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Abstract
The current COVID-19 pandemic caused by SARS-CoV-2 has prompted investigators worldwide to search for an effective anti-
viral treatment. A number of anti-viral drugs such as ribavirin, remdesivir, lopinavir/ritonavir, antibiotics such as azithromycin
and doxycycline, and anti-parasite such as ivermectin have been recommended for COVID-19 treatment. In addition, sufficient
pre-clinical rationale and evidence have been presented to use chloroquine for the treatment of COVID-19. Furthermore, Zn has
the ability to enhance innate and adaptive immunity in the course of a viral infection. Besides, Zn supplement can favour COVID-
19 treatment using those suggested and/or recommended drugs. Again, the effectiveness of Zn can be enhanced by using
chloroquine as an ionophore while Zn inside the infected cell can stop SARS-CoV-2 replication. Given those benefits, this
perspective paper describes how and why Zn could be given due consideration as a complement to the prescribed treatment of
COVID-19.
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Introduction

Coronaviruses (CoV), named after its crown-like appearance
under electron microscope, were known to cause severe acute
respiratory syndrome coronavirus (SARS-CoV) and Middle
East respiratory syndrome coronavirus (MERS-CoV) diseases
with high mortality rate [1]. On March 11, 2020, the World
Health Organization (WHO) declared Coronavirus Disease
2019 (COVID-19) outbreak as pandemic caused by another
member of the Coronaviridae family—SARS-CoV-2.

SARS-CoV-2 primarily infects cells of the small air sacs
known as alveoli consisting of alveolar cells and alveolar macro-
phages. There are two types of alveolar cells (type I and II) which
are also known as pneumocytes. Type I cells provide 95% of the
surface area of each alveoli and are flat hence are named squamous
epithelial cells. Type II cells generally cluster in the corners of the

alveoli and have a cuboidal shape. Infection by the SARS-CoV-2
causes an inflammatory condition also known as pneumonia af-
fecting primarily alveoli [2]. Typically, symptoms include a com-
bination of non-productive or dry cough, chest pain, fever, and
difficulty in breathing. The pneumonic condition in COVID-19 is
severe and is associated with its high mortality [3, 4].

The current COVID-19 pandemic caused bySARS-CoV-2 has
prompted policymakers to take actions to prevent further spread of
the virus. The same crisis also made investigators worldwide to
search for an effective anti-viral treatment. The current review
paper will highlight the potential of Zn supplement with the ongo-
ing treatment modalities for COVID-19 patients. To start with, the
paper will first briefly describe the virus and its mechanism of
replication in the host cells (generally that is the pneumocytes of
the lungs).A brief descriptionwill be added to highlight the chang-
es in the host immune responses upon SARS-CoV-2 infection.
Subsequently, a summary of the ongoing and recommended treat-
ments will be presented. Finally, the paper will highlight how Zn
can contribute to fight the battle with the SARS-CoV-2.

The SARS-COV-2 Virus and Its Replication
in Host Pneumocytes (Cells of the Lungs)

SARS-CoV-2 is one of the seven types of coronavirus that are
known to infect humans [4]. Based on the genetic properties,
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coronaviruses are grouped into four genera: α-CoV, β-CoV,
γ-CoV, and δ-CoV [2], and the COVID-19 belongs toβ-CoV
[4]. Like other coronaviruses, SARS-CoV-2 is also an
enveloped virus with a single-strand, positive-sense RNA ge-
nome [5].

At the beginning of the replicative cycle, the polycistronic
viral genome uses a unique transcription mechanism to gen-
erate a nested set of subgenomic (sg) mRNAs after entry and
uncoating inside the host cell. Using the 5′-proximal open
reading frames (ORFs) of the genome, namely ORF1a and
ORF1b, two large replicase polyproteins (pp1a and pp1ab)
are translated. Eventually, 16 non-structural proteins (NSP)
producing mature replicase proteins are released from pp1a
and pp1ab attributed to the proteolytic cleavages by ORF1a-
encoded proteases. The replicase proteins have a variety of
functions that are required for viral RNA synthesis and cap-
ping, such as the RNA-dependent RNA polymerase (RdRp;
NSP12), a helicase (NSP13), RNA cap-modifying methyl-
transferases (NSP14 and NSP16), and an exoribonuclease
(NSP14). Using the host proteins, the coronavirus NSPs form
membrane-associated replication and transcription complexes
for viral membrane structures. For detail of the functions of
each protein, please see the review by Cheng et al. [6].

