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Abstract. The increasing availability of scholarly metadata in the form
of Knowledge Graphs (KG) offers opportunities for studying the struc-
ture of scholarly communication and evolution of science. Such KGs build
the foundation for knowledge-driven tasks e.g., link discovery, prediction
and entity classification which allow to provide recommendation services.
Knowledge graph embedding (KGE) models have been investigated for
such knowledge-driven tasks in different application domains. One of the
applications of KGE models is to provide link predictions, which can
also be viewed as a foundation for recommendation service, e.g. high
confidence “co-author” links in a scholarly knowledge graph can be seen
as suggested collaborations. In this paper, KGEs are reconciled with a
specific loss function (Soft Margin) and examined with respect to their
performance for co-authorship link prediction task on scholarly KGs.
The results show a significant improvement in the accuracy of the exper-
imented KGE models on the considered scholarly KGs using this specific
loss. TransE with Soft Margin (TransE-SM) obtains a score of 79.5%
Hits@10 for co-authorship link prediction task while the original TransE
obtains 77.2%, on the same task. In terms of accuracy and Hits@10,
TransE-SM also outperforms other state-of-the-art embedding models
such as ComplEx, ConvE and RotatE in this setting. The predicted co-
authorship links have been validated by evaluating profile of scholars.

Keywords: Scholarly knowledge graph - Author recommendation -
Knowledge graph embedding - Scholarly communication - Science
graph + Metaresearch queries * Link prediction * Research of research

1 Introduction

With the rapid growth of digital publishing, researchers are increasingly exposed
to an incredible amount of scholarly artifacts and their metadata. The complex-
ity of science in its nature is reflected in such heterogeneously interconnected
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information. Knowledge Graphs (KGs), viewed as a form of information rep-
resentation in a semantic graph, have proven to be extremely useful in mod-
eling and representing such complex domains [8]. KG technologies provide the
backbone for many Al-driven applications which are employed in a number of
use cases, e.g. in the scholarly communication domain. Therefore, to facilitate
acquisition, integration and utilization of such metadata, Scholarly Knowledge
Graphs (SKGs) have gained attention [3,25] in recent years. Formally, a SKG
is a collection of scholarly facts represented in triples including entities and a
relation between them, e.g. (Albert Einstein, co-author, Boris Podolsky). Such
representation of data has influenced the quality of services which have already
been provided across disciplines such as Google Scholar!, Semantic Scholar [10],
OpenAIRE [1], AMiner [17], ResearchGate [26]. The ultimate objective of such
attempts ranges from service development to measuring research impact and
accelerating science. Recommendation services, e.g. finding potential collabora-
tion partners, relevant venues, relevant papers to read or cite are among the
most desirable services in research of research enquiries [9,25]. So far, most of
the approaches addressing such services for scholarly domains use semantic sim-
ilarity and graph clustering techniques [2,6,27].

The heterogeneous nature of such metadata and variety of sources plug-
ging metadata to scholarly KGs [14,18,22] keeps complex metaresearch enquiries
(research of research) challenging to analyse. This influences the quality of the
services relying only on the explicitly represented information. Link prediction
in KGs, i.e. the task of finding (not explicitly represented) connections between
entities, draws on the detection of existing patterns in the KG. A wide range of
methods has been introduced for link prediction [13]. The most recent success-
ful methods try to capture the semantic and structural properties of a KG by
encoding information as multi-dimensional vectors (embeddings). Such methods
are known as knowledge graph embedding (KGE) models in the literature [23].
However, despite the importance of link prediction for the scholarly domains, it
has rarely been studied with KGEs [12,24] for the scholarly domain.

In a preliminary version of this work [11], we tested a set of embedding mod-
els (in their original version) on top of a SKG in order to analyse suitability
of KGEs for the use case of scholarly domain. The primary insights derived
from results have proved the effectiveness of applying KGE models on schol-
arly knowledge graphs. However, further exploration of the results proved that
the many-to-many characteristic of the focused relation, co-authorship, causes
restrictions in negative sampling which is a mandatory step in the learning
process of KGE models. Negative sampling is used to balance discrimination
from the positive samples in KGs. A negative sample is generated by a replace-
ment of either subject or object with a random entity in the KG e.g., (Albert
Einstein, co-author, Trump) is a negative sample for (Albert Einstein, co-author,
Boris Podolsky). To illustrate the negative sampling problem, consider the fol-
lowing case: Assuming that N = 1000 is the number of all authors in a SKG, the
probability of generating false negatives for an author with 100 true or sensible

