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Abstract
Obesity is a chronic metabolic disease resulting from excessive fat accumulation and/or ab-
normal distribution caused by multiple factors. As a major component of metabolic syn-
drome, obesity is closely related to many diseases such as type 2 diabetes mellitus, hyperlip-
idemia, hypertension, coronary heart disease, stroke and cancer. Hence, the problem of 
obesity cannot be ignored, and recent studies have shown that grape seed proanthocyanidin 
extract (GSPE) has an antiobesity effect. This paper systematically reviews the research prog-
ress and potential mechanism of GSPE emphasizing on obesity prevention and treatment.
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Published by S. Karger AG, Basel

Introduction

Obesity is a group of heterogeneous diseases which is associated with many factors, such 
as genetic factors, bad eating habits, less physical activity, endocrine and metabolic system 
disorders [1–3], alteration of intestinal flora [4], brown fat dysfunction [5], dysfunction of the 
nervous system hypothalamus ventrolateral nucleus hunger center and ventromedial nucleus 
satiety center [6], the disturbance of the biological clock [7] and so on. Complex and diverse 
causes contribute to the high incidence of obesity: the number of obese people in the world 
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has increased from 105 million in 1975 to 641 million in 2014 [8]. In a nutshell, obesity poses 
a serious threat to the health of individuals, and more and more evidence shows that obesity 
is an important risk factor affecting the morbidity and mortality in cardiovascular diseases; 
also, overweight can increase the mortality of adults suffering from cardiovascular diseases 
[9]. The body mass index has a linear relationship with the mortality rate of coronary artery 
disease, stroke and diabetes mellitus [10]. Even modest weight loss can also reduce the risk 
of these complications [11]. In addition, obesity can lead to gastrointestinal disorders, joint 
and muscle diseases, respiratory system problems and psychological problems [12, 13]. In 
short, obesity is an increasingly serious global public health problem, which seriously affects 
the daily life of obese people and increases the risk of mortality. 

How to prevent and treat obesity has been the focus of attention. Behavioral exercise and 
drug therapy [14], surgical weight loss [15] and dietary intervention therapy [16] have been 
the focus of research. But the effect of behavioral exercise on weight loss is slow and obviously 
unsuitable for obese patients with cardiovascular diseases; every weight loss drug has its 
own unique risk characteristics, so the doctor needs to fully understand drug contraindica-
tions and the differences among obese individuals [17]. More importantly, there is still a lack 
of long-term experimental studies on whether drug weight loss can cause side effects. Besides, 
the way of surgical weight loss has been considered controversial for a long time. It can reduce 
obesity in a short period of time, as 10–30% of patients who undergo gastric bypass surgery 
lose weight by 40 or 50% [18]. However, current evidence shows that the benefits of surgical 
weight loss are not universal. A considerable proportion of patients will experience weight 
rebound and recurrence of diabetes [19]. Although exercise, drugs and surgery can achieve 
effective weight loss, they have limitations, risks and instability, and are not suitable for all 
obese patients. In this context, a safe and reliable method of reducing obesity with fewer side 
effects is urgently required by obese people. Compared with behavior, drugs and surgical 
treatment, dietary strategies for losing weight or improving obesity-related conditions seem 
to be more anticipated. The use of plant-derived polyphenol flavanone, which has few side 
effects and widely exists in nature, has aroused interest among many dietary interventions 
[20–22]. The results of various animal and in vitro experiments show that polyphenols play 
a beneficial role in the complications of adipocyte-related pathology and dyslipidemia [23].

Grape seed proanthocyanidin extract (GSPE) is a flavonoid polyphenolic compound 
extracted from grape seeds. It is composed of +catechin, –epicatechin gallate, –epicatechin 
gallate and –epigallocatechin via C4–C6 or C4–C8 bond links. It exists in the form of monomer 
and polymer (Fig. 1) [24, 25]. Compared with other plant-derived polyphenols; GSPE has 
more beneficial health properties, including the ability to modify early cerebrovascular injury 
caused by hypertension [26], protection of the myocardium from injury [27, 28], prevention 
and treatment of diabetes and its complications [29], alleviation of exercise fatigue [30] and 
prevention of obesity and inflammatory reaction [31, 32]; it is considered as one of the most 
effective plant antioxidants, and one of the most effective free radical scavengers [33, 34]. By 
studying the relationship between GSPE and obesity, we found that GSPE has many activities, 
such as lowering blood lipid, improving the intestinal flora, regulating the metabolism and so 
on [35, 36]. It can effectively prevent obesity in many ways.

