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Abstract

Non-invasive blood-brain barrier (BBB) opening using focused ultrasound (FUS) is being tested as 

a means to locally deliver drugs into the brain. Such FUS therapies require injection of preformed 

microbubbles, currently used as contrast agents in ultrasound imaging. Although their behavior 

during exposure to imaging sequences has been well described, our understanding of microbubble 

stability within a therapeutic field is still not complete. Here, we study the temporal stability of 

lipid-shelled microbubbles during therapeutic FUS exposure in two timescales: the short time 

scale (i.e., μs of low-frequency ultrasound exposure) and the long time scale (i.e., days post-

activation). We first simulated the microbubble response to low-frequency sonication, and found a 

strong correlation between viscosity and fragmentation pressure. Activated microbubbles had a 

concentration decay constant of 0.02 d−1 but maintained a quasi-stable size distribution for up to 3 

weeks (< 10% variation). Microbubbles flowing through a 4-mm vessel within a tissue-mimicking 

phantom (5% gelatin) were exposed to therapeutic pulses (fc: 0.5 MHz, peak-negative pressure: 

300 kPa, pulse length: 1 ms, pulse repetition frequency: 1 Hz, n=10). We recorded and analyzed 

their acoustic emissions, focusing on emitted energy and its temporal evolution, alongside the 

frequency content. Measurements were repeated with concentration-matched samples (107 

microbubbles/ml) on day 0, 7, 14, and 21 after activation. Temporal stability decreased while 

inertial cavitation response increased with storage time both in vitro and in vivo, possibly due to 
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changes in the shell lipid content. Using the same parameters and timepoints, we performed BBB 

opening in a mouse model (n=3). BBB opening volume measured through T1-weighted contrast-

enhanced MRI was equal to 19.1 ± 7.1 mm3, 21.8 ± 14 mm3, 29.3 ± 2.5 mm3, and 38 ± 20.1 mm3 

on day 0, 7, 14, and 21, respectively, showing no significant difference over time (p-value: 0.49). 

Contrast enhancement was 24.9 ± 1.7 %, 23.7 ± 11.7 %, 28.9 ± 5.3 %, and 35 ± 13.4 %, 

respectively (p-value: 0.63). In conclusion, the in-house made microbubbles studied here maintain 

their capacity to produce similar therapeutic effects over a period of 3 weeks after activation, as 

long as the natural concentration decay is accounted for. Future work should focus on stability of 

commercially available microbubbles and tailoring microbubble shell properties towards 

therapeutic applications.
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INTRODUCTION

Focused ultrasound (FUS) in combination with intravenous injection of microbubbles (MBs) 

can be used to non-invasively, locally, and reversibly open the blood-brain barrier (BBB) 

[1,2]. MBs disperse throughout the vasculature and begin vibrating when exposed to the 

alternating phases of the FUS wave, undergoing a complex set of behaviors termed acoustic 

cavitation [3]. Intravascular stresses exerted by these vibrations allow for the temporary 

permeabilization of the otherwise impenetrable BBB. Although a lot of efforts have focused 

on the development of FUS systems able to perform targeted therapies [4–7], the behavior of 

MBs exposed to therapeutic FUS has been relatively understudied.

MBs were originally designed and are routinely used as contrast agents in ultrasound 

imaging applications [8]. As such, their behavior under exposure to center frequencies and 

pulse lengths relevant to ultrasound imaging has been well described [9,10]. MB lipid shell 

composition significantly affects the acoustic dissolution rate, fragmentation threshold, and 

lipid shedding during ultrasound imaging [11]. MB behavior during such sequences is 

dominated by surfactant shedding during the on-time of μs-long pulses and by gas diffusion 

during the off-time in kHz pulse repetition frequencies (PRF) [12]. Gas diffusion and 

stability within circulation can be modified through the addition of poly-ethylene glycol 

(PEG) in the constituent phospholipids. The degree and type of PEG-ylation had a limited 

effect on the circulation time and echogenicity of lipid-shelled MBs [13]. In contrast, the 

lipid molar ratio had a significant effect in the backscattered power, most likely due to 

different shell viscosity [14]. There is evidence that a decrease in the molar content of PEG-

ylated emulsifier increases the shell stiffness [15,16]. Finally, viscosity and stiffness 

decrease with temperature elevation, unlike the size distribution which remains largely 

unaffected [17].

In the therapeutic ultrasound realm, most previous work has focused on drug-loaded MBs 

[18]. In terms of brain therapy, it has been shown that the MB type [19] and size distribution 

[20] are defining factors in BBB opening efficiency. Size-isolated MBs [21] with larger 
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average diameters produced larger BBB opening volumes [22], due to enhanced engagement 

with the surrounding microvasculature [23]. In terms of the physicochemical properties of 

the MB shell, longer hydrophobic chains in the phospholipid layer led to increased acoustic 

emissions and drug delivery, especially at high acoustic pressures [24]. Heavy gas cores are 

required to avoid fast dissolution through the lipid shell, but the gas type does not appear to 

significantly influence the BBB opening efficiency [25].

Therapeutic pulses differ from imaging pulses in terms of their center frequency and pulse 

length. Low-frequency (< 1.5 MHz) and ms-long (> 500 cycles) pulses are typically used for 

BBB opening and targeted drug delivery applications [26–29]. Such pulses promote primary 

[30,31] and secondary [32,33] Bjerknes forces, lower the inertial cavitation threshold 

[34,35], favor coalescence [36,37] and produce sustained acoustic streaming within the 

blood vessels [38–40]. All these effects are expected to influence the stability of MBs during 

therapeutic ultrasound exposure, and in turn, the resulting bioeffect [41]. Low-frequency 

insonation leads to significantly higher MB expansion ratios compared to imaging center 

frequencies [42]. MB stability during therapeutic ultrasound exposure depends on the 

characteristics of the ultrasound pulse sequence used [43,44]. Short pulses emitted at PRFs 

on the order of kHz prolong the MB lifetime [43], improve the spatiotemporal uniformity of 

cavitation activity [44], and eliminate standing-wave formation within the skull [45,46]. 