! https://scholar.google.de/.
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but unknown collaborations becomes % = 10%. This problem is particularly
relevant when the in/out-degree of entities in a KG is very high. This is not lim-
ited to, but particularly relevant, in scholarly KGs with its network of authors,
venues and papers. To tackle this problem, we propose a modified version of
the Margin Ranking Loss (MRL) to train the KGE models such as TransE and
RotatE. The model is dubbed SM (Soft Margins), which considers margins as
soft boundaries in its optimization. Soft margin loss allows false negative sam-
ples to move slightly inside the margin, mitigating the adverse effects of false

negative samples. Our main contributions are:

— proposing a novel loss function explicitly designed for KGs with many-to-
many relations (present in co-authorship relation of scholarly KGs),

— showcasing the effect of the proposed loss function for KGE models,

— providing co-authorship recommendations on scholarly KGs,

— evaluating the effectiveness of the approach and the recommended links on
scholarly KGs with favorable results,

— validating the predicted co-authorship links by a profile check of scholars.

The remaining part of this paper proceeds as follows. Section 2 represents
details of the scholarly knowledge graph that is created for the purpose of apply-
ing link discovery tools. Section 3 provides a summary of preliminaries required
about the embedding models and presents some of the focused embedding models
of this paper, TransE and RotatE. Moreover, other related works in the domain
of knowledge graph embeddings are reviewed in Sect. 3.2. Section 4 contains the
given approach and description of the changes to the MRL. An evaluation of
the proposed model on the represented scholarly knowledge graph is shown in
Sect.5. In Sect.6, we lay out the insights and provide a conjunction of this
research work.

2 A Scholarly Knowledge Graph

A specific scholarly knowledge graphs has been constructed in order to pro-
vide effective recommendations for the selected use case (co-authorship). This
knowledge graph is created after a systematic analysis of the scholarly metadata
resources on the Web (mostly RDF data). The list of resources includes DBLP?,
Springer Nature SciGraph Explorer®, Semantic Scholar* and the Global Research
Identifier Database (GRID)® with metadata about institutes. A preliminary ver-
sion of this KG has been used for experiments of the previous work [11] where
suitability of embedding models have been tested of such use cases. Through this
research work we will point to this KG as SKGOLD. Towards this objective, a
domain conceptualization has been done to define the classes and relations of

2 https://dblp2.uni-trier.de/.

3 https://springernature.com/scigraph.
* https://semanticscholar.org.

5 https://www.grid.ac.
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Fig. 1. Ontology of a scholarly knowledge graph for experimenting embedding models
in co-authorship link prediction.

focus. Figure 1 shows the ontology that is used for the creation of these knowl-
edge graphs. In order to define the terms, the OpenResearch [20] ontology is
reused.

Each instance in the scholarly knowledge graph is equipped with a unique ID
to enable the identification and association of the KG elements. The knowledge
graphs consist of the following core entities of Papers, Events, Authors, and
Departments.

In the creation of the our KG® which will be denoted as SKGNEW a set of
7 conference series have been selected (namely ISWC, ESWC, AAAI NeurIPS,
CIKM, ACI, KCAP and HCAI have been considered in the initial step of retriev-
ing raw metadata from the source). In addition, the metadata flitted for the
temporal interval of 2013-2018. The second version of the same KG has been
generated directly from Semantic Scholar.

Table 1. Dataset statistics. The number of triples that are used in different datasets
are shown per each entity and relationship.

Dataset Entities Relations

Author | Publication | Venue | hasAuthor | hasCoauthor | hasVenue
SKGOLD | 4,660 | 2,870 7 9,934 12,921 6,614
SKGNEW | 12,472 | 5,001 42 14,933 21,279 5,001

The datasets, used for model training, which in total comprise 70,682 triples
where 29,469 triples are coming from the SKGOLD and 41,213 triples are gener-
ated in SKGNEW. In each set of experiments, both datasets are split into triples

5 The datasets created for SKGs are available here: https://github.com/SmartData
Analytics/OpenResearch.
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of training/validation/test sets. Table 1 includes the detailed statistics about the
datasets only considering three relationships between entities namely hasAuthor
(paper - author), hasCoauthor (author - author), hasVenue (author/paper -
venue). Due to the low volume of data, isAffiliated (author - organization) rela-
tionship is eliminated due in SKGNEW.