Improving Lipid Metabolism

Correct the Imbalance of Adipokines and Insulin Resistance 
Adipose tissue is an integral part of endocrine organs, and its secreted adipokines are 

closely related to the occurrence of obesity [37]. Adipose factors participate in regulating the 
metabolic balance network in vivo through autocrine, paracrine and endocrine forms. When 
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metabolic abnormalities occur, the secretion of adipokines increases and interferes with 
insulin signaling pathways, increased insulin synthesis and secretion, increased apoptosis of 
pancreas cells and clearance of insulin by insulin degradation enzyme, resulting in peripheral 
insulin resistance and disorders of lipid metabolism in vivo [38]. Three groups of hamsters 
were given a standard diet and a control group was given a high-fat diet/GSPE solution for 12 
weeks. Measuring their blood sugar, triglyceride (TG), insulin, leptin and adiponectin. It was 
found that GSPE prevented the increase in blood sugar, TG, insulin and insulin resistance to 
a certain extent, and reduced insulinemia and leptin by 16.5 and 45%, cardiac superoxide by 
74%, NAD(P)H oxidase by 30%, while adiponectin levels increased by 61% compared to the 
high-fat diet control group, suggesting that long-term consumption of GSPE can reduce 
obesity development and related metabolic pathways by improving adipokine secretion and 
oxidative stress [39]. Aside from this, chronic supplementation of GSPE can act on insulin-
sensitive cells, affect the function of pancreatic β-cells, and prevent the effect of a high-fat diet 
on pancreatic insulin secretion and lipid accumulation, thus improving insulin resistance. 
Also, it is worth noting that GSPE intake during lactation could induce insulin resistance and 
adiponectin resistance phenotypes in obese offspring, which indicates that GSPE had potential 
as a nutritional supplement during pregnancy [40].

Regulating the Function of White Adipose Tissue and Brown Adipose Tissue
Adipose tissue is divided into white (WAT) and brown adipose tissues (BAT). WAT stores 

energy, which is the largest energy reserve in mammals. WAT expands through hypertrophy 
(increased size of adipocytes) and/or proliferation (increased number of adipocytes). 
Obesity-related metabolic complications are associated with abnormal WAT expansion [41], 
because adipocyte hypertrophy is associated with insulin resistance and dyslipidemia. 
Compared to small adipocytes, hypertrophic adipocytes are more likely to attract inflam-
matory cells, have more fat-soluble and insulin resistance effects, resulting in metabolic 
disorders. However, proliferation can prevent metabolic changes [42]. GSPE supplemen-
tation can regulate WAT in visceral and subcutaneous tissues, reduce adipocyte hypertrophy 
and increase adipocyte proliferation, thus improving WAT function.

BAT has an antiobesity effect [43, 44] and excision of BAT in animals can lead to an 
abnormal increase in WAT [45]. Under normal conditions, it consumes energy by self-adapting 

Fig. 1. Structure of flavane-3- 
alcohol, procyanidin dimer and 
procyanidin trimer.
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heat production. Obesity was related to the decrease in BAT heat production, and the heat 
production in obese people was significantly lower than that in lean people [46]. This is 
because dietary-induced obesity can affect the function of BAT mitochondria, resulting in 
decreased gene expression of sirtuin protein 1, nuclear respiratory factor 1, isocitrate dehy-
drogenase 3γ and COX5α, and more importantly, reduced respiratory levels of mitochondria 
and pyruvate as well as carnitine palmitoyl coenzyme A. But chronic administration of GSPE 
can increase the oxidase activity of BAT cytochrome c in obese rats and correct the expression 
of key genes in BAT mitochondria. Mitochondrial respiratory status with pyruvate and 
carnitine palmitoyl coenzyme A as substrates in obese rats decreases mitochondrial function, 
while long-term administration of GSPE can promote mitochondrial respiration, improve 
mitochondrial function and increase BAT’s heat production capacity, thereby increasing 
energy consumption to prevent weight gain [47].