Enhanced temporal stability along with uniform cavitation activity have produced uniform 

and minute-lasting BBB opening [47,48]. All these studies were conducted with a specified 

MB formulation and shed light on the influence of the exposure conditions to the MB 

stability.

To date, there has been no study to investigate the temporal stability of MBs with variable 

phospholipid molar ratios in ultrasound therapy, and in particular in the context of BBB 

opening. Furthermore, an important parameter which may be useful in both pre-clinical and 

clinical investigations is the stability of MBs during therapeutic exposure after long-term 

storage following activation. One study examining Definity® MB stability over a period of 

15 days post-activation found a large variation in the MB collapse threshold, which did not 

follow a linear trend over time [49]. Size-isolated MBs had stable size distributions over 

time for up to a month post-activation [21]. Here, we studied temporal stability of 

polydisperse lipid-shelled MBs in two time scales: a) short time scale, i.e. μs of therapeutic 

ultrasound exposure, and b) long time scale, i.e. days post-activation. We conducted 

numerical simulations, in vitro phantom experiments and in vivo BBB opening in a mouse 

model, in order to establish the characteristics of the acoustic emissions over these two time 

scales. Our hypothesis was that the lipid molar ratio and storage time do not change the 

temporal stability and the BBB opening potential of lipid-shelled MBs.

METHODS

Numerical simulations

To evaluate the effect of shell parameters on the MB oscillation dynamics, and more 

importantly the break-up or fragmentation pressure, we implemented the Marmottant model 

[50] in MATLAB© (The Mathworks, Natick, MA, USA). This model is based on the 

Rayleigh-Plesset equation, modified to include the effect of the shell characteristics [50]:
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ρl RR̈ + 3
2Ṙ2 = P0 + 2σ R0

R0
R
R0

−3κ
1 − 3κ

c Ṙ − P0 − 2σ(R)
R − 4μṘ

R

− 4κSṘ
R2 − P(t)

(1)

with surface tension σ(R) being:

σ(R) =

0 if R ≤ Rbuckling 

χ R2

Rbuckling 
2 − 1  if Rbuckling  ≤ R ≤ Rbreak‐up 

σwater  if R > Rbreak‐up 

. (2)

All parameters used here were based on reported literature (table 1). Shell compression 

modulus χ and surface dilatational viscosity κS were estimated based on previous work 

[14], assuming a linear increase of both with increasing molar ratio. Lipid layer elasticity 

has been shown to increase with a reduction of the DSPE-PEG2000 content [15,16], or 

conversely, an increase in the DSPC:DSPE-PEG2000 molar ratio in this study. Similar 

observations have been made regarding shell viscosity [14,51]. Yet, the elasticity and 

viscosity increase with molar ratio is an assumption and may influence the validity of the 

simulations. Furthermore, we assumed a thin lipid shell of thickness ε equal to 1 nm [51]. χ 
and κS of the thin lipid shell were calculated by multiplying the relative bulk moduli with 

the shell thickness, i.e. χ = 3Gsε and κS =3μlipidε [50,52], where Gs and μlipidε were the 

bulk shear modulus and the bulk viscosity of the lipids constituting the shell [14]. 

Marmottant model assumes that ε≪R , which is generally true for lipid-shelled MBs. 

However, ε can be up to 650 nm in polymer-shelled MBs [53]. In this study, the buckling 

radius was assumed to be equal to the equilibrium radius (i.e., 1.2 μm). Equation (1) was 

solved using the built-in ode45 solver in MATLAB©, a fourth-order Runge-Kutta algorithm, 

with a time step of 10 ns. This time step was identical to the sampling period used in the in 
vitro and in vivo experiments, to allow for meaningful comparison.

Microbubble formulation

Lipid-shelled MBs were prepared in-house following previously described chemical 

synthesis protocols [21,54]. Briefly, the shell constituted of two lipids, 1,2-distearoyl-sn-

glycero-3-phosphocholine (DSPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-

N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000 or DSPE-PEG2K hereafter) (No. 

850365 and 880120, purity > 99%; Avanti Polar Lipids, Alabaster, AL, USA) mixed at 

variable molar ratios (6:1, 9:1, and 12:1 - or in percentage format, 86:14, 90:10, and 92:8; 

Figure 1A). In vivo experiments and most in vitro experiments were conducted with the 9:1 

molar ratio, which is typically used for BBB opening [20] and corresponds to a Definity-like 

mixture [55]. The ratios of 6:1 and 12:1 were selected on either side of the established ratio, 

to investigate the effect of using less or more emulsifier on the cavitation response. Lipids 

were mixed within a solution of 80% v/v PBS, 10% v/v glycerol, and 10% v/v 1,2-

propanediol (Sigma Aldrich, St. Louis, MI, USA). Perfluorobutane (C4F10; FluoroMed LP, 
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Round Rock, TX, USA) was introduced in the empty head space of the hosting vial, and was 

then mechanically mixed with the lipid solution using an amalgamator for 45 s (Vialmix; 

Lantheus Imaging, North Billerica, MA, USA). MB activation was performed on day 0, but 

MBs were counted and sized prior to every experiment (Figure 1B), in order to have 

concentration-matched populations for each sonication. MBs were stored in room 

temperature to avoid large temperature gradients during the course of the experiments, 

which could influence the size distribution or shell properties [17]. Following activation, MB 

vials were covered with parafilm to reduce the amount of gas exchange between the vial and 

the environment. Yet, nitrogen and oxygen transfer into the PFB core is likely to affect the 

stability and inertial cavitation responses over time [56].