3 Preliminaries and Related Work

In this section we focus on providing required preliminaries for this work as well
as the related work. The definitions required to understand our approach are:

— Knowledge Graph. Let £, R be the sets of entities and relations respec-
tively. A Kg is roughly represented as a set K = {(h,r,t)|h,t € E,r € R} in
which h,t,r refer to the subject and object and relation respectively.

— Embedding Vectors. The vector representation of symbolic entities and
relations in a KG are considered as embeddings. The vectors of a triple h, 7, ¢
are depicted as h,r, t € R?, where d refers to the dimension of the embedding
space.

— Score Function. Each KGE model defines an score function f,(h,t). The
score function gets the embedding vectors of a triple (h,r,t) and returns a
value determining if the triple is a fact or not. A lower value for the score
function indicates that the triple is more plausible comparing to those triples
with higher values.

— Loss Function. Each KGE model utilizes a loss function to adjust embed-
ding. In the beginning of the learning process, the model initializes the embed-
ding vectors randomly. Then it updates the vectors by optimizing a loss func-
tion L. Since typically many variables should be adjusted in the learning
process, Stochastic Gradient Descent (SGD) method is commonly used for
the optimization of the loss function.

— Negative Sampling. KGs contain only positive samples. Most of KGE mod-
els generate artificial negative samples to have a better discrimination from
positive ones. Uniform negative sampling (unif) is the most widely used neg-
ative sampling technique in which a negative sample is generated for a triple

(h,r,t) by replacement of either h or ¢ with a random entity (h’ or t') existing
in £.

3.1 Review of TransE and RotatE Models

The proposed loss is trained on a classical translation-based embedding models
named TransE and a model for complex space as RotatE. Therefore, we mainly
provide a description of TransE and RotatE and further focus on other state-of-
the-art models.
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TransE. Tt is reported that TransE [4], as one of the simplest translation based
models, outperformed more complicated KGEs in [11].

The initial idea of TransE model is to enforce embedding of entities and
relation in a positive triple (h,r,t) to satisfy the following equality:

h+r=t (1)

where h, r and t are embedding vectors of head, relation and tail respectively.
TransE model defines the following scoring function:

fr(hyt) = b +r —t]| (2)

RotatE. Here, we address RotatE [16] which is a model designed to rotate the
head to the tail entity by using relation. This model embeds entities and relations
in Complex space. By inclusion of constraints on the norm of entity vectors, the
model would be degenerated to TransE. The scoring function of RotatE is

fr(h,t) =|hor—t]
in which o is the element-wise product.

Loss Function. Margin ranking loss (MRL) is one of the most used loss functions
which optimizes the embedding vectors of entities and relations. MRL computes
embedding of entities and relations in a way that a positive triple gets lower score
value than its corresponding negative triple. The least difference value between
the score of positive and negative samples is margin (7). The MRL is defined as
follows:

L= > S ety = f(W )]y (3)

(h,r,t)eSt (b, t')eS—

where [z]+ = max(0,2) and ST and S~ are respectively the set of positive and
negative samples.

MRL has two disadvantages: 1) the margin can slide, 2) embeddings are
adversely affected by false negative samples. More precisely, the issue of margin
sliding is described with an example. Assume that f,.(h1,t1) = 0 and f,.(h],t}) =
v, or fr(h1,t1) =~ and f,.(h},t'1) = 2v are two possible scores for a triple and
its negative sample. Both of these scores get minimum value for the optimization
causing the model to become vulnerable to a undesirable solution. To tackle this
problem, Limited-based score [28] revises the MRL by adding a term to limit
maximum value of positive score:

Lrs= > > [frlht)+v = fo(B )1 + Alfr(hst) = ]+ (4)

It shows Lgg significantly improves the performance of TransE. Authors in [28§]
denote TransE which is trained by Lrs as TransE-RS. Regarding the second dis-
advantage, MRL enforces a hard margin in the side of negative samples. However,
using relations with many-to-many characteristic (e.g., co-author), the rate of
false negative samples is high. Therefore, using a hard boundary for discrimina-
tion adversely affects the performance of a KGE model.
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3.2 Review of Other State-of-the-Art Models

With a systematic evaluation (performance under reasonable set up) of suitable
embedding models to be considered in our evaluations, we have selected two
other models that are described here.