Along with 16 non-structural proteins (NSPs) and four ma-
jor structural proteins, namely spike (S), envelope (E), mem-
brane (M), and nucleocapsid (N), SARS-CoV-2 contains eight
accessory proteins [7]. The spike proteins have an S1 domain
which is responsible for receptor binding and an S2 domain
responsible for cell membrane fusion. In other words, S gly-
coproteins aid binding of the virus to the host cells. The re-
ceptor binding domain (RBD) ofβ-CoV is commonly located
in the C-terminal domain of S1 [8]. The SARS-CoV-2 spike
proteins were found to have 10- to 20-fold higher binding
affinity to human angiotensin-converting enzyme 2 (ACE2)
receptors than SARS-CoV does [9].

Using spike glycoproteins (S-glycoproteins), the SARS-
CoV2 binds to human angiotensin-converting enzyme 2
(ACE2) receptors expressed on pneumocytes [10]. Notably,
ACE2 receptors are widely expressed on the epithelial cells of
alveoli, trachea, bronchi, bronchial serous glands [11], and
alveolar monocytes and macrophages [12].

Binding to ACE2 receptors triggers conformational chang-
es in the S-glycoprotein allowing cleavage by the transmem-
brane protease-serine 2 of the S-glycoprotein. The virus is
then transported into the cytoplasm through a mechanism
called endocytosis. The low pH inside the endosomes favours
the host protease cathepsin-L to cleave the S-glycoprotein.
This results in the fusion of the viral envelope and endosomal
phospholipidic membrane to release the positive-strand viral
genomic RNA (+RNA) into the cell cytoplasm.

Like other RNA viruses, SARS-CoV-2 genome–encoded
RNA-dependent RNA polymerase (RdRp) is central to
SARS-CoV-2 replicative cycle. Initially, a polyprotein

precursor is formed from which the RdRp-containing subunit
is proteolytically cleaved. Subsequently, the RdRp is integrat-
ed into a membrane associated viral enzyme complex that
drives the synthesis of negative-strand RNA [13, 14]. The
negative RNA strand is used as a template for the synthesis
of viral mRNA (Fig. 1). SARS-CoV-2, MERS-CoV, and
SARS-CoV have remarkably similar sequences and encode
structurally similar RdRp [15]. The RdRp has a deep groove
as an active site for the polymerization of RNA.

Infected cells contain between 10 and 100 times more
+RNA strands than −RNA strands. The polycistronic ribo-
some machinery of the infected cell synthesizes non-
structural proteins of the SARS-CoV-2 and assembles these
into the replicase-transcriptase complex to favour viral
subgenomic mRNA synthesis. Following replication, the en-
velope proteins are translated and inserted into the endoplas-
mic reticulum of the host cells to finally enter into the Golgi
compartment. Consequently, the viral genomic RNA is pack-
aged into the nucleocapsid and then envelope proteins are
incorporated during the budding step to form mature virions.
TheM protein plays an essential role during viral assembly by
interacting with the other proteins of the virus. Following
assembly, the newly formed viral particles are transported to
the cell surface in vesicles and are released by exocytosis. A
number of detailed reviews have summarized the replication
and the assembly of the virus [13, 16].

Changes in Immune Response in COVID-19
Patients

Immunological profiles of COVID-19 patients seem to vary
widely. In general, COVID-19 patients were shown to have
normal or lower white blood cell counts, lymphopenia, or
thrombocytopenia, with an increased C-reactive protein level
[3, 8, 17–21]. In vitro studies of SARS-CoV infection of re-
spiratory epithelial cells, dendritic cells (DCs), showed de-
layed release of cytokines and chemokines at the early stages.
However, higher secretion anti-viral cytokines such as inter-
ferons (IFNs) and proinflammatory cytokines such as inter-
leukins (IL) IL-1β, IL-6, and tumour necrosis factor (TNF))
and chemokines (C-C motif chemokine ligand CCL-2, CCL-
3, and CCL-5) were recorded in the later stages [22–24].