Experimental setup

In vitro and in vivo experiments were conducted in the same experimental setup (Figures 1C 

and 1D), described in detail elsewhere [57]. Briefly, a 0.5-MHz spherical-segment single-

element FUS transducer (Part No. H-204; Sonic Concepts, Bothell, WA, USA) was driven 

by a waveform generator (33500B series; Agilent technologies, Santa Clara, CA, USA) 

through a 50-dB radiofrequency power amplifier (Model A075; E&I, Rochester, NY, USA). 

The focal volume (2 mm × 11 mm) was placed either at the center of the 4-mm channel of 

the tissue-mimicking gelatin phantom (concentration: 5% w/v) or at the caudate putamen 

structure of the murine brain. For the in vitro experiment, MBs were flowing through the 

channel at a constant velocity of 1 mm/s, to imitate the slow flow of capillaries. Acoustic 

emissions were captured with a 7.5-MHz single-element passive cavitation detector (Part 

No. U8423539, V320, diameter: 12.7 mm, focal depth: 76.2 mm; Olympus Industrial, 

Waltham, MA, USA) which was inserted and co-aligned with FUS transducer, having 

overlapping foci. A high-pass filter was used to filter out the fundamental and the second 

harmonic reflections (Part No. ZFHP-1R2-S+, cut-off frequency 1.2 MHz; Mini Circuits, 

Brooklyn, NY, USA). Recorded signals were amplified by 30-dB with a pulser-receiver (Part 

No. 5072; Olympus Industrial) and then recorded using a GaGe oscilloscope card (Part No. 

CSE1422, 14 bit; Dynamic Signals LLC, Lockport, IL, USA). We captured segments of 

114,688 time points at a sampling frequency of 100 MSa/s.

Signal processing

Acoustic cavitation emissions were processed offline in MATLAB©. Time-domain signal 

(Figure 2A) was used to estimate the energy (Figure 2B) emitted during a single therapeutic 

pulse through:

E ∫
0

T
V 2dt ≈ ∑

t = 0

T
V 2Δt (3)

where V was the voltage at each time point in volts and Δt was the sampling period equal to 

10 ns or 10−8 s. In this calculation, it was assumed that the electrical energy in the detection 

system was proportional to the acoustic energy emitted by the MBs. We also assumed a 

dimensionless resistance value of 1 for simplicity, therefore energy units are given in V2s 

and not in Joule. Control sonications without MBs were used to estimate the baseline signal 

[58], whose energy was subtracted from the MB acoustic emissions at each time point [43]. 
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We then assessed the normalized cumulative energy (Figure 2C) to investigate the temporal 

distribution of cavitation emissions during the pulse. To do so, two temporal constants were 

calculated at each condition, following previous work [43,44]. The constants t20 and t80 were 

defined as the time required for the 20% and 80% of the total acoustic energy to be emitted 

(Figure 2C). Based on these two values, a third stability metric was introduced, namely 

temporal bias (TB). TB was defined as:

TB = t80/t20 − 4 . (4)

TB equal to 0 would indicate a symmetric profile of emissions over time, since for “linear 

emission curves” t80 would be four times t20. Negative TB values (i.e., t80 < 4t20) would 

indicate early emission bias, while positive TB values (i.e., t80 > 4t20) would indicate late 

emission bias.

Frequency analysis was conducted to identify the cavitation mode at each experimental 

condition. A Fast Fourier transform (FFT) was performed in MATLAB (number of FFT 

points: 114,688). Based on the FFT (Figure 2D), three spectral areas were filtered and 

analyzed independently:

a harmonicregions,fℎ, n = nfc (5)

b ultraharmonicregions,fu, n = n − 1/2 fc (6)

c broadbandregionsfb, Withfℎ, n + 10kHz < fb < fu, n − 10kHzandfu, n
+ 10kHz < fb < fℎ, n + 1 − 10kHz . (7)

where fc was the center frequency of the FUS transducer (i.e., 0.5 MHz) and n was the 

harmonic number (n = 3,4,5,…,10). The fundamental and second harmonics were filtered 

out and ignored, due to strong reflections at these frequencies in control experiments.

Cavitation doses were calculated as described before [7,59], based on the root-mean-square 

voltage detected in the respective spectral areas. Harmonic stable (SCDh), ultraharmonic 

stable (SCDu) and inertial cavitation (ICD) doses were defined as:

CDi = FFT fi
2

n (8)

where the index i changed for harmonic, ultraharmonic, and broadband regions fi , to 

estimate SCDh, SCDu, and ICD, respectively. These doses were calculated for each acoustic 

pulse both for in vitro and in vivo experiments. Wherever appropriate, per-pulse cavitation 

doses (i.e., cavitation levels) were either averaged or summed to derive the mean and total 

cavitation doses.

Image processing for MB sizing

To estimate the MB size distribution, we followed an optical microscopy-based technique 

similar to previously described approaches [60–62]. Activated MBs were first diluted by 
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1,000× in distilled water. Ten microliters of this solution were then injected into the 

chambers at either side of a disposable hemocytometer (part number: NC0435502; Fisher 

Scientific, Hampton, NH, USA). Each chamber had a height of 100 μm, so the total volume 

of each marked square was 0.1 mm3 (Figure 2E). MBs were imaged in bright field at 20× 

magnification in an upright microscope (Leica DM6 B; Leica Microsystems Inc., Buffalo 

Grove, IL, USA). A total of 64 images were acquired, one for each marked square. The 

images were then cropped, removing the dark rim surrounding the squares of the 

hemocytometer. Cropped images were processed in Matlab (The Mathworks, Natick, MA, 

USA) using a purpose-built algorithm that detected individual MBs based on the circular 

Hough transform (function imfindcircles). Given the known volume, the total number of 

MBs allowed an approximation of the original MB concentration. Finally, the mean and 

maximum radius of each MB population was calculated at each time point. Different MB 

batches were used for in vitro and in vivo experiments, and each batch was measured 

separately. The same MB batch was used across time points, following activation on day 0.