ComplEz. One of the embedding models focusing on semantic matching model
is ComplEx [19]. In semantic matching models, the plausibility of facts are mea-
sured by matching the similarity of their latent representation, in other words it
is assumed that similar entities have common characteristics i.e. are connected
through similar relationships [13,23]. In ComplEx the entities are embedded in
the complex space. The score function of ComplEx is given as follows:

f(ht) = R(LT diag(r) ¥)
in which t is the conjugate of the vector t.

ConvE. Here we present a multi-layer convolutional network model for link
prediction named as ConvE. The score function of the ConvE is defined as
below:

f(h,t) = g(vec(g([h, 1] xw)) W)t

in which ¢ denotes a non-linear function, h and r are 2D reshape of head and
relation vectors respectively, w is a filter and W is a linear transformation matrix.
The core idea behind the ConvE model is to use 2D convolutions over embeddings
to predict links. ConvE consists of a single convolution layer, a projection layer
to the embedding dimension as well as an inner product layer.

4 Soft Marginal Loss

This section proposes a new model independent optimization framework for
training KGE models. The framework fixes the second problem of MRL and
its extension mentioned in the previous section. The optimization utilizes slack
variables to mitigate the negative effect of the generated false negative samples.

Margin Ranking Loss Our Proposed Optimization
®® oo ©° 05®
® S pee @ @@; o °°
SN ® O

— >
Hard Margin Soft Margin

&: Slack Variable @ True Positive @ True Negative o False Negative

Fig. 2. Optimization of margin ranking loss.
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In contrast to margin ranking loss, our optimization uses soft margin. Therefore,
uncertain negative samples are allowed to slide inside of margin.

Figure 2 visualizes the separation of positive and negative samples using mar-
gin ranking loss and our optimization problem. It shows that the proposed opti-
mization problem allows false negative samples to slide inside the margin by
using slack variables (£). In contrast, margin ranking loss doesn’t allow false
negative samples to slide inside of the margin. Therefore, embedding vectors
of entities and relations are adversely affected by false negative samples. The
mathematical formulation of our optimization problem is as follows:

. r 2
minegr Z(h,r,t)eé“r gh,t

S.t.

fT(h7t) S’Yl; (h,’l“,t) €S+ (5)
P ) >y — &, (W t) € S~

&,>0

where f,.(h,t) is the score function of a KGE model (e.g., TransE or RotatE),
St,57 are positive and negative samples sets. v; > 0 is the upper bound of
score of positive samples and 5 is the lower bound of negative samples. vo — 71
is margin (y2 > 71). &, is slack variable for a negative sample that allows it
to slide in the margin. & ; helps the optimization to better handle uncertainty
resulted from negative sampling.

The term ()&}, ;) represented in the problem 5 is quadratic. Therefore, it is
convex which results in a unique and optimal solution. Moreover, all three con-
straints can be represented as convex sets. The constrained optimization problem
(5) is convex. As a conclusion, it has a unique optimal solution. The optimal solu-
tion can be obtained by using different standard methods e.g. penalty method
[5]. The goal of the problem (5) is to adjust embedding vectors of entities and
relations. A lot of variables participate in optimization. In this condition, using
batch learning with stochastic gradient descent (SGD) is preferred. In order to
use SGD, constrained optimization problem (5) should be converted to uncon-
strained optimization problem. The following unconstrained optimization prob-
lem is proposed instead of (5).

min Y (Ao&h,” + M max(fr(h,t) —71,0) +
ht (hrt)eS+

(6)
Z )‘2 max(’y2 - fr(hlv t/) - g}:,t? O))
(h’,r,t’)eS;’ht
The problem (5) and (6) may not have the same solution. However, we
experimentally see that if A\; and Ay are properly selected, the results would
be improved comparing to margin ranking loss.
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5 Evaluation

This section presents the evaluations of TransE-SM and RotatE-SM (TransE and
RotatE trained by SM loss), over a scholarly knowledge graph. The evaluations
are motivated for a link prediction task in the domain of scholarly communication
in order to explore the ability of embedding models in support of metaresearch
enquiries. In addition, we provide a comparison of our model with other state-of-
the-art embedding models (selected by performance under a reasonable set up)
on two standard benchmarks (FreeBase and WordNet). Four different evaluation
methods have been performed in order to approve: 1) better performance and
effect of the proposed loss, 2) quality and soundness of the results, 3) validity
of the discovered co-authorship links and 4) sensitivity of the proposed model
to the selected hyperparameters. More details about each of these analyses are
discussed in the remaining part of this section.