In a retrospective, single-centre study, involving 99
COVID-19 patients treated in Wuhan Jinyintan Hospital, in-
creased concentrations of C-reactive protein, IL-6, and serum
ferritin were recorded along with an increased erythrocyte
sedimentation rate [19]. The same group of patients also
showed an increased number of neutrophils with decreased
number of lymphocytes. Similar phenomena were observed
with cytokine storms, with an overproduction of IL-7, IL-10,
GCSF, IP10, MCP1, MIP1A, and TNF-α [3, 17].
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Among the COVID-19 patients (n = 69)—admitted to
Union Hospital in Wuhan between January 16 and January
29, 2020—only those who had SpO2 < 90% succumb to the
infection [25]. Compared with the SpO2 ≥ 90% group, pa-
tients of the SpO2 < 90% group were older and showed more
comorbidities and higher plasma levels of IL6, IL10, lactate
dehydrogenase, and C-reactive protein [25].

Wang and colleagues [26] analysed 339 patients with
COVID-19 (aged 71 ± 8 years). Among them, 80 (23.6%)
were critical, 159 were severe (46.9%), and 100 were moder-
ate (29.5%) cases admitted at the Renmin Hospital of Wuhan
University. Compared with the normal values, the count of
CD4+ and CD8+ cells was all significantly decreased in these
patients. When compared between the survivor (n = 274) and
non-survivor (n = 65) groups, the lymphocyte, monocyte, and
platelet counts were significantly decreased in the non-
survivor group, but the neutrophil counts were significantly

higher. Furthermore, a high level of lymphocytes was found
as a predictive better outcome (OR = 0.10, P < 0.001) for the
patients who recovered [26].

Zn Regulation in Human Cells

Zinc is widely distributed in human tissues, where virtually all
Zn is present in intracellular compartments such as the nucleus
(30–40%), cytosol, and other organelles and specialized ves-
icles (50%), and the rest is bound with cell membrane proteins
[27]. While cells need a constant supply of Zn, free Zn ions
(Zn2+) can be toxic to the cells by inhibiting cytoplasmic en-
zymes such as adenylate cyclase [28].

In humans, plasma Zn level is maintained between 10 and
18 mol/L representing 0.1% of total body Zn [29]. The total
zinc content that favours a typical fibroblast-like cell to grow

Fig. 1 Potential sites of action of Zn to counter SARS-CoV-2 in
pneumocytes. SARS-CoV uses spike (S) proteins to bind to
angiotensin-converting enzyme 2 (ACE2) on pneumocytes (D3). Virus
enters the host cell through endocytosis and releases therein the viral
RNA (D3). The replicase enzyme complex is translated from the viral
genome that mediates both replication and transcription (D4). Virions are
shed from the infected cell through exocytosis (E3). The primary site of
Zn2+ could be the inactivation of the viral replicase (D4). At the same
time, the additional Zn supplement might initiate interferon-© (a common
anti-viral agent) production by T lymphocytes (B5). However, Zn

deprivation in the lysosome of the lymphocytes triggers to secrete
perforin, which also exert anti-viral activity (B5). A pool of Zn importing
inside the T lymphocytes activates T cell receptors as well as CD25 and
CD69 to aid T cell proliferation and stabilization (A2–3). Added Zn also
contributes to the production of thymulin from the thymus and triggers T
lymphocyte production (A1–2). In alveolar macrophages, Zn can help to
degrade the phagocytosed viral particle by the enzymes of the
phagolysosome (B-C2). That in turn will help to present the processed
An by the major histocompatibility complex (MHC) (B2)

Rahman and Idid552



in ordinary culture media is ~ 0.25 fmol per cell or ~ 200 μM.
However, in vitro growth of the cells stops at cellular zinc
levels below ~ 0.2 fmol per cell [30].

The intracellular homeostasis of Zn as well as exchange of
Zn in and out of the cells is controlled by a large number of
proteins belonging to two Zn transporter protein families,
SLC39A (Zn importer protein, i.e. ZIP and ZRT/IRT-related
protein, 14 ZIP) and SLC30A (Zn Transporter, i.e. ZnT, 10
ZnTs) [31]. ZnTs generally transport Zn2+ out of the cytosol,
whereas ZIPs import them from cellular compartments or the
extracellular space into the cytosol [32, 33]. Most ZnTs are
present in intracellular compartments, such as endosomes,
Golgi, or endoplasmic reticulum while only ZnT1 appears to
be located at the plasma membrane as it is the primary regu-
lator of cellular Zn efflux [30]. Most ZIPs are observed at the
plasma membrane; however, Zip7 is located at the Golgi ap-
paratus [34].