Some studies have found that some bioactive chemicals can induce WAT browning. GSPE 
is a flavonoid polyphenol biochemical, which can regulate WAT and BAT. Whether GSPE can 
induce WAT browning has not been studied yet. However, a new idea has been put forward 
for us that GSPE may have such a potential mechanism.

Increase the Transcriptional Activity of Bile Acid-Activated FXR and Inhibit Very  
Low-Density Lipoprotein Assembly
Bile acid is an effective low TG preparation, inhibiting the production of hepatic fat and 

the secretion of TG by activating and binding bile acid receptor (FXR), eliminating lipid 
protein rich in TG in blood and then lowering the plasma TG level. In the liver, bile acid-
activated FXR upregulates the expression of orphan nuclear receptor small isodimer chap-
erones, thereby inhibiting the expression of transcription factor sterol regulatory element 
binding protein 1c (SREBP1), resulting in a decrease in fatty acid (FA) synthesis in the liver 
and an increase in plasma TG catabolism. Therefore, FXR activity plays a key role in the 
control of TG, cholesterol, bile acid and glucose homeostasis. GSPE can regulate bile acid 
and lipid metabolism in vivo [48]. By comparing the effects of GSPE on wild type and 
FXR-null type mice, it was found that GSPE decreased the TG level of wild type mice without 
affecting the plasma total cholesterol level, but it had no significant effect on the plasma TG 
level of FXR-null type mice. This indicated that GSPE relied on the FXR pathway to reduce 
TG and, by enhancing the cdca in CV-1 and Hela cells, to activate the transcriptional activity 
of FXR [49, 50]. In addition, GSPE can inhibit very low-density lipoprotein assembly [51, 
52], SREBP1 activates the expression of multiple genes involved in FA and TG synthesis, and 
other components of the lipid metabolism regulation mechanism. Its transcriptional inhi-
bition is related to the synthesis and release of low FA and TG in the liver, leading to hypo-
lipidemia [53]. In conclusion, GSPE can be used as a co-activator of bile acid-dependent FXR 
activity. GSPE can reduce liver FA synthesis and increase plasma TG catabolism by acti-
vating FXR, transient upregulation of orphan nuclear receptor small isodimer chaperone 
expression [54] and subsequent downregulation of SREBP expression, thereby reducing 
body fat content.

Inhibiting the c-Jun Aminoterminal Kinase Pathway
Obesity is associated with an abnormal increase in c-Jun aminoterminal kinase (JNK) 

activity [55]. JNK is an important component of mitogen-activated protein kinase, also 
known as stress-activated protein kinase [56]. JNK protein-coding genes include JNK1, JNK2 
and JNK3. JNK1 and JNK2 are expressed in all tissues of the body. JNK3 is only expressed in 
the brain, heart and testis [57, 58]. In obese mice, increased lipid toxicity pressure activates 
JNK, and JNK activation leads to insulin resistance [59]. By comparing the effects of GSPE on 
lipid deposition in mice fed with a normal diet and high-fat diet, it was found that GSPE 
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decreased the expression of FA synthase, C/EBPα protein and MPARγ peroxidase receptor 
mRAN, which are the lipid production-related genes, through inhibiting the JNK pathway 
effectively reduced fat deposition [60–62] and showed a dose dependency. In a short time, 
the oral low dose of 25 mg/kg/day GSPE can reduce the size of WAT in the retroperitoneum, 
mesentery, epididymis and inguinal region, and prevent fat accumulation [63]. Comparing 
low, medium and high concentrations of GSPE (100, 200, 400 mg/kg/day), the low dose 
group had the best comprehensive lipid-lowering effect [64]. Among 50/100/150 mg/kg/
day GSPE, 150 mg/kg/day GSPE had the best effect on reducing blood lipid level, body 
weight, glucose and insulin tolerance in obese mice. The study of dosage-combined admin-
istration methods found that the best way to treat obesity metabolic disorder was inter-
mittent administration of 500 mg/kg at intervals of more than 1 week [65]. A single acute 
dose of GSPE was satisfactory, increased lipid oxidation of subcutaneous adipose tissue and 
increased total energy consumption. These combined effects resulted in weight loss. In 
addition, supplementation of GSPE with aerobic exercise can also reduce obesity in rats fed 
with a high-fat diet [66, 67]. Different doses and different ways can reduce fat deposition and 
obesity, but precise dosage and supplementation methods as well as auxiliary measures are 
still valuable for research.