5.1 Performance Analysis

The proposed loss is model independent, however, we prove its functionality and
effectiveness by applying it on different embedding models. In the first evaluation
method, we run experiments and assess performance of TransE-SM model as well
as RotatE-SM in comparison to the other models and the original loss functions.
In order to discuss this evaluation further, let (h,r,t) be a triple fact with an
assumption that either head or tail entity is missing (e.g., (?,7,t) or (h,7,7)).
The task is to aim at completing either of these triples (h,r,?) or (?,r,t) by
predicting head (h) or tail (¢) entity. Mean Rank (MR), Mean Reciprocal Rank
(MRR) [23] and Hits@10 have been extensively used as standard metrics for
evaluation of KGE models on link prediction.

In computation of Mean Rank, a set of pre-processing steps have been done
such as:

— head and tail of each test triple are replaced by all entities in the dataset,
— scores of the generated triples are computed and sorted,
— the average rank of correct test triples is reported as MR.

Let rank; refers to the rank of the i—th triple in the test set obtained by a
KGE model. The MRR is obtained as follows:

1
MRR = Z ——

The computation of Hits@10 is obtained by replacing all entities in the
dataset in terms of head and tail of each test triples. The result is a sorted list
of triples based on their scores. The average number of triples that are ranked
at most 10 is reported as Hits@10 as represented in Table 2.
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Table 2. Link prediction results. Results of TransE (reported from [11]), TransRS,
and our proposed model (TransE-SM) are obtained. The others are obtained from orig-
inal code. Dashes: results could not be obtained. The underlined values show the best
competitor model and the bold results refer to the cases where our model outperforms
other competitors.

SKGOLD - Filtered SKGNEW - Filtered

FMR | FHits@10 | FMRR | FMR | FHits@10 | FMRR
TransE [4] 647 | 50.7 - 1150 |77.2 -
ComplEx [19] — 56.2 0.326 |- 73.9 0.499
ConvE [7] 1215 [ 49.3 0.282 | 1893 | 71.3 0.442
RotatE [15] 993 | 60.6 0.346 | 1780 |69.5 0.486
TransE-RS [28] N - 762 | 75.8 0.443
TransE-SM (our work) |910 |61.4 0.347 | 550 |79.5 0.430
RotatE-SM (our work) | 990 | 60.9 0.347 | 1713 | 76.7 0.522

Experimental Setup. A Python-based computing package called PyTorch” has
been used for the implementation of TransE-SM and RotatE-SM®. Adagrad was
selected as an optimizer. The whole training set is reshuffled in each epoch.
Then 100 mini-batches are generated on the reshuffled samples. Batches are
taken sequentially and the parameters of the model are optimized on the selected
batches in each iteration. The parameters A1, Ao are set to one for simplicity of
our experiments. Sub-optimal embedding dimension (d) is selected among the
values in {50, 100, 200}. Upper bound of positive samples () and lower bound of
negative samples (2) are selected from the sets {0.1,0.2,...,2},{0.2,0.3,...,2.1}
respectively. It should be noted that 47 < ~. The regularization term ()\g) is
adjusted among the set {0.01,0.1,0,1,10,100}. For each positive sample in a
batch, we generate a set of « = {1,2,...,10} negative samples.

Both for TransE-SM and RotatE-SM, the optimal configurations are Ag =
10,71 = 0.6,72 = 0.7, = 1,d = 100 for SKGOLD and Ay = 10,71 = 0.2,y =
0.7, = 5,d = 200 for SKGNEW. The results of TransE and TransE-RS are
obtained by our implementation. The results corresponding to ConvE, ComplEx
are obtained by running their codes.

The results mentioned in the Table 2 validate that TransE-SM and RotatE-
SM significantly outperformed other embedding models in all metrics.

In addition, evaluation of the state-of-the-art models have been performed
over the two benchmark datasets namely FB15K and WN18. While our focus
has been resolving problem of KGEs in presence of many-to-many relationships,
the evaluations of the proposed loss function (SM) on other datasets show the
effectiveness of SM in addressing other types of relationships.