Zinc in Host Immune Mechanisms

Unlike other “first row” transition metals/elements, Zn does
not participate in redox reactions but rather functions as a
Lewis acid to accept a pair of electrons. This property makes
Zn2+ a stable ion in a biological medium and an ideal metal
cofactor for reactions that require a redox-stable ion such as
proteolysis and the hydration of carbon dioxide.
Metallothioneins—a cysteine-rich low molecular weight
group of proteins—act as reservoir of the intracellular concen-
tration of free Zn2+ [35–37]. Hence, Zn2+ can serve as intra-
cellular second messenger and may trigger apoptosis or a de-
crease in protein synthesis at elevated concentrations [38–40].

A number of immunome activation pathways are activated
by Zn such as NF-κB signalling pathway. NF-κB influences
the expression of pro-inflammatory cytokines, namely IL-1b,
IL-6, IL-8, TNF-α, andMCP-1, chemokines, acute phase pro-
teins (CRP and fibrinogen), matrix metalloproteinases, adhe-
sion molecules, growth factors, and other factors involved in
inflammatory response, such as COX-2 and iNOS [41, 42].

Zinc administration in mixed lymphocyte cultures was
shown to induce and stabilize CD4+CD25+Foxp3+ and
CD4+CD25+CTLA-4+ T cells. These effects were attributed
to zinc-induced upregulation of Foxp3 and KLF-10 and
downregulation of IRF-1 whereas in resting lymphocytes zinc
increases IRF-1 [43]. It is important to note that the number of
CD4+ and CD8+ T cells is critical in anti-viral immunity [44,
45].

On the other hand, Zn depletion can cause a significant
suppression of autophagy in cells (human hepatoma cells
VL-17A). Conversely, in vitro Zn addition stimulated autoph-
agy in the same cells. Thus, a critical role of Zn was suggested
in autophagy under basal conditions [46]. In various patho-
logical conditions including viral infection, autophagy plays

an important protective role as host defence mechanism
[47–49]. In autophagy, the intracellular components such as
protein aggregates and damaged organelles are engulfed into a
double-membrane structure called autophagosome and fuse
with lysosome to form autolysosome to degrade the engulfed
components using lysosomal enzymes [50, 51]. Lysosome
contains more than 50 enzymes, including proteases, pepti-
dases, phosphatases, nucleases, glycosidases, sulfatases, and
lipases [52]. Essentially, the structural and functional integrity
of many of these enzymes depends on Zn [53].

Immune Regulation of Zinc in Viral Infection

In vitro studies involving added Zn2+ in the presence of its
cellular import stimulatory compounds, such as hinokitiol
(HK), pyrrolidine dithiocarbamate (PDTC), and pyrithione
(PT), were shown to inhibit the replication of various RNA
viruses, including influenza virus [54], respiratory syncytial
virus [55], and several picornaviruses [56–58]. These reports
suggested inhibition of intracellular Zn2+ in the replicative
cycle of these viruses. More particularly, Zn2+ was shown to
inhibit polyprotein processing in cells infected with human
rhinovirus and coxsackievirus B3 [58].

In addition to SARS-CoV, a number of other viruses, in-
cluding HIV, HSV, and vaccinia virus, are known to be
inhibited by Zn salts. Zn is known to inhibit the viral entry,
blocking of polyprotein processing, or inhibition of viral
RdRp activity [59–61]. Using Huh7 cells transfected with
in vitro synthesized capped genomic RNA of a g-1 HEV,
Kaushik et al. [62] showed that Zn but not Mg salts, namely
Zn-sulfate and Zn-acetate, can inhibit viral sense and antisense
RNA levels by approximately 50% at a working concentration
of 10 μM. Thus, Zn salts were shown to directly inhibit the
activity of viral RdRp thus inhibiting viral replication.