Normalizing the Levels of microRNA-33 and microRNA-122
MicroRNA is a small noncoding RNA with a length of about 22 nucleotides, which hori-

zontally regulates gene expression after transcription. MicroRNAs are involved in almost 
all biological processes, affecting most metabolic pathways [68]. Obesity leads to overex-
pression of microRNA-33 and microRNA-122 in the rat liver [69, 70] but microRNA-33 and 
microRNA-122 are the main regulators of liver fat metabolism. In order to evaluate 
whether chronic intake of GSPE can improve the tolerance to lipid overload, inhibit the 
expression of hepatic microRNA-33 and microRNA-122, and reduce the increase in TGs in 
healthy rats after a meal, a dose-response experiment was conducted at 5, 15, 25 or 50 mg/
kg GSPE for 3 weeks. The study found that all doses of GSPE inhibited liver expression of 
miR-33a and miR-122, and reduced plasma and liver lipid levels [71] in a dose-dependent 
manner.

Interfere with Adipocyte Differentiation
Fat differentiation is a complex process, which is highly regulated by hormones, cyto-

kines and growth factors. Some molecules such as insulin, insulin-like growth factor-1, gluco-
corticoid (such as dexamethasone), the cAMP producer isobutyl methylxanthine, and thia-
zolidinedione have been shown to trigger 3T3-L1 (preadipocyte) to differentiate into adipo-
cytes [72]. GSPE can interfere with the differentiation process of 3T3-L1 adipocytes at the 
early stage of differentiation. Peroxisome proliferative activation receptor-γ2 is the main 
regulator of adipocyte differentiation and plays a central role in the lipolysis of adipocytes by 
GSPE. It interferes with the development of adipocytes through cell cycle and makes them 
fully differentiate [73]. In evaluating the effects of GSPE on differentiation, proliferation and 
lipolysis of porcine adipocytes, it was found that GSPE treatment inhibited preadipocyte 
differentiation and proliferation, reduced lipid accumulation, decreased expression of 
peroxisome receptor γ and FA binding protein 4 and activity of TG-3-phosphate dehydro-
genase by RNA. In mature porcine adipocytes, GSPE reduced lipid content and glycerol phos-
phate dehydrogenase activity, promoted free FAs and glycerol release; mRNA expression of 
key lipopolysaccharide transcription factors such as hormone sensitive lipase and fat TG 
lipase increased [74]. Therefore, it can be concluded that GSPE helps by reducing the formation 
of new adipocytes to prevent the development of obesity and obesity-related diseases [75, 
76].
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Improving Intestinal Flora

Regulating the intestinal microflora may be one of the mechanisms of GSPE affecting 
metabolism. Normal intestinal microflora can promote food metabolism, enhance immunity, 
participate in mediating fat absorption, transportation, storage and metabolism. Long-term 
high-fat diet can lead to intestinal microflora disorder, abnormal increase in intestinal perme-
ability, endotoxin, flagellum (the elongated curved filaments of proteins attached to the 
bodies of certain bacteria), and other harmful substances entering the blood through the 
intestinal wall and ultimately leading to chronic inflammation and obesity [77]. The intestinal 
flora is mainly composed of Bacteroides (Gram-negative, spore-free, obligate anaerobic 
bacilli), Firmicutes (Gram-positive bacteria), and Bifidobacteria (Gram-positive, inactive, 
rod-shaped, sometimes bifurcated, strictly anaerobic bacteria). Bacteroides participate in the 
absorption of nutrients and maintain the normal physiological function of the intestinal tract, 
more Firmicutes than Bacteroides in the intestine can lead to increased energy absorption in 
the intestinal tract, and excessive energy deposition can lead to obesity. GSPE can modify the 
intestinal microflora for a short time and increase the number of Bacteroides, decrease the 
number of Firmicutes and the content of butyric acid in the cecum, and regulate dominant 
bacteria (Fig. 2) [78]. The 16S rRNA amplifier sequencing technique was used to analyze the 
intestinal flora structure of a high-fat model and GSPE model. After gavage for 6 weeks, the 
abundance of Bifidobacterium, Bacteroides and Akkermansia in the GSPE group increased 
significantly, and the intestinal mucosal degrading bacteria Akkermansia muciniphila 
increased 70-fold, the intestinal permeability in the GSPE group was significantly lower than 
that in the high-fat group. GSPE promoted the transition of abnormal intestinal flora structure 
to normal induced by high-fat diet, repaired intestinal permeability, inhibited chronic inflam-
mation induced by harmful external antigens such as intestinal microorganisms [79, 80], 
significantly reduced plasma inflammatory factors such as tumor necrosis factor-α, inter-
leukin-6 or monocyte chemoattractant protein-1, improved macrophage infiltration of fat 
and liver tissue, regulated bacterial content such as that of Clostridium or Prevotella [81], and 
it was observed that chronic supplementation of GSPE can protect obese rats from diet-
induced intestinal changes [82].