" https:/ /pytorch.org/.
8 The code for Soft margin loss is available here: https://github.com/mojtabanayyeri/
Soft-Margin-Loss.
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Table 3. Experimental results for FB15K and WN18. Results of TransE-RS
and TransE-SM are based on our code. For RotatE we ran the code of authors. Results
of other models are taken from the original papers.

FB15k WN18

FMR | FMRR | FHits@10 | FMR | FMRR | FHits@Q10
TransE [4] 125 |- 47.1 251 |- 89.2
ComplEx [19] |106 |67.5 82.6 543 | 94.1 94.7
ConvE [7] 51 689 | 85.1 504 942 | 95.5
RotatE [15] 49 |68.8 85.9 388 |94.6 95.5
TransE-RS [28] | 38 |57.2 82.8 189 1479 95.1
TransE-SM 46 648 | 87.2 201 |47.8 952
RotatE-SM 40 70.4 | 87.2 213 94.7 | 96.1

Table 3 shows the results of experiments for TransE, ComplEx, ConvE,
RotatE, TransE-RS, TransE-SM and RotatE-SM. The proposed model signif-
icantly outperforms the other models with an accuracy of 87.2% on FB15K. The
evaluations on WN18 shows that RotatE-SM outperforms other evaluated mod-
els. The optimal settings for our proposed model corresponding to this part of
the evaluation are A\g = 100,71 = 0.4,72 = 0.5, = 10,d = 200 for FB15K and
Ao =100, = 1.0,v2 = 2.0, = 10,d = 200 for WN18.

5.2 Quality and Soundness Analysis

With the second evaluation method, we aim at approving quality and soundness
of the results. In order to do so, we additionally investigate the quality of the
recommendation of our model. A sample set of 9 researchers associated with
the Linked Data and Information Retrieval communities [21] are selected as the
foundation for the experiments of the predicted recommendations. Table 4 shows
the number of recommendations and their ranks among the top 50 predictions
for all of the 9 selected researchers. These top 50 predictions are filtered for
a closer look. The results are validated by checking the research profile of the
recommended researchers and the track history of co-authorship. In the profile
check, we only kept the triples which are indicating;:

close match in research domain interests of scholars by checking profiles,
none-existing scholarly relation (e.g., supervisor, student),

none-existing affiliation in the same organization,

none-existing co-authorship.

Ll

For example, out of all the recommendations that our approach has provided
for researcher with id A136, 10 of them have been identified sound and new
collaboration target. The rank of each recommended connection is shown in the
third column.
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Table 4. Co-authorship recommendations. The rank links of discovered potential
co-authorship for 9 sample researchers.

Author | #Recom. | Rank of Recom.

A136 |10 23, 26, 31, 32, 34, 35, 37, 38, 47, 49
A88 4 2, 19, 30, 50

A816 |10 3,7,8,9,12, 13, 15, 44, 48

A1437 | 1 21

A138 | 6 5, 27, 28, 29, 36, 40

A128 1 24

A205 | 7 1, 11, 14, 18, 22, 39, 41

A940 3 1, 16, 17

A976 8 6, 20, 25, 33, 42, 43, 45, 46
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Fig. 3. Sensitivity analysis of TransE-EM to the parameter ~2 (with fixed values of 1)
and \o.

5.3 Validity Analysis

Furthermore, the discovered links for co-authorship recommendations have been
examined with a closer look to the online scientific profile of two top machine
learning researchers, Yoshua Bengio®, A860 and Yann LeCun'®, A2261. The
recommended triples have been created in two patterns of (A860,r,7) and
(?,7, A860) and deduplicated for the same answer. The triples are ranked based
on scores obtained from TransE-SM and RotatE-SM. For evaluations, a list of
top 50 recommendations has been selected per considered researcher, Bengio
and LeCun. In order to validate the profile similarity in research and approval of
not existing earlier co-authorship, we analyzed the profile of each recommended
author to “Yoshua Bengio” and “Yann LeCun” as well as their own profiles.

9 http://www-labs.iro.umontreal.ca/~bengioy/.
9 http://yann.lecun.com/.
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(a) Discovered network of “Yann Le- (b) Discovered network of “Yoshua
Cun” among top 50 links without a his- Bengio” among top 50 links without a
tory of co-authorship in the the time history of co-authorship in the time in-
interval of KG. terval of KG.

Fig. 4. Example of co-authorship recommendations.

