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Abstract

Prairie dogs (genus Cynomys) are a charismatic symbol of the American West. Their large social aggregations and complex vocal-

izations have been the subject of scientific and popular interest for decades. A large body of literature has documented their role as

keystonespeciesofwesternNorthAmerica’sgrasslands: Theygeneratehabitat forother vertebrates, increasenutrient availability for

plants, and act as a food source for mammalian, squamate, and avian predators. An additional keystone role lies in their extreme

susceptibility to sylvatic plague (caused by Yersinia pestis), which results in periodic population extinctions, thereby generating

spatiotemporal heterogeneity in both biotic communities and ecological processes. Here, we report the first Cynomys genome

for a Gunnison’s prairie dog (C. gunnisoni gunnisoni) from Telluride, Colorado (USA). The genome was constructed using a hybrid

assembly of PacBio and Illumina reads and assembled with MaSuRCA and PBJelly, which resulted in a scaffold N50 of 824 kb. Total

genomesizewas2.67 Gb,with32.46% of thebasesoccurring in repeat regions.Werecovered94.9% (91% complete)of the single

copy orthologs using the mammalian Benchmarking Universal Single-Copy Orthologs database and detected 49,377 gene models

(332,141 coding regions). Pairwise Sequentially Markovian Coalescent showed support for long-term stable population size fol-

lowed by a steady decline beginning near the end of the Pleistocene, as well as a recent population reduction. The genome will aid in

studies of mammalian evolution, disease resistance, and the genomic basis of life history traits in ground squirrels.
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Introduction

Recent years have seen the completion of large scale projects

to sequence the genomes of divergent lineages across the

tree of life, such as representatives from all neognath avian

orders (Jarvis et al. 2014; Zhang et al. 2014), 24 divergent

eutherian mammal orders (Lindblad-Toh et al. 2011), diverse

squamate species (Tzika et al. 2015), and 159 spider species

from diverse lineages (Fern�andez et al. 2018). Despite these

advances, existing genomic resources can be characterized by

underrepresentation of the most diverse families and orders.

For instance, although they are the most diverse mammalian

order—containing 40% of all mammalian species (2,561 out

of 6,399 extant species, Burgin et al. 2018)—relatively few

rodent genomes have been published (e.g., Kim et al. 2011;

Couger et al. 2018; Thybert et al. 2018). For instance, the 84

Rodentia genomes available on GenBank represent<3.3% of

the Order’s taxa, in comparison to 15.1% representation of

Primates and 18.7% of Carnivora. Rodents are biologically

diverse, and some possess medically relevant adaptations

(e.g., resistance to cancer and reduced senescence

[Buffenstein 2008; Manov et al. 2013]). Among mammals,

they provide unparalleled ecological study systems due to the

relative ease of catching, housing, and relocating these ani-

mals. Rodents vary widely in sociality, longevity, size, and life

� The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Genome Biol. Evol. 12(5):618–625. doi:10.1093/gbe/evaa069 Advance Access publication April 11, 2020 618

GBE

http://orcid.org/0000-0002-6000-4789
http://creativecommons.org/licenses/by-nc/4.0/


history traits. In addition, they are thought to be common

sources of emerging diseases in humans (Han et al. 2015).

Thus, the development of additional genomic resources for

rodents would aid in evolutionary, ecological, and epidemio-

logical studies.

Some of the most widely studied wild rodents are North

America’s prairie dogs (Sciuridae, genus Cynomys). A charis-

matic emblem of the American frontier, prairie dogs were

historically some of the most abundant animals in western

grasslands (Merriam 1902). Their large population sizes, diur-

nal activity, and loud vocalizations have inspired decades of

research on social behavior (Hoogland 1979, 1981, 1998,

1999, 2001, 2013; Haynie et al. 2003; Dobson et al. 1998;

Verdolin and Slobodchikoff 2009), call complexity (Grady and

Hoogland 1986; Perla and Slobodchikoff 2002; Slobodchikoff

et al. 1998; Placer and Slobodchikoff 2004; Slobodchikoff and

Placer 2006), and the ecosystem consequences of prairie dog

activity (Coppock et al. 1983; Detling and Whicker 1987;