In vitro experiments

A tissue-mimicking phantom was prepared for the in vitro experiments. Gelatin powder 

(G2500; Sigma Aldrich, St. Louis, MI, USA) was slowly mixed in hot water (>60 °C), 

which was continuously stirred with a magnetic stirrer. The final gelatin concentration was 

5% w/v. A silicon elastomer tube (outer diameter: 4mm; Saint-Gobain, Wayne, NJ, USA) 

was fixed between the inlet and outlet ports of a plastic container and served as the mold for 

the channel. The gelatin solution was poured into the container and left over night at 5 °C to 

set.

The following day, the FUS transducer was placed on top of the gelatin phantom (Figure 

1C). A raster scan was performed to locate the channel along the lateral and elevational 

dimensions. The focal volume was placed at the center of the channel along the axial 

dimension, using pulse echo. Control sonications were conducted with water flowing at a 

velocity of 1 mm/s in order to imitate slow capillary flow. Finally, MBs were diluted at the 

desired concentration (107 MBs/ml) based on the counting result (Figure 5) and were made 

to flow at the same fluid velocity. A total of 10 therapeutic pulses (Table 2) were emitted per 

condition.

In vivo experiments

All animal experiments were approved by the Institutional Animal Care and Use Committee 

(IACUC) of Columbia University. Three wild-type mice (C57BL/6, age: 4 – 8 months, mass: 

28 ± 6 g) were exposed to therapeutic ultrasound on a weekly basis. Based on literature, n = 

3 mice would suffice to produce statistically significant differences in terms of MRI-based 

BBB opening quantification [20,63,64]. Anesthesia was induced and maintained with 

inhalable isoflurane mixed with oxygen (2–3% for induction and 1.2–1.5% for 

maintenance), delivered through a digital vaporizer (SomnoSuite; Kent Scientific, 

Torrington, CT, USA). Mice were fixed within a stereotaxic frame (David Kopf Instruments, 

Tujunga, CA, USA) to allow for accurate targeting (Figure 1D). Head fur was removed with 

clippers and depilatory cream, applied for 10–20 sec. Using a previously described metallic 

grid method [26], we targeted the caudate area (coordinates from lambdoid suture: +3 mm 
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ventral, −2 mm lateral). A control sonication was performed prior to MB injection, to 

acquire a baseline signal, which was subsequently subtracted from the MB signal. MBs were 

injected through an intravenous catheter inserted into the tail vein, at a concentration of 107 

MBs/ml of blood. This concentration was equivalent to 5× the clinical dose of Definity® 

MBs recommended for ultrasound imaging applications. For each day during the 3 weeks 

post activation, the injected dose was calculated based on the concentration measured prior 

to every experiment (Figure 5C).

Following the 2-min ultrasound treatment using clinically relevant acoustic parameters 

(Table 2), we injected 200 μl of gadolinium(Gd)-based contrast agent (Omniscan; GE 

healthcare, Bronx, NY, USA) intraperitoneally. Mice were transferred to the MRI suite, 

anesthetized with 1–2% isoflurane, placed in a 3-cm birdcage coil and scanned with a small-

animal 9.4T MRI system (Bruker, Billerica, MA, USA). A contrast-enhanced T1-weighted 

2D FLASH scan (TR/TE: 230/3.3 ms, flip angle: 70°, number of excitations: 18, in-plane 

resolution: 85μm × 85μm, slice thickness: 500 μm, receiver bandwidth: 50 kHz) was 

acquired approximately 45 minutes after FUS exposure, along both axial and coronal planes.

Image processing for MRI quantification

MRI scans were loaded into MATLAB©. Quantification was performed on the coronal 

slices. Firstly, a region of interest (ROI) was defined in the contralateral hemisphere to 

calculate the baseline intensity. The threshold intensity to define BBB opening was set as the 

average intensity within the control ROI plus 3 standard deviations. Every coronal slice was 

loaded sequentially, and a manual ROI was drawn within the entire ipsilateral hemisphere. 

All pixels having intensity higher than the threshold were counted to derive the BBB 

opening surface area in each slice. The total BBB opening volume (in mm3) per mouse was 

calculated by summing the BBB opening surface areas across all slices and then multiplying 

by the slice thickness. Finally, the contrast enhancement (in %) was calculated by dividing 

the mean intensity within the BBB opening areas with the mean intensity of the control ROI.

Statistics

In vitro experiments were repeated for n = 10 pulses and in vivo experiments were repeated 

for n = 3 mice (or 360 pulses) per day post-activation. Measurements are presented as mean 

± standard deviation, unless otherwise stated. One-way ANOVA tests with post-hoc 

Bonferroni analysis were performed to compare metrics across the lipid molar ratios or days 

post-activation. Statistical significance was assumed at p < 0.05.

RESULTS AND DISCUSSION

Numerical simulations

Using equation (1), we simulated the radial oscillations of MBs exposed to therapeutic 

ultrasound (Figure 3). At low acoustic pressures (e.g., 50 kPa) MBs oscillated in a quasi-

sinusoidal fashion around the equilibrium radius. Increasing the acoustic pressure led to 

asymmetric oscillations, with the expansion phase outweighing the compression phase 

(Figure 3A). At 200 kPa, the expansion ratio during the rarefactional phase reached up to 

1.75 (i.e., maximum radius of 2.1 μm compared to equilibrium radius of 1.2 μm). 
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Additionally, we observed a high-frequency oscillation during the compression phase at high 

pressures. This effect was more pronounced in MBs with lower DSPC:DSPE-PEG2K molar 

ratio (Figure 3B). Increasing the molar ratio or, conversely, the shell stiffness and viscosity, 

suppressed the instability during the MB collapse. Increasing the molar ratio decreased the 

amplitude of radial oscillations. Consequently, the fragmentation or break-up pressure 

increased with DSPC:DSPE-PEG2K ratio (Figure 3C). Surface dilatational viscosity had a 

significant effect on the fragmentation pressure, unlike shell compression modulus (Figure 

3D). This is in accordance with previous studies that reported shell viscosity to be the major 

determinant in MB response [14,51].