We analyzed the scientific profiles of the selected researchers provided by the
most used scholarly search engine, Google Citation''. Due to author name-
ambiguity problem, this validation task required human involvement. First, the
research areas indicated in the profiles of researchers have been validated to be
similar by finding matches. In the next step, some of the highlighted publications
with high citations and their recency have been controlled to make sure that the
profiles of the selected researchers match in the machine learning community
close to the interest of “Yoshua Bengio” — to make sure the researchers can be
considered in the same community. As mentioned before, the knowledge graphs
that are used for evaluations consist of metadata from 2013 till 2018. In checking
the suggested recommendations, a co-authorship relation which has happened
before or after this temporal interval is considered valid for the recommenda-
tion. Therefore, the other highly ranked links with none-existed co-authorship
are counted as valid recommendations for collaboration. Figure 4b shows a visu-
alization of such links found by analyzing top 50 recommendations to and from
“Yoshua Bengio” and Fig.4a shows the same for “Yann LeCun”.

Out of the 50 discovered triples for “Yoshua Bengio” being head, 12 of them
have been approved to be a valid recommendation (relevant but never happened
before) and 8 triples have been showing an already existing co-authorship. Pro-
files of 5 other researchers have not been made available by Google Citation.
Among the triples with “Yoshua Bengio” considered in the tail, 8 of triples have
been already discovered by the previous pattern. Profile of 5 researchers were not
available and 7 researchers have been in contact and co-authorship with “Yoshua
Bengio”. Finally, 5 new profiles have been added as recommendations.

Out of 50 triples (YannLeCun,r,?), 14 recommendations have been discov-
ered as new collaboration cases for “Yann LeCun”. In analyzing the triples with a

Y https://scholar.google.com/citations?.
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pattern of the fixed tail (?,r, YannLeCun), there have been cases either without
profiles on Google Citations or have had an already existing co-authorship. By
excluding these examples as well as the already discovered ones from the other
triple pattern, 5 new researchers have remained as valid recommendations.

5.4 Sensitivity Analysis

In this part we investigate the sensitivity of our model to the hyperparameters
(71,72, Ao)- To analyze sensitivity of the model to the parameters v2, we fix v
to 0.1, 1 and 2. Moreover, \q is also fixed to one. Then different values for - are
tested and visualized. Regarding the red dotted line in Fig. 3a, the parameter
1 is set to 0.1 and A9 = 1. It is shown that by changing 5 from 0.2 to 3,
the performance increases to reach the peak and then decreases by around 15%.
Therefore, the model is sensitive to 2. The significant waving of results can be
seen when v, = 1,2 as well (see Fig. 3a). Therefore, proper selection of 71,7, is
important in our model.

We also analyze the sensitivity of the performance of our model on the param-
eter A\g. To do so, we take the optimal configuration of our model corresponding
to the fixed 71, 72. Then the performance of our model is investigated in differ-
ent setting where the Ag € {0.01,0.1,1,10,100,1000}. According to Fig.3b, the
model is less sensitive to the parameter \g. Therefore, to obtain hyper parame-
ters of the model, it is recommended that first (71, 72) are adjusted by validation
when )\ is fixed to a value (e.g., 1). Then the parameter Ag is adjusted while
(71,72) are fixed.

6 Conclusion and Future Work

The aim of the present research was to develop a novel loss function for embed-
ding models used on KGs with a lot of many-to-many relationships. Our use case
is scholarly knowledge graphs with the objective of providing predicted links as
recommendations. We train the proposed loss on embedding model and examine
it for graph completion of a real-world knowledge graph in the example of schol-
arly domain. This study has identified a successful application of a model free
loss function namely SM. The results show the robustness of our model using
SM loss function to deal with uncertainty in negative samples. This reduces the
negative effects of false negative samples on the computation of embeddings.
We could show that the performance of the embedding model on the knowledge
graph completion task for scholarly domain could be significantly improved when
applied on a scholarly knowledge graph. The focus has been to discover (possible
but never happened) co-author links between researchers indicating a potential
for close scientific collaboration. The identified links have been proposed as col-
laboration recommendations and validated by looking into the profile of a list of
selected researchers from the semantic web and machine learning communities.
As future work, we plan to apply the model on a broader scholarly knowledge
graph and consider other different types of links for recommendations e.g, rec-
ommend events for researchers, recommend publications to be read or cited.
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