Whicker and Detling 1988; Kotliar et al. 1999; Davidson

et al. 2012). Prairie dogs are considered “ecosystem engi-

neers” (Van Nimwegen et al. 2008) because their burrows

provide shelter for amphibians, burrowing owls, and other

species (Ceballos et al. 1999; Augustine and Baker 2013),

and their burrow construction aerates the soil, bringing

nutrients to the surface where they are available for plants

(Coppock et al. 1983; Detling and Whicker 1987; Whicker

and Detling 1988). The fate of endangered black-footed fer-

rets (Mustela nigripes) is inextricably tied to prairie dogs, as

prairie dogs comprise>95% of their diet; prairie dogs are also

important prey for golden eagles, ferruginous hawks, coyotes,

snakes, and other animals (Kotliar et al. 1999; Davidson et al.

2012). As a result, species composition differs on prairie dog

colonies, leading to increased beta diversity across the land-

scape (Bangert and Slobodchikoff 2000; Smith and Lomolino

2004).

In the past two centuries, prairie dogs have declined by

98% as a result of eradication campaigns—due to their pub-

lic perception as pests (Burnett and McCampbell 1926;

Roemer and Forrest 1996; Reading et al. 1999)—and sylvatic

plague (caused by the bacterium Yersinia pestis). Plague was

introduced to North America from Asia in the early 1900s

(Eskey and Haas 1939; Perry and Fetherston 1997; Gage and

Kosoy 2005). Plague outbreaks cause 95–99% mortality in

prairie dog populations (Cully et al. 1997; Cully and Williams

2001; Sackett et al. 2013); however, there is increasing ev-

idence from natural populations (Cully et al. 1997; Pauli

et al. 2006; Sackett et al. 2013) and experimental studies

(Rocke et al. 2012, 2015; Busch et al. 2013) that resistance

to plague may be evolving in at least two species of prairie

dogs (Cynomys ludovicianus and Cynomys gunnisoni).

Because the closest relative to have its genome sequenced

(Ictidomys tridecemlineatus) diverged from Cynomys 4.67

(95% highest posterior density (HPD) 4.18–6.31) Ma

(Upham et al. 2019), a reference genome for prairie dogs

would aid in our understanding of the genetic basis of

evolved resistance.

In summary, Gunnison’s prairie dogs are an important

target for the development of a genome for several reasons:

1) They are ecologically important species in North American

grasslands; 2) The species has been the object of intense study

on life history, behavior, and the consequences of sociality for

decades and thus a genome should be of broad interest; and

3) Elucidating the genomic basis of plague resistance is of

both scientific and conservation interest for prairie dogs and

associated species.

Materials and Methods

Sample Preparation

Several candidate individuals with low heterozygosity were

chosen from available frozen DNA (Sackett et al. 2014) to

facilitate genome assembly, and a low-heterozygosity individ-

ual (microsatellite Ho ¼ 0.182) with a large amount of tissue

was selected from a roadkill animal found near Telluride, CO.

Tissue was stored frozen in a dimethyl sulfoxide–ethylenedi-

aminetetraacetic acid buffer until extraction. DNA was

extracted primarily from ear tissue using the Qiagen DNeasy

Blood & Tissue Kit, using 40 replicate extractions from the

roadkill individual to ensure sufficient DNA. Each DNA aliquot

was examined for size distribution on an agarose gel and for

purity via Nanodrop and Qubit, and 20lg of the highest-

quality replicates were pooled. Libraries were prepared and

samples were sequenced to 20� on a PacBio Sequel and 80�
on an Illumina HiSeq 4000 (2� 150-bp reads) at Duke

University’s Sequencing and Genomic Technologies Shared

Resource core facility.

Genome Assembly and Variant Calling

Genomes were constructed by a hybrid assembly of low-

coverage PacBio long-read (�mean 9.5 kb) sequencing for

generating scaffolds and high-coverage Illumina short read

(150 bp) sequencing for inferring the consensus sequence.