Effect of molar ratio on cavitation response

Changing the DSPC:DSPE-PEG2K molar ratio during MB preparation significantly affected 

most stability metrics (Figure 4). The total energy emitted during sonication was 

significantly different across the ratios (p = 1.16×10−6; one-way ANOVA). The ratio 9:1 

produced significantly lower total energy compared to 6:1 and 12:1 (Figure 4A). 

Qualitatively, the average cumulative energy was similar across the ratios (Figure 4B). 

However, there were significant differences both in t20 (p = 0.005) and t80 (p = 2.48×10−5). 

Interestingly, 9:1 ratio had significantly higher t20 compared to the other ratios, indicating 

that early destruction of quasi-resonant MBs is avoided at this ratio (Figure 4C). In contrast, 

t80 increased with molar ratio, suggesting that surviving MBs with higher ratios are more 

stable compared to lower ratios. This is in accordance with the simulation results, showing 

that non-resonant bubbles of 1.2 μm in radius are progressively less prone to fragmentation 

with increasing molar ratio (Figures 2C and 2D).

There was no significant difference in the temporal bias across the molar ratios (p = 0.054; 

Figure 4D). Average spectra of different ratios had similar features, with a notable increase 

of both harmonic and broadband peaks for the 9:1 ratio. This was evident in the cavitation 

doses, where we found a significant difference across ratios, for SCDh (p = 1.87×10−6), 

SCDu (p = 4.92 × 10−4) and ICD (p = 4.99 × 10−5). 9:1 ratio had higher SCDh, SCDu, and 

ICD compared to the other ratios (significantly higher only compared to 12:1). Higher doses 

indicated sustained acoustic emissions over time, despite the lower total energy emitted 

(Figure 4A), which may be associated with reduced MB destruction. Taken together, these 

data indicate that the molar ratio of 9:1 provided the higher stability during the 1-ms pulse, 

thus it was chosen as the most suitable formulation for therapeutic applications.

Stability of microbubble size distribution

Long-term storage of activated MBs may be an important factor of reducing cost and 

allowing widespread use of MB-based FUS therapies, such as BBB opening. For that reason, 

we first measured the stability of MB size distribution over time (Figure 5). In this study, we 

used an optical microscopy based counting technique (Figures 2E and 2F). We first 

compared the size distribution acquired using this method with an alternative technique, 

based on Multisizer counting (Figure 5A). The derived distributions peaked at different radii 

(1.24 μm for optical microscopy and 0.75 μm for Multisizer) and had lower degree of 

agreement in MB radii below 2 μm. Optical microscopy gave a larger MB density for radii 

between 1 μm and 2 μm compared to Multisizer. The root mean square error in MB density 
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estimation was 0.22 or 22%. Over time, the MB size distributions had similar characteristics 

(Figure 5B), with a moderate shift of the peak radius towards smaller radii. MB 

concentration decreased over time (Figure 6C). An exponential fit was performed, assuming 

that the decay rate was proportional to the remaining MB number. The characteristic decay 

constant was estimated as λ = 0.02d−1, yielding a MB half-life of 35 days. However, the 

concentration was practically stable between day 14 and 21 in our measurements. The mean 

and maximum radius had a limited variation throughout the 3 weeks of measurements 

(Figure 5D). Mean radius ranged between 1.37 ± 0.56 μm and 1.52 ± 0.63 μm (9.9% 

variation), while the largest radius measured was between 6.47 μm and 6.94 μm (6.7% 

variation). This is in accordance with published literature on size-isolated MBs, whose size 

distribution was stable for up to a month after activation [21].

Previous work has identified discrepancies in the measured size distribution when using 

different techniques. For example, size distributions were different between Accusizer, 

which is based on light scattering, and Multisizer, which is based on electrical impedance 

sensing of displaced electrolyte volume [21,65]. Similarly to this study, it has been 

previously shown that optical microscopy-based size distribution is not identical to 

Multisizer measurements [66]. Despite the differences, our main interest was to evaluate the 

evolution of MB population over time, measured with the same technique (Figure 5D). 

Critically, the measured concentration (Figure 5C) was used to study the response of 

concentration-matched samples at every time point, for both in vitro and in vivo 
experiments.

Microbubble stability in vitro

MBs with DSPC:DSPE-PEG2K molar ratio of 9:1 were activated on day 0 and were stored 

in room temperature (~18–20 °C) for 21 days. Concentration-matched MBs were made to 

flow through the tissue-mimicking phantom (Figure 1C) and were exposed to therapeutic 

pulses (Table 2), on days 0, 7, 14, and 21. The total emitted energy was significantly 

different across days (p < 10−27), and peaked at day 14 (Figure 6A). Cumulative energy had 

a smoother slope on day 0 compared to following days (Figure 6B), suggesting slower MB 

destruction during the first half of the pulse. This was corroborated by the temporal 

constants. Both t20 and t80 were significantly different across days (p = 4.5 × 10−12 and 5 × 

10−5, respectively). Both constants progressively decreased over time (Figure 6C), with the 

effect being stronger on t20 (i.e., at the beginning of the pulse). Sonications on days 7, 14, 

and 21 yielded significantly lower t20 compared to day 0, but there was no significant 

difference between them. In terms of t80, days 14 and 21 had significantly lower 

measurements compared to days 0 and 7, but there was no difference between each of the 

first or last two days. Negative temporal bias on day 0 was indicatory of delayed acoustic 

emissions (Figure 6D). The bias was progressively eliminated towards day 21, due to the 

more uniform distribution of these emissions over time (Figure 6B). Harmonic amplitude 

decreased over time compared to the broadband floor (Figure 6E). This was reflected on the 

cavitation doses (Figure 6F). Whereas harmonic cavitation dose based on harmonics 

decreased over time (slope: −10 mV/d), ultraharmonic and inertial cavitation doses rose over 

time (slope: 0.46 mV/d and 0.8 mV/d, respectively).
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Taken together, these results demonstrate that MBs get progressively less stable under 

therapeutic exposure in vitro over time. Given the limited variation in the size distribution 

for 3 weeks post-activation (Figure 5D), it is unlikely that changes in MB size drove this 

transition. It is likely that the lipid content is modified during storage, due to either ambient 

pressure or ambient temperature variations [17]. Surfactant shedding may change the total 

amount or the DSPC:DSPE-PEG2K ratio in the MB membrane [12,67]. According to our 

simulation results, a decrease in the lipid molar ratio would lead to MBs more prone to 

fragmentation (Figure 3C). A possible explanation is that DSPC is naturally expelled out of 

the MB shell in the examined time scale, possibly due to its charge and MB zeta-potential 