Fig. 2. The mechanism of GSPE on 
obesity induced by high-fat diet 
(HFD). Chronic GSPE supplemen-
tation significantly changed the 
composition of the intestinal flo-
ra, i.e. the number of thick-walled 
bacteria (as shown in the gray 
bacterium) decreased, while the 
number of bacteria (red bacteri-
um) and bifidobacteria (green 
bacterium) increased. The change 
of the microbial community is re-
lated to the increase in butyrate 
production. Butyrate further in-
creased the secretion of GLP-1 in 
intestinal L cells and ultimately 
enhanced metabolic function to 
prevent obesity.
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Reduce Food Intake

Food intake is related to energy balance, which is a dynamic process. There is an inter-
action between food intake and energy consumption (Fig. 3) [83]. For humans, appetite 
control is a complex process, and feeding is affected by the hypothalamus and brain centers 
including the brainstem and hippocampus, as well as the stomach, intestine, liver, thyroid, 
peripheral adipose tissue, psychological and social behavior [84]. The hypothalamus regu-
lates long-term energy balance and weight by integrating fat hormone signals; the feeding 
and anorexia neurons in different regions participate in the regulation of food intake by regu-
lating the sensitivity of the posterior brain to short-term satiety hormones [85]; the gastro-
intestinal endocrine cells produce and secrete satiety hormones, which inhibit hunger, 
promote satiety and regulate eating behavior through the posterior cerebral circuit. The 
composition of food nutrients also affects satiety and appetite; foods with high protein content 
have the strongest satiety and those with high fat content have the weakest satiety [86].

In the gastrointestinal mechanism, GSPE treatment can inhibit digestive enzymes and 
nutrient digestion and absorption, thereby reducing food intake [87]. However, some studies 
have shown that GSPE inhibits intestinal β-glucosidase, improves intestinal amylase, lipase 
and protease, and improves digestive capacity [88, 89]. The inconsistency of the experimental 
results may be due to the small amount of enzymes in the intestinal tract of rats, and indi-
vidual differences are considerably large. Hence, the result error is caused, and the results 
need to be verified by further experimental research. In addition, GSPE can reduce gastroin-
testinal motility. In fasting animals, GSPE inhibits 60% of intestinal activity and 80% more 
strongly after feeding. In the absence of hepatic glucose production on the fasting stomach, 
the production of intestinal glucose is the necessary condition for maintaining blood glucose 
homeostasis [90]. Acute GSPE treatment inhibits intestinal gluconeogenesis, downregulates 
the expression of the glucose transporter Glut-2 and glucokinase in the liver and pancreas 
[91], reduces the uptake of glucose in the liver and pancreas, resulting in increased levels of 
portal vein glucose. During fasting, the portal vein glucose level maintained satiety to a certain 
extent [92]. When glucose is present in the intestine, it stimulates the secretion of intestinal 
hormones related to satiety in the colon, such as glucagon-like peptide (GLP-1), peptide YY, 
cholecystokinin and ghrelin.