We performed a hybrid de novo assembly using MaSurCA

(v. 3.2.1, Zimin et al. 2017) and additional scaffolding with

SSPACE-LongRead (Boetzer and Pirovano 2014). Gaps were

filled using PBJelly (English et al. 2012), and polishing was

performed in Pilon (Walker et al. 2014). We used Kraken

(Wood et al. 2019) to filter out scaffolds classified as bacteria

and remove them from the final assembly (see Supplementary

Material online). We used Benchmarking Universal Single-

Copy Orthologs (BUSCO v. 3.0.2, Simao et al. 2015) to assess

the assembly completeness by comparing it to 4,104 ortho-

logs from 50 species contained in the mammalia_odb9 gene

database (Zdobnov et al. 2017). We used Bowtie2 (Langmead

and Salzberg 2012) to align the raw reads to the final assem-

bly, and samtools v1.9 (Li et al. 2009) to generate a sorted

bam file. Then, we removed polymerase chain reaction
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duplicates with picard-tools v2.5 (http://broadinstitute.github.

io/picard/, last accessed December 28, 2019) and realigned

indels and called variants using the GATK v4 (McKenna et al.

2010) following standard pipelines (e.g., DePristo et al. 2011;

Cassin-Sackett et al. 2019).

To assemble the mitogenome, we imported the final

whole genome assembly into Geneious Prime (Biomatters,

2019.1.3), and then mapped the scaffolds to the C. gunnisoni

gunnisoni mitochondrial reference genome, available on

GenBank (accession number MG450794, Streich et al. 2019).

Genome Structural Contents

We estimated genome-wide heterozygosity of the

Gunnison’s prairie dog using jellyfish v2.3.0 (Marçais and

Kingsford 2011) with both the default settings (removing

kmers with coverage >1,000�) and with the removal of

kmers with coverage >10,000�. Finally, we obtained the

genome sequences of four high-quality ground squirrel

genomes from GenBank (Marmota flaviventris, estimated

7.59 [95% HPD 6.40–9.33] Myr divergence from Cynomys;

M. marmota, 7.59 [95% HPD 6.40 –9.33] My divergence;

Urocitellus parryi, 5.66 [95% HPD 4.98–7.34] My divergence;

and I. tridecemlineatus, 4.67 [95% HPD 4.18–6.31] My diver-

gence; Upham et al. 2019) and analyzed both repeat content

and the relative proportion of CG sites (see Supplementary

Material online) in each genome.

Genome Annotation

The genome was annotated using a multipronged approach

that included repeat identification, a combination of ab initio

and evidence-driven gene prediction using AUGUSTUS (v.

3.3.2; Stanke et al. 2006), and functional gene annotation

using Blast2GO (Götz et al. 2008). First, we used

RepeatMasker (open-4.0.6, Smit et al. 2013–2015) with the

Rodentia database to identify repetitive elements in the ge-

nome and soft-mask the assembly. Next, we generated a

hints file for AUGUSTUS from two different lines of evidence:

1) alignment of the I. tridecemlineatus transcriptome

(Hampton et al. 2011) to our assembly using BLAT (Kent

2002) and 2) conversion of the RepeatMasker .out to GFF

(RepeatMasker script rmOutToGFF3.pl) and then GFF to hints

(available at http://arthropods.eugenes.org/EvidentialGene/

evigene/scripts/gff2hints.pl, last accessed April 19, 2020).

AUGUSTUS training was performed during the BUSCO run

using the –long flag. To speed up the analysis, we partitioned

our assembly into scaffolds using the script

partition_EVM_inputs.pl from EVM (Evidence Modeler, Haas

et al. 2008). We ran AUGUSTUS in each scaffold individually,

allowing genes to be predicted independently on both

strands. We concatenated the results using the script join_-

aug_pred.pl and extracted both the protein and nucleotide

sequences of the gene models identified, as well as the indi-

vidual coding sequences, using the AUGUSTUS script

getAnnoFasta.pl. Finally, we used Blast2GO (v5.2.5, Götz

et al. 2008) to functionally annotate the genome. To do so,

we ran Blast (v2.6.0þ, Altschul et al. 1990) on the gene

models identified by AUGUSTUS and used the final .xml file

as an input to Blast2GO.