[68–70]. If the expulsion rate of the neutral emulsifier DSPE-PEG2K was lower than the 

respective rate of DSPC, the DSPC:DSPE-PEG2K molar ratio would effectively decrease 

over time. This would lead to MBs with decreased compression modulus and, most 

importantly, viscosity (Figure 3D). Apart from lipid shedding, lipid degradation and 

peroxidation may influence the shell properties over time, especially given the gas exchange 

between the activated vial and atmospheric air. However, this remains a hypothesis that will 

be tested in future work, possibly using fluorescently-tagged lipids [71,72]. Finally, shell 

modifications would change the resonance frequency of both isolated MBs [73] and MB 

populations [74,75], thereby affecting their fragmentation threshold [76,77].

Microbubble stability in vivo

MBs with reduced stability during therapeutic pulses in vitro were expected to have similar 

but not identical behavior in vivo, due to the different boundary conditions [78–81]. Despite 

the large variation of emitted energy per pulse in each mouse, the total energy emitted during 

the 2-min FUS treatment was not significantly different across days (p = 0.46, n = 3 mice 

per day; Figure 7A). The average energy initially decreased at day 7, but then increased on 

average until day 21. We observed similar temporal distributions of the cumulative energy 

across days (Figure 7B). Temporal constants presented a wide deviation across all the pulses 

per day (Figure 7C). When examining the average constants per mouse, t20 was not found 

significantly different across days (p = 0.06, n = 3 mice per day) and t80 was marginally 

different (p = 0.02; only statistical difference was observed between day 7 and 21). Both 

constants had a similar general trend, initially decreasing on day 7 and then increasing until 

day 21. In other words, MBs appeared more stable during sonication on day 21, compared to 

days 7 and 14, and similarly stable compared to day 0. The inverse trend was observed in the 

temporal bias (p = 0.03), initially increasing above 0 (i.e., early emission bias) and then 

decreasing below 0 on day 21 (i.e., late emission bias). A possible explanation is 

experimental variations on day 21, e.g. injection of moderately higher MB concentration. 

Alternatively, MB response under confinement within the microvasculature in vivo is 

expected to be different compared to relatively unconfined oscillations occurring in the in 
vitro experiment [78,82]. However, this hypothesis should be tested in future work with 

variable confinement scales, for example using elastic tubes of different diameters on the 

micrometer scale [81].

Average spectra were qualitatively similar across days (Figure 7E). Harmonics and 

broadband signal had similar fine structure and relative amplitudes. We detected the Doppler 

shift from moving MBs as an asymmetric broadening of the harmonics towards lower 
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frequencies, especially in the 4th harmonic (i.e., 2 MHz). This effect has been observed 

before in vitro [62,83] and in vivo [84], and was also detected in the in vitro experiment 

presented here (Figure 6E). Stable (Figure 7F) and inertial (Figure 7G) cavitation doses rose 

upon MB entrance into the focus and were sustained throughout the 2-min sonication, albeit 

at a diminishing trend due to MB clearance from the bloodstream. Despite the large 

variation of cavitation doses during treatment, the total cavitation doses for each mouse had 

non-significant variation over storage time (p = 0.89 for SCDh, p = 0.92 for SCDu, and p = 

0.71 for ICD; Figure 7H). Linear regression was performed taking into account all data 

points per dose (n = 3 mice per day, i.e. total of n = 12 data points), to identify potential 

trends over time. Harmonic stable and inertial cavitation doses moderately increased (slope 

3.5 mV/d and 10 mV/d), while ultraharmonic stable cavitation dose decreased on average 

over time (slope −10 mV/d). The increase of inertial cavitation was evident in the 

spectrograms of FUS treatments for day 0 (Figure 7I), day 7 (Figure 7J), day 14 (Figure 7K) 

and day 21 (Figure 7L). Normalized broadband signal increased over time, especially for 

frequencies higher than 3.5 MHz (Figures 7I–L). The broadband emissions were sustained 

throughout treatment on day 21, despite their relatively lower amplitude compared to 

previous time points (Figures 7G and 7L).

In vivo data were in general agreement with the in vitro results (Figure 6). On average, 

inertial cavitation response increased with storage time (Figures 6F, 7H, 7I–L). Interestingly, 

despite the initial decrease of temporal stability, as indicated the t20 and t80 reduction (Figure 

6C and 7C), the in vivo response rebounded and appeared higher on day 21 (Figure 7C). 

This may be due to the increased persistence of broadband emissions during the entire 

treatment (Figure 7L). The in vivo environment is different compared to the in vitro 
conditions, in terms of temperature (37 °C vs. 20 °C), host liquid viscosity (i.e. blood vs. 

water), blood flow rates, etc. Therefore, simulation results (Figure 3) may not apply directly 

in vivo, since many of the assumptions are violated. Importantly, spatial confinement of 

MBs within the microvasculature significantly affects their response and longevity 

[23,78,80,85]. Due to the low MB concentration used here (107 MBs/ml or ~ 5× the clinical 

imaging dose), in vivo experiments were more prone to sampling errors due to the minute 

volumes required for intravenous injections into mice. Therefore, intravascular MB density 

may be different compared to the phantom channel, and may also differ across mice. This 

would affect the bubble-bubble interactions and the resulting acoustic emissions [74,75].