In the central nervous system, the level of GLP-1 in plasma was elevated by giving 1 g 
GSPE/kg to fasting rats [93]. GLP-1 is a peptide hormone coded by the human glucagon gene 

Fig. 3. The main influence formu-
la of the energy balance frame-
work on appetite control. Green 
arrows indicate the process of 
stimulating feeding, while red ar-
rows indicate the process of in-
hibiting feeding [98]. GSPE in-
creases the secretion of gastroin-
testinal hormones that inhibit 
feeding, such as glucagon-like 
peptide (GLP-1), peptide YY 
(PYY), cholecystokinin (CCK) and 
ghrelin.
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and secreted by intestinal L cells. It can inhibit glucagon secretion, inhibit appetite and feeding, 
delay gastric emptying and increase satiety [94]. The increase in GLP-1 is a key mediator of 
GSPE influencing food intake. Sisley et al. [95] have also shown that neuronal GLP-1 receptors 
mediate the anorexia effect of liraglutide (a persistent GLP-1 agonist). At the same time, GLP-1 
activated POMC/CART neurons in the hypothalamus [96], indirectly inhibited neuropeptide 
Y/agouti-related peptide neurons through β-aminobutyric acid transmission, and together 
produced signals to reduce food intake, which indicated that GSPE affected the hypothalamic 
center [97], and then controlled food intake. However, the inhibiting effect of GSPE on food 
intake needs to be exerted at a specific dose without external pressure and calmness. The 
dosage of 125 mg/kg GSPE did not reduce food intake. The dosage of 250 mg produced a 15% 
inhibiting effect, which increased to 25% at 500 mg, but had a negative effect at 1,000 mg. In 
conclusion, GSPE affects food intake by modifying the GLP-1 signal, inhibiting digestive 
enzymes and reducing gastrointestinal motility at appropriate doses under nonstress condi-
tions.

Adjusting the Peripheral Clock

Obesity is related to a disorder of the biological clock. The biological clock is a physio-
logical regulation mechanism of the periodic changes of the biological adaptation to the 
external environment. It can be divided into the central biological clock and the peripheral 
biological clock. The central clock is regulated by light, and the peripheral clock is also affected 
by related hormones and food besides the light regulation (Fig. 4). Obesity is related to fat 
accumulation in vivo, clock gene expression is related to abdominal fat content, the day-night 
cycle is related to lipid balance and metabolism in vivo [99, 100]. Obesity caused by diet can 
lead to overexpression of some core clock and clock genes [101]. In order to see whether it 
can regulate the liver and intestine of healthy and obese rats, rats were given different doses 
of GSPE. It was found that GSPE administration inhibited the interference of clock genes in 
the liver and intestine [102]. WAT is most sensitive to GSPE [103]. In conclusion, GSPE has a 
certain role in regulating obesity clock genes. However, it cannot be inferred whether GSPE 
changes the clock gene first, then the lipid metabolism, or whether the lipid metabolism 
comes first. Therefore, whether proanthocyanidins can directly regulate the phase, amplitude 
and/or cycle of peripheral and central clocks remains to be further studied.

Fig. 4. GSPE regulates the rela-
tionship between biological clock 
and metabolism. GSPE inhibits 
the interference of the liver and 
intestine with the peripheral 
clock and improves the distur-
bance of the biological clock.
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Conclusion and Prospect

Obesity is a chronic metabolic disease, and there are many mechanisms affecting obesity. 
GSPE can improve lipid metabolism, reduce fat deposition, improve insulin resistance, 
increase TG decomposition, improve BAT heat production capacity, improve intestinal flora, 
reduce food intake, improve the peripheral clock to reduce obesity or prevent further devel-
opment of obesity. However, most of the studies on the effects of GSPE on obesity remain in 
animal and cell experiments, and some of the mechanisms of action are less studied. The reli-
ability of the experimental results needs to be further tested. The precise mechanism is not 
clear. The effect of GSPE on improving lipid metabolism in vivo through different mechanisms 
has been confirmed. However, whether GSPE can reduce body weight is still controversial. 
Some experimental results showed that GSPE could reduce the body weight of mice, but there 
were also some experimental results that showed that the body weight of mice did not change, 
which may be due to the errors caused by different experimental models, doses and time of 
use. Future research can be further explored from the following aspects: (1) continue to 
explore the mechanism between GSPE and obesity, study the relationship between chronic 
supplementation of GSPE and regulation of the biological clock; (2) rigorously designed large-
scale randomized trials or meta-analyses of current research and results; (3) clinical explo-
ration of GSPE prevention and treatment of obesity, the optimal dose for obese people.
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