We used Blobtools to assess the degree of microbial con-

tamination in the de novo genome assembly. To do so, we

subsetted the assembly into multiple fasta files and ran blastn

on each. Matches were categorized according to species at

the lowest taxonomic level and according to phylum at the

highest taxonomic level.

Demographic Inference

All species of prairie dogs are thought to have experienced

drastic population declines in the past two centuries as a result

of persecution and disease. To infer whether we could detect

such changes in historical population size, we estimated the

effective population size history using the Pairwise

Sequentially Markovian Coalescent implemented in Pairwise

Sequentially Markovian Coalescent (PSMC) (Li and Durbin

2011). We generated the input file according to the recom-

mendations of the author (described here https://github.com/

lh3/psmc, last accessed December 28, 2019) and ran the anal-

ysis using the default settings, performing 100 bootstrap rep-

licates. We scaled the PSMC plots assuming a mean

generation time of 2 years and compared two different mu-

tation rates based on estimates from the literature: 1) 2.2 �
10�9 per site per year (Kumar and Subramanian 2002), an

estimated genome-wide rate for all mammals (“mammal

rate”) and 2) 8.8 � 10�10 per site per year (Nabholz et al.

2008), which is the estimated rate for a single nuclear gene

(IRBP) in Cynomys (“Cynomys rate”).

Results and Discussion

Genome Assembly and Variant Calling

Long-read sequencing resulted in 52.5 GB of data from 14

PacBio SMRT cells, with an average read length of 9 kb. The

genome was estimated to be 2.67 Gb in length (supplemen-

tary table S1, Supplementary Material online), similar to other

rodents, particularly other ground squirrels (e.g., Accessions

PRJNA399425, PRJNA516936, and PRJNA477386). The as-

sembly resulted in 15,346 contigs (with a contig N50 of

686,670 bp) and 12,628 scaffolds (with a scaffold N50 of

824,613 bp; supplementary table S1, Supplementary

Material online). In comparison with other ground squirrel

genomes available on GenBank, this assembly resulted in

the second highest scaffold N50 and L50 (after

I. tridecemlineatus) and the third fewest number of scaffolds

(after M. himalayana and I. tridecemlineatus). Final coverage
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averaged 66�. We recovered 3,811 (91%) complete and 148

(3.6%) fragmented BUSCOs out of 4,104 mammalian ortho-

logs searched (fig. 1). A single scaffold (�29 kb) mapped to

the reference mitochondrial genome (Streich et al. 2019) with

99.66% similarity. Variant calling produced a set of

2,336,054 single-nucleotide polymorphisms.

Genome Structural Contents

Genome-wide heterozygosity was low, estimated at 0.315%

under both kmer settings; this inference is consistent with

previously estimated microsatellite heterozygosity (0.18;

Sackett et al. 2014). Repeat Masking indicated that 32.47%

of the genome consisted of repetitive sequences, primarily

LINEs (15.17%), SINEs (5.69%), and LTR elements (6.57%).

Repeat content was nearly identical to four other ground

squirrel species with divergence times to C. gunnisoni ranging

from 9.1–13.4 Myr, both in terms of total repeat content and

the proportion of each type of repeat (fig. 2 and supplemen-

tary table S5, Supplementary Material online). In all five spe-

cies, repeat sequences comprised approximately one-third of

the genome.

Genome Annotation

AUGUSTUS identified 332,141 coding DNA sequences/exons

and a total of 49,377 gene models. The number of coding

sequences identified for C. gunnisoni was within the range of

those found for the other four ground squirrel species, which

varied from 324,927 for M. marmota to 463,195 for

I. tridecemlineatus. Out of the total number of gene models

analyzed, �1% (559) returned with Blast hits but without

associated Gene Ontology entries. Blast2GO assigned func-

tional labels to �82% (40,255), with enzyme codes assigned

to 17.32% (8,553) of the sequences (supplementary fig. S2,

Supplementary Material online).