Blood-brain barrier opening stability

Our main hypothesis in this study was that BBB opening efficiency is not affected by the 

MB storage time. T1-weighted contrast-enhanced MRI scans confirmed BBB opening the 

targeted structure in every treated mouse (Figure 8A). BBB opening volume was not 

significantly different across days (p = 0.49, n = 3 mice per day). However, the average 

volume increased over time. Specifically, it was measured as 19.1 ± 7.1 mm3, 21.8 ± 14 

mm3, 29.3 ± 2.5 mm3, and 38 ± 20.1 mm3 on day 0, 7, 14, and 21, respectively. Similar 

effects were observed in terms of contrast enhancement. On average, there was no 

significant difference (p = 0.63, n = 3 mice per day). Yet, there was an increasing trend over 

time, with measured enhancements being 24.9 ± 1.7 %, 23.7 ± 11.7 %, 28.9 ± 5.3 %, and 35 

± 13.4 % on day 0, 7, 14, and 21, respectively.
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It is well established that the MB response dictates both BBB opening volume and contrast 

enhancement [22,63,86,87]. Despite the non-significant average differences, the increasing 

trends can be explained in the light of reduced stability during exposure and increased 

broadband response over time (Figures 6F, 7H, 7I–7L). Broadband emissions are typically 

associated with existence of inertial cavitation [88]. Inertial MB collapses trigger jet 

formation and exert excessive stresses on the endothelial cells of vascular walls [89], thereby 

compromising safety [90]. Nevertheless, the relative amplitude of harmonic over broadband 

signals suggests that stable cavitation was the dominant mode both in vitro and in vivo with 

these treatment conditions (Table 2) at every time point (Figures 6F and 7H).

Our findings confirmed our initial hypothesis that long-term storage of activated MBs has no 

significant effect on BBB opening efficiency (Figure 7B and 7C). Currently, MBs are 

typically used once immediately after activation. We show here that this is not necessary, 

since MBs can be used multiple times following activation for up to 3 weeks post-activation 

without losing their therapeutic efficacy. This observation is likely to reduce the cost of both 

pre-clinical and clinical applications, provided that sterility is ensured throughout the storage 

period.

More importantly, the majority of the MBs used for therapeutic applications were originally 

designed and manufactured for contrast-enhanced ultrasound imaging applications. This 

study highlights the need for purpose-built MBs that are tailored to the intended therapeutic 

application, for example FUS-mediated BBB opening. Microbubble shell constitution affects 

the cavitation response of MBs exposed to therapeutic ultrasound pulses (Fig. 4). Although 

contrast agents such as Definity® or SonoVue® are optimal in providing contrast when 

exposed to microsecond-long imaging pulses, future therapeutic MBs should present 

enhanced temporal stability during low-frequency millisecond-long exposure (Fig. 7), to 

avoid compromising safety. The stability metrics provided in this study (Figs. 2, 4, 6, 7) may 

aid in the characterization of future MB formulations designed for therapeutic applications.

CONCLUSIONS

In this study, we evaluated the temporal stability of lipid-shelled MBs during therapeutic 

ultrasound exposure. Simulations showed that the stiffness and viscosity of the MB shell 

influences the MB oscillation dynamics. We found that viscosity is the parameter 

dominating the fragmentation pressure at therapeutically-relevant insonation parameters. A 

DSPC:DSPE-PEG2K molar ratio of 9:1 was more stable experimentally compared to other 

shell configurations. MB concentration decreased over storage time, with a decay constant 

of 0.02 d−1. However, there was limited change in the mean and maximum radii of the MB 

population (< 10% variation). Storage time decreased the in vitro MB stability, decreasing 

stable cavitation response and promoting inertial cavitation over time. Similar response was 

observed in vivo, where we detected sustained inertial cavitation during therapeutic pulses 

only on day 21 post-activation. BBB opening volume and contrast enhancement were not 

significantly different across the tested time points, yet both followed an increasing trend. 

Our findings may be useful in understanding MB dynamics under therapeutic exposure and 

prove that repeated treatments using stored MBs are possible for both pre-clinical and 
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clinical applications. Finally, this study highlights the need for MBs tailored to therapeutic 

applications and provides tools for assessing MB stability in the ultrasound therapy regime.
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FIGURE 1 |. Experimental outline and setups.
(A) Microbubble formulation. DSPC and DSPE-PEG2000 were mixed at different lipid 

molar ratios to produce microbubbles of variable shell stiffness and viscosity. (B) 

Experimental timeline for estimating microbubble stability in vitro and in vivo. (C) In vitro 
experimental setup using a 5% w/v tissue-mimicking phantom. (D) In vivo experimental 

setup for non-invasive blood-brain barrier opening in mice. Abbreviations: FUS – focused 

ultrasound; PCD – passive cavitation detection; HP – 1.2-MHz high-pass.
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FIGURE 2 |. Signal and image processing.
(A) Time-domain signal capturing cavitation emissions during the 1-ms-long therapeutic 

pulse. B) Energy evolution during a single pulse. (C) Normalized cumulative energy during 

a single pulse. Time constants t20 and t80 were defined as the time required for 20% and 

80% of the total acoustic energy to be emitted, respectively. D) Normalized amplitude of fast 

Fourier Transform (FFT) performed over the cavitation emissions produced by a single 

pulse. (E) Example of an optical microscopy image acquired for microbubble counting and 

sizing. The marked square of the hemocytometer is in white. Scale bar: 50 μm. (F) 

Microbubble size distribution estimated through optical microscopy.
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FIGURE 3 |. Numerical simulations of microbubble stability.
(A) Radius over time for different acoustic pressures. DSPC:DSPE-PEG2K ratio: 9:1. (B) 