Recommended and Ongoing Treatments
for COVID-19

The suggested treatments for COVID-19 are, but not limited
to, the use of (i) convalescent plasma for COVID-19 treatment
[63–65]; (ii) ribavirin, a nucleoside analogue in combination
with recombinant interferon showed inhibition of MERS-
CoV replication [66]; (iii) lopinavir/ritonavir—a combination
of a protease inhibitor and a booster used for the treatment of
human immunodeficiency virus infection [67]; (iv)
remdesivir, a nucleotide analogue that inhibit RNA polymer-
ase with a broad spectrum of anti-viral activities; in inhibition
of human and zoonotic coronavirus [15, 68, 69]; (v)
favipiravir (also known as T-705, Avigan or favilavir) is a
pyrazinecarboxamide derivative known to inhibit RNA poly-
merase [70]. In addition, azithromycin and doxycycline—
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commonly used antibiotics to inhibit viral replication and IL-6
production [71] and drugs that suppress IL-1 or IL-1R [72]—
were also suggested for the treatment and prevention of
COVID-19 disease.

As of April 21, 2020, more than 500 clinical trials have
been registered at the various international and national clin-
ical trial registry sites [73]. The efficacy of a number of rec-
ommended anti-viral drugs has been investigated with various
outcomes. Such randomized clinical trials on lopinavir-
ritonavir did not show any benefit beyond standard care
[74]; favipiravir, compared with Arbidol, did not significantly
improve the clinical recovery rate at day 7 [75]. Besides,
hydroxychloroquine versus hydroxychloroquine combined
with azithromycin was investigated following non-
randomized trials [76]. Other ongoing clinical trials include
IL-6 inhibitors (tocilizumab and sarilumab), convalescent
plasma therapy, stem-cell transfusion, candidate vaccines,
and traditional Chinese medicines.

In a systematic review, Cortegiani et al. [77] argued that
“there is sufficient pre-clinical rationale and evidence regard-
ing the effectiveness of chloroquine for treatment of COVID-
19 as well as evidence of safety from long-time use in clinical
practice for other indications.” Chloroquine was shown to
inhibit in vitro replication of SARS-CoV-2 in Vero E6 cells
in an effective concentration EC90 of 6.90 μM that can be
easily achieved with standard dosing, due to its favourable
penetration into tissues, including in the lung [68]. This is
substantially lower than the concentration detected in human
plasmawhen the drug is prescribed to treat malaria at a dose of
25 mg/kg over 3 days [78]. However, for COVID-19 patients,
a lower dose such as 3.6 mg/kg that are often prescribed to
treat rheumatoid arthritis has been suggested for long-term
prophylaxis as the dose is similar to IC50 for SARS-CoV
[78, 79]. It is to be noted that hydroxychloroquine showed
greater efficacy than chloroquine, at least based on in vitro
studies [80]. Besides, hydroxychloroquine was shown to have
minimal risk of toxicity such as retinopathy [81]. Other recent
studies also showed that hydroxychloroquine is a less toxic
metabolite of chloroquine, as it is more soluble, and causes
less side effects and therefore is safer [76, 80, 82, 83].

It has been hypothesized that both hydroxychloroquine
and chloroquine can interfere with ACE2 receptor glyco-
syla t ion and prevents SARS-CoV-2 binding to
pneumocytes. Chloroquine could also possibly inhibit si-
alic acid biosynthesis thus limiting cell surface binding of
SARS-CoV-2. In case the viral particle is endocytosed,
chloroquine has been hypothesized to modulate the acid-
ification of endosomes thereby inhibiting formation of the
autophagosome. Through reduction of cellular mitogen-
activated protein (MAP) kinase activation, chloroquine
may also inhibit virus replication. Moreover, chloroquine
could alter M protein maturation and interfere with virion
assembly and budding [16].

I t i s t o be no ted tha t bo th ch lo roqu ine and
hydroxychloroquine are weak bases present in protonated
form in the extracellular environment hence are incapable of
crossing the plasma membrane. In the non-protonated form,
chloroquine and hydroxychloroquine may enter the intracel-
lular compartments and gradually become protonated accord-
ing to the Henderson-Hasselbach law. This conversion allows
both chloroquine and hydroxychloroquine to reside in acidic
organelles such as the endosome, Golgi vesicles, and the ly-
sosomes. [84].

Why Is Zn Critical for COVID-19 Treatment?