Our assessment of contamination in Blobtools indicated

that 92.02% of the Illumina reads mapped to the assembly

were classified as Chordata, whereas 0.63% of reads mapped

to microbial taxa, including bacteria (Proteobacteria, 0.03%

and Bacteroidetes, 0.05%), fungi (Ascomycota, 0.10%) and

viruses (0.45%; supplementary fig. S3a, Supplementary

Material online). The remaining reads either had no blast

hits (0.92%) or did not map to the assembly (6.41%). At

the lowest taxonomic level, 85.53% of reads mapped to

ground squirrels and 5.11% to Hominidae (4.79% human

FIG. 1.—(A) Assembly statistic visualization (https://github.com/rjchallis/assembly-stats) showing the genome N50 (dark orange), N90 (light orange), base

composition (percentage of GC in dark blue, AT in light blue, and N in light grey), and BUSCO results (top right, in shades of green). (B) PSMC reconstruction

of population size estimates over time, estimated using generation time of 2 years (g¼2) and two mutation rates: m¼ 2.2� 10�9 (green; “mammal rate”)

and m ¼ 8.8� 10�10 (orange; “Cynomys rate”). Shaded lines correspond to 100 bootstrap estimates. The DTemp (�C) was calculated using benthic d18O

records (Lisiecki and Raymo 2005) and extrapolated using the formula from Epstein et al. (1953). (C) Map depicting the species distribution of C. gunnisoni

(blue) in the western United States, with a star denoting the location where the sample was collected (Sackett et al. 2014). (D) Image of C. gunnisoni (LCS).
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and 0.32% to the genus Pan), likely a function of the com-

pleteness of the blast database, which contains more com-

plete human than squirrel sequences. Two microbial taxa

present in the assembly were identified to genus:

Pseudogymnoascus (0.09%) and Orthohepadnavirus

(0.44%) (supplementary fig. S3b, Supplementary Material on-

line). Pseudogymnoascus are a genus of fungi typically found

in soil and rotting wood; thus, it is likely that this taxon is a

contaminant present on the substrate on which the prairie

dog was collected that was isolated along with the specimen.

Orthohepadnavirus is a genus of viruses naturally hosted by

humans and other mammals.

Demographic Inference

PSMC showed support for long-term stable population size

followed by a steady decline beginning during the late

Pleistocene and continuing into the present (fig. 1). Using

the Cynomys rate, population decline occurred from �127

to 13 thousand years ago (ka), and with the mammal rate,

populations declined from �51 to 9 ka. This time period

corresponds approximately to increased glaciation experi-

enced across the planet beginning �115 ka (potentially caus-

ing population declines). Under the Cynomys rate scenario,

population size recovered slightly around 8 ka (a smaller re-

covery was inferred with the mammal rate at 3 ka), a time

marked by the widespread expansion of grasslands across

North America, which facilitated grassland specialists (Wisely

et al. 2008; Oh et al. 2019) such as prairie dogs. This small

increase in effective size may also correspond to divergence (Li

and Durbin 2011; Cahill et al. 2016) between subspecies of

Gunnison’s prairie dogs. Although the exact magnitude of

effective population size inferred by using the genome of a

low-heterozygosity individual may not be exact throughout all

historical time periods, the patterns (i.e., shape of the curve)

of changing population size should be robust to genome-

wide heterozygosity levels (Li and Durbin 2011).

The assembly and annotation of the Gunnison’s prairie dog

genome will facilitate future study on the genetic basis of

social (Wilson-Henjum et al. 2019) and mating behavior

(Hoogland et al. 2019), disease resistance (Busch et al.

2011, 2013), divergence and introgression (Sackett et al.

2014), coevolution (Holding et al. 2016), hibernation ecology

(Lane et al. 2011, 2012), landscape genetics (Anderson et al.

2015; Kierepka and Latch 2016), phylogeography

(Castellanos-Morales et al. 2016), keystone roles (Lindtner et

al. 2018), and genomic variation in ground squirrels (Gedeon

et al. 2017). A deeper understanding of genomic variation will

enable scientists to inform management of threatened and

endangered species, for instance, by lending insight into the

optimal degree of gene flow among populations in the pres-

ence of disease (Sackett et al. 2013), or by identifying pop-

ulations with “resistance” alleles or high genetic diversity as

potential sources for the reintroduction of diversity (Venesky

et al. 2012; Strauss et al. 2017).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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