Radius over time for different DSPC:DSPE-PEG2K ratios. Peak-negative pressure: 200 

kPa. (C) Fragmentation pressure across the DSPC:DSPE-PEG2K ratios. (D) Fragmentation 

pressure as a function of compression modulus χ and shell dilatational viscosity κS.
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FIGURE 4 |. In vitro stability of microbubbles encapsulated with lipid shells of variable 
DSPC:DSPE-PEG2K lipid molar ratios.
(A) Total acoustic energy emitted per therapeutic pulse. (B) Mean cumulative energy 

evolution (n=10) for molar ratios of 6:1 (blue straight line), 9:1 (dotted orange line), and 

12:1 (yellow dashed line). (C) Temporal constants t20 (t < 500 μs) and t80 (t > 500 μs). (D) 

Temporal bias. (E) Normalized spectra averaged across pulses (n=10). (F) Stable harmonic 

(green circles), stable ultraharmonic (blue circles), and inertial (red circles) cavitation doses. 

Peak-negative pressure: 300kPa.
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FIGURE 5 |. Stability of microbubble size distribution and concentration
. (A) Comparison between size distribution estimated through Coulter multisizer (black line; 

gray area denotes standard deviation, n = 3) and bright field microscopy (blue line). The root 

mean square error in microbubble density estimation between the two techniques was 0.22 

or 22%. (B) Size distribution evolution over time, measured on day 0 (blue straight line), day 

7 (dotted orange line), day 14 (dashed green line), and day 21 (dotted-dashed purple line) 

post-activation. (C) Microbubble concentration over time (grey circles), fitted with an 

exponential decay curve (red dotted line). The exponential decay factor was estimated at 

0.02. C0 denotes microbubble concentration on day 0, and t is storage time in days. (D) 

Evolution of mean (red boxes) and maximum (blue circles) microbubble radius over time. 

Mean radii are given as mean ± standard deviation.

Pouliopoulos et al. Page 24

Front Phys. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 6 |. In vitro microbubble stability over time.
(A) Total acoustic energy emitted per therapeutic pulse over time post-activation. (B) Mean 

cumulative energy evolution (n=10) for microbubbles exposed to ultrasound on day 0 (blue 

straight line), day 7 (dotted orange line), day 14 (dashed green line), and day 21 (dotted-

dashed purples line) post-activation. (C) Temporal constants t20 (t < 500 μs) and t80 (t > 500 

μs) over time post-activation. (D) Temporal bias over time. (E) Normalized spectra averaged 

across pulses (n=10). (F) Stable harmonic (green circles), stable ultraharmonic (blue circles), 

and inertial (red circles) cavitation doses over time. A linear fit was performed on each dose 

(dashed lines) to investigate the average effect of storage time on cavitation dose.
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FIGURE 7 |. In vivo microbubble stability over time.
(A) Mean acoustic energy emitted per mouse over time post-activation. (B) Mean 

cumulative energy evolution (n=10) for mice treated with focused ultrasound on day 0 (blue 

straight line), day 7 (dotted orange line), day 14 (dashed green line), and day 21 (dotted-

dashed purples line) post-activation. (C) Temporal constants t20 (t < 500 μs) and t80 (t > 500 

μs) over time post-activation. Temporal constants are plotted for each pulse and for each 

mouse (n=360) on a given time point. (D) Temporal bias over time. Temporal bias is plotted 

for each pulse and each mouse (n=360) on a given time point. (E) Normalized spectra 

averaged across pulses (n=10). (F) Temporal evolution of harmonic (straight lines) and 

ultraharmonic (dashed lines) stable cavitation levels over the course of a treatment session (t 

= 120s), averaged across mice (n=3). Transparent lines indicate the evolution of harmonic 

cavitation levels for each mouse. (G) Temporal evolution of inertial cavitation levels over the 

course of a treatment session (t = 120s), averaged across mice (n=3). Transparent lines 

indicate the evolution of inertial cavitation levels for each mouse. (H) Stable harmonic 

(green circles), stable ultraharmonic (blue circles), and inertial (red circles) cavitation doses 

over time. A linear fit was performed on each dose (dashed lines) to investigate the average 

effect of storage time on cavitation dose in vivo. (I)-(L) Spectrograms for FUS treatments on 

days 0, 7, 14, and 21 post-activation. Dashed white lines indicate the time point of MB 

entrance into the focal volume.
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FIGURE 8 |. Blood-brain barrier opening over time.
(A) Contrast-enhanced T1-weighted MRI axial (upper row) and coronal (lower row) scans 

for mice treated with FUS on day 0, 7, 14, and 21 after microbubble activation. (B) BBB 

opening volume over time. (C) Contrast enhancement over time. Gray bars indicate average 

values and error bars indicate standard deviation (n=3 mice).
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Table 1 |

Parameters for numerical simulations of microbubble stability

Symbol Description Value

R0 Microbubble equilibrium radius 1.2 × 10−6 m

Rbuckling Microbubble buckling radius 1.2 × 10−6 m

ρ1 Liquid density (water) 103 kg/m3

μ Liquid viscosity (water) 10−3 Pa × s

P0 Ambient hydrostatic pressure 105 Pa

c Speed of sound 1.48 × 103 m/s

κ Polytropic gas coefficient 1.095

σwater Water surface tension 0.073 N/m

σbreak-up Break-up surface tension 0.2 N/m

ε Shell thickness 10−9 m

χ Compression modulus 0.042 – 0.116 N/m

κS Surface dilatational viscosity 4 - 6.5 × 10−10 Pa × m × s

fc Center frequency 0.5 × 106 Hz

P Peak-negative pressure 50-350 × 103 Pa
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Table 2 |

Acoustic parameters used in both in vitro and in vivo experiments

Parameter Value

Center frequency 0.5 MHz

Peak-negative pressure 300 kPa

Pulse length 1 ms or 500 cycles

Pulse repetition frequency 1 Hz

Sonication duration 2 min or 120 pulses

Microbubble dose 107 MBs/ml
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