each method. From left to right: ground-truth, 

I2I-M, UNet-M, DeepLab-M, Threshold, and DLRS. From top to bottom: MR aorta, MR 

left coronary artery, MR posterior cerebral artery, and CT saphenous vein graft
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Fig. 7. 
Comparison of cardiovascular models built using I2I-M to manually built models. First two 

columns are frontal views, third and fourth columns are side views. First and third columns: 

models built with I2I-M. Second and fourth columns: manually built models. Top to bottom: 

coronary artery bypass graft case (CT), carotid arteries and branch vessels (MR), and aorta 

and coronary arteries for a patient with Kawasaki disease (CT)
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Fig. 8. 
Fraction of usable vessel segmentations produced. a Fraction of segmentations with DICE > 

0.94 for large vessels with radius >= 0.55 cm. b Fraction of segmentations with DICE > 0.78 

for small vessels with radius< 0.55 cm, cutoff DICE values were determined from the user 

uncertainty test. Note that P in the legend indicates the fraction of segmentations produced 

by each method on the test set that were considered usable

Maher et al. Page 28

Med Biol Eng Comput. Author manuscript; available in PMC 2020 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Scatter plot analyzing segmentation agreement between users as a function of vessel radius
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Table 1

FCNN naming conventions

Name Architecture Loss function

I2I I2INet Sigmoid Cross-Entropy

I2I-B I2INet Balanced Cross-Entropy

I2I-M I2INet Masked Cross-Entropy

UNet UNet Sigmoid Cross-Entropy

UNet-B UNet Balanced Cross-Entropy

UNet-M UNet Masked Cross-Entropy

DeepLab DeepLab-ASPP Sigmoid Cross-Entropy

DeepLab-B DeepLab-ASPP Balanced Cross-Entropy

DeepLab-M DeepLab-ASPP Masked Cross-Entropy

The name refers to the network used and selected loss function. -B and -M appended to the name of the network indicate use of the balanced 
sigmoid cross-entropy loss function and masked sigmoid cross-entropy loss function respectively

Med Biol Eng Comput. Author manuscript; available in PMC 2020 May 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Maher et al. Page 31

Ta
b

le
 2

(T
es

t s
et

) 
M

ea
n 

D
IC

E
, H

au
sd

or
ff

 d
is

ta
nc

e 
(H

D
),

 a
nd

 a
ve

ra
ge

 s
ym

m
et

ri
c 

su
rf

ac
e 

di
st

an
ce

 (
A

SS
D

) 
fo

r 
ea

ch
 m

et
ho

d.
 r 

de
no

te
s 

ve
ss

el
 r

ad
iu

s 
(c

m
)

D
IC

E
H

D
 (

cm
)

A
SS

D
 (

cm
)

r 
>

 0
.5

5
r 

≤ 
0.

55
r 

>
 0

.5
5

r 
≤ 

0.
55

r 
>

 0
.5

5
r 

≤ 
0.

55

I2
I

0.
53

0.
91

0.
50

0.
32

0.
23

0.
32

0.
17

0.
07

0.
17

I2
I-

B
0.

45
0.

88
0.

42
0.

51
0.

36
0.

52
0.

24
0.

11
0.

25

I2
I-

M
0.

58
0.

91
0.

56
0.

30
0.

26
0.

31
0.

13
0.

07
0.

13

U
N

et
0.

52
0.

81
0.

50
0.

34
0.

51
0.

32
0.

18
0.

17
0.

18

U
N

et
-B

0.
36

0.
81

0.
33

0.
70

0.
46

0.
72

0.
40

0.
16

0.
42

U
N

et
-M

0.
58

0.
92

0.
56

0.
31

0.
24

0.
31

0.
13

0.
07

0.
13

D
ee

pL
ab

0.
51

0.
88

0.
48

0.
43

0.
38

0.
43

0.
19

0.
10

0.
19

D
ee

pL
ab

-B
0.

49
0.

89
0.

46
0.

48
0.

32
0.

49
0.

23
0.

10
0.

24

D
ee

pL
ab

-M
0.

59
0.

91
0.

57
0.

25
0.

26
0.

25
0.

12
0.

08
0.

12

T
hr

es
ho

ld
0.

46
0.

86
0.

43
0.

71
0.

48
0.

72
0.

22
0.

12
0.

22

D
R

L
S

0.
43

0.
85

0.
40

0.
78

0.
47

0.
80

0.
28

0.
12

0.
29

Med Biol Eng Comput. Author manuscript; available in PMC 2020 May 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Maher et al. Page 32

Ta
b

le
 3

(U
nc

er
ta

in
ty

 te
st

) 
M

ea
n 

in
te

r-
us

er
 D

IC
E

, H
au

sd
or

ff
 d

is
ta

nc
e 

(H
D

),
 a

nd
 a

ve
ra

ge
 s

ym
m

et
ri

c 
su

rf
ac

e 
di

st
an

ce
 (

A
SS

D
)

D
IC

E
H

D
 (

cm
)

A
SS

D
 (

cm
)

r 
>

 0
.5

5
r 

≤ 
0.

55
r 

>
 0

.5
5

r 
≤ 

0.
55

r 
>

 0
.5

5
r 

≤ 
0.

55

U
se

r
0.

81
0.

94
0.

78
0.

08
0.

13
0.

07
0.

03
0.

05
0.

03

r d
en

ot
es

 v
es

se
l r

ad
iu

s 
(c

m
)

Med Biol Eng Comput. Author manuscript; available in PMC 2020 May 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Maher et al. Page 33

Table 4

DICE improvement and fraction of accepted segmentations under different quality control metrics and 

thresholds

CP CD RD Acceptance fraction (%) DICE

> 0.3 80.8 0.68

> 0.5 59.3 0.73

< 0.65 88.7 0.62

< 0.3 92.7 0.62

> 0.2 < 0.75 < 0.4 82.6 0.68

> 0.3 < 0.65 < 0.3 74.8 0.73

CP is the value of the center pixel of the predicted segmentations, CD is the offset distance of the center of the predicted vessel lumen from the 
pathline, RD is the normalized radius variance of the predicted lumen surface points
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Table 5

(User test) Mean user acceptance probability for segmentations produced by each method

Acceptance probability

r > 0.55 r ≤ 0.55

I2I-M 0.69 0.83 0.65

UNet-M 0.62 0.81 0.58

DeepLab-M 0.74 0.83 0.71

Threshold 0.34 0.68 0.26

Acceptance probability with quality control

I2I-M 0.80 0.85 0.79

UNet-M 0.70 0.85 0.67

DeepLab-M 0.78 0.84 0.76

Threshold 0.50 0.84 0.40

Acceptance means the user did not edit the predicted segmentation

Med Biol Eng Comput. Author manuscript; available in PMC 2020 May 26.


	Abstract
	Introduction
	Methods
	Vessel image enhancement with fully convolutional neural networks

	Neural network architecture
	Loss function for partially labeled images
	Neural network training process
	Adaptive segmentation with automated quality control

	Experimental setup
	Dataset and vascular model repository
	Reference segmentation methods
	Threshold:
	Level set method:

	Performance metrics
	DICE
	Hausdorff distance (HD)
	Average symmetric surface distance (ASSD)

	Neural network hyperparameters and nomenclature
	Automated segmentation quality control
	Measuring ground-truth segmentation uncertainty
	End-to-end model building workflow testing

	Results
	Ground-truth segmentation uncertainty
	Automated quality control results
	User-testing results
	Runtime performance and segmentation time savings

	Conclusion
	Neural networks and deep learning
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