Zn Can Enhance Cell-Mediated and Adaptive
Immunity in the Course of Infection

Zinc is thoroughly involved in cell-mediated immunity
against any infectious agent such as bacteria and virus. Zinc
is one of the major factors that control function and prolifer-
ation of neutrophils, NK cells, macrophages, and T and B
lymphocytes as well as cytokine production by the immune
cells. Zn also mediates protection from the adverse effect of
ROS that are generally produced during inflammatory pro-
cesses. Free intracellular Zn2+ is essential in extravasation to
the site of the infection and uptake and killing of microorgan-
isms by neutrophils [85]. For more detail on the functions of
Zn in immunity, please see the review articles by [86–89].

Augmented Effect of Zn and Chloroquine to Stop
SARS-CoV-2 Replication

Chloroquine was known to increase vacuolar pH when
trapped in acidic organelles, such as lysosomes. This increase
in pH disrupts lysosomal acidification leading to the impair-
ment of autophagosome fusion and autophagic degradation
[90, 91]. Using human ovarian carcinoma cell line A2780,
Xue J. et al. [92] reported that chloroquine can act as iono-
phore for Zn. Chloroquine enhances uptake of Zn by the ly-
sosomes, and the combination of Zn and chloroquine en-
hances chloroquine cytotoxicity and induces apoptosis in ma-
lignant cells. In their experiment [92], A2780 ovarian cancer
cells were treated with 100–300 μM chloroquine in the pres-
ence of increased concentrations of ZnCl2 for 1 h. Intracellular
basal Zn levels were barely detectable in control cells without
any chloroquine. However, chloroquine addition to the culture
medium caused significant increases of intracellular Zn in a
dose-dependent manner.

Zn Can Directly Inhibit SARS-CoV-2 Replication

Using recombinant SARS-CoV nsp12, te Velthuis et al. [61]
showed that Zn2+ directly inhibited the in vitro RdRp activity
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(Fig. 1). They also reported that specifically, Zn2+ was found
to inhibit the SARS-CoVRdRp elongation and template bind-
ing. Earlier, it was also shown that Zn2+ inhibited the proteo-
lytic processing of replicase polyproteins [93, 94].

Zn Enhances Efficiency of Anti-viral Drugs

A number of anti-viral drugs such as ribavirin, remdesivir,
lopinavir/ritonavir, and antibiotics such as azithromycin and
doxycycline have been recommended for the treatment of
COVID-19. Zn supplement can favour COVID-19 treatment
using some of these anti-viral drugs.

Zinc supplementation was suggested as a complementary
therapy in chronic hepatitis C patients to increase the tolerance
to IFN-α-2a and ribavirin [95]. However, a 24-week Zn sup-
plementation reduced the incidence of abdominal discomfort
without any additive effect on the anti-hepatitis C virus dual
therapy of IFN-α-2 and ribavirin [96].

While evaluating the impact of ZnSO4 supplementation in
HIV-infected individuals, the supplement was found useful in
management of atazanavir-ritonavir-related unconjugated
hyperbilirubinemia in selected patients [67].

Zinc Supplement: Limits and Risks

Zinc as an adjuvant therapy can be prescribed in different
forms of Zn salt, such as Zn-gluconate, Zn-acetate, Zn-sulfate,
and Zn-picolinate. However, the amount of elemental Zn in
each salt varies. For example, Zn-sulfate contains about 23%
elemental Zn; therefore, to have 50 mg of Zn, a 220 mg of Zn-
sulfate tablet would be required for consumption. It is impor-
tant to note that the recommended daily allowance of Zn will
vary according to the age, sex, and health conditions of an
individual. For healthy adults, the recommended daily allow-
ance is typically 15–30 mg of elemental Zn. Despite the ben-
eficial effects of Zn in immune response, long-term high-dose
Zn consumption will cause a decrease of high-density lipopro-
tein cholesterol levels, anaemia, copper deficiency, and possi-
ble genitourinary complications [97].

Conclusion

Zinc plays crucial roles in many aspects of life. In the course
of infection, the immunomodulatory role of Zn is well evident.
In the current pandemic of SARS-CoV-2, Zn supplement
could play an important role to treat COVID-19 patients such
as (i) added immune boosting effects with anti-viral drugs and
(ii) stopping SARS-CoV-2 replication in infected cells, if
combined with chloroquine. In view of this discussion, oral
Zn supplement can be given using a suitable form of Zn-salt.
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