Endocrine Pathology (2020) 31:108-118
https://doi.org/10.1007/s12022-020-09611-8

®

Check for
updates

Alternative Lengthening of Telomeres and Differential Expression
of Endocrine Transcription Factors Distinguish Metastatic
and Non-metastatic Insulinomas

Wenzel M. Hackeng' (@ - Willemien Schelhaas? - Folkert H. M. Morsink' - Charlotte M. Heidsma* - Susanne van Eeden? -
Gerlof D. Valk*@® - Menno R. Vriens® - Christopher M. Heaphy®(® - Els J. M. Nieveen van Dijkum3® -
G. Johan A. Offerhaus’ - Koen M. A. Dreijerink” ® - Lodewijk A. A. Brosens

Published online: 26 February 2020
© The Author(s) 2020

Abstract

Insulin-producing pancreatic neuroendocrine tumors (PanNETs)/insulinomas are generally considered to be indolent tumors with
an excellent prognosis after complete resection. However, some insulinomas have a poor prognosis due to relapses and metastatic
disease. Recently, studies in non-functional PanNETs indicated that behavior can be stratified according to alpha- and beta-cell
differentiation, as defined by expression of the transcription factors ARX and PDX1, respectively. It is unknown whether similar
mechanisms play a role in insulinomas. Therefore, we determined ARX and PDX1 expression in a cohort of 35 sporadic primary
insulinomas and two liver metastases of inoperable primary insulinomas. In addition, WHO grade and loss of ATRX or DAXX
were determined by immunohistochemistry, and alternative lengthening of telomeres (ALT) and CDKNZ2A status by fluorescence
in situ hybridization. These findings were correlated with tumor characteristics and clinical follow-up data. In total, five out of 37
insulinoma patients developed metastatic disease. Metastatic insulinomas were all larger than 3 cm, whereas the indolent
insulinomas were smaller (p value < 0.05). All three primary insulinomas that metastasized showed ARX expression, 2/3 showed
ALT, and 1/3 had a homozygous deletion of CDKN2A as opposed to absence of ARX expression, ALT, or CDKN2A deletions in
the 32 non-metastatic cases. The two liver metastases also showed ARX expression and ALT (2/2). The presence of ARX
expression, which is usually absent in beta-cells, and genetic alterations not seen in indolent insulinomas strongly suggest a
distinct tumorigenic mechanism in malignant insulinomas, with similarities to non-functional PanNETs. These observations may
inform future follow-up strategies after insulinoma surgery.

Keywords Pancreatic neuroendocrine tumor - Insulinoma - Malignant insulinoma - Liver metastasis - Neuroendocrine cells

Introduction
P< Wenzel M. Hackeng

wenzelhackeng @ gmail.com

Department of Pathology, University Medical Center Utrecht,
Heidelberglaan 100, 3584 CX Utrecht, The Netherlands

Department of Pathology, Amsterdam University Medical Center,
Amsterdam, The Netherlands

Department of Surgery, Amsterdam University Medical Center,
Amsterdam, The Netherlands

Department of Endocrinology and Internal Medicine, University
Medical Center Utrecht, Utrecht, The Netherlands

Department of Surgery, University Medical Center Utrecht,
Utrecht, The Netherlands

Department of Pathology, Johns Hopkins Medical Institutions,
Baltimore, USA

Department of Endocrinology and Internal Medicine, Amsterdam
University Medical Center, Amsterdam, The Netherlands

@ Springer

Insulinomas are the most common functional pancreatic neu-
roendocrine tumor (PanNET) type and are diagnosed by the
triad of hypoglycemic symptoms, low blood glucose concen-
trations, and relief of symptoms after glucose administration.
Most insulinomas are indolent tumors: there are few mitoses
(low grade) and metastases are very rare [1, 2]. In contrast,
40-50% of non-functional PanNETSs present with liver metas-
tases at time of initial diagnosis [3, 4]. Surgery for insulinomas
is primarily indicated to alleviate symptoms of hypoglycemia.
Survival after surgery is not different from the general popu-
lation [5, 6]. There are no insulinoma-specific international
recommendations for follow-up after surgery [5, 7].
Nevertheless, about 10% of insulinoma patients develop me-
tastases that are mostly present at time of initial diagnosis, but
may sometimes develop years after resection of the primary
tumor [8]. Median survival is less than 2 years in patients with


http://crossmark.crossref.org/dialog/?doi=10.1007/s12022-020-09611-8&domain=pdf
https://orcid.org/0000-0001-6795-179X
https://orcid.org/0000-0001-5841-8344
https://orcid.org/0000-0003-4264-1810
https://orcid.org/0000-0002-3029-6071
https://orcid.org/0000-0002-3140-3502
https://orcid.org/0000-0003-1341-8994
mailto:wenzelhackeng@gmail.com

Endocr Pathol (2020) 31:108-118

109

metastatic insulinoma, similar to metastatic non-functional
PanNET [9-11].

Because of the rarity of metastatic insulinomas, little is
known about the mechanisms of tumorigenesis. Recent se-
quencing studies identified recurrent YY/ gene mutations in
insulinomas; however, relapses or metastases were rarely re-
ported in the studied cohorts [12—15]. There is a need to in-
crease our understanding of insulinoma development, in partic-
ular of metastatic insulinomas. This will improve identification
of patients at risk for recurrence, who may benefit from follow-
up after surgery and thereby earlier detection and treatment of
metastases.

Metastatic non-functional PanNETs are more common and
have been characterized more extensively. Next-generation se-
quencing studies have demonstrated that sporadic PanNETs
harbor relatively few gene mutations. The genes that are most
frequently mutated are MENI, ATRX, and DAXX [12, 16, 17].
Mutually exclusive mutations in ATRX or DAXX—coding for
two chromatin-modifying proteins which form a histone chap-
erone complex—are associated with the alternative lengthening
of telomere phenotype (ALT) [18]. Immunohistochemical loss
of ATRX and DAXX can be used as a surrogate marker of
inactivating mutations of ATRX or DAXX, respectively [18,
19]. The presence of either of these alterations is associated with
recurrence and liver metastases [20-25]. In addition to ATRX or
DAXX mutations and ALT, loss of ARID1A, loss of H3K36
trimethylation (H3K36me3) by SETD2 dysfunction, and
CDKN2A deletions were also reported to be of prognostic value
for non-functional PanNET [26]. A recent finding in non-
functional PanNETs is that alpha- or beta-cell types-of-origin
may predict clinical behavior [20, 27]. Beta-cell like non-
functional PanNETs, marked by expression of the endocrine
transcription factor PDX1, were generally indolent, while al-
most all relapses were observed in the group of alpha-cell like
non-functional PanNETs marked by ARX expression.
Furthermore, somatic mutations in ATRX, DAXX, and MENI
and acquisition of ALT were observed more often in the alpha-
type non-functional PanNETs [20, 27].

Whether the ARX and PDX1 transcription factors play a
role in the clinical behavior of insulinomas is not known. We
determined protein expression of ARX and PDXI1 together
with ATRX, DAXX, ARID1A, and H3K36me3 by immuno-
histochemistry, as well as ALT and CDKN2A deletions by
fluorescence in situ hybridization (FISH), in a cohort of clin-
ically defined sporadic insulinomas.

Materials and Methods
Study Cohort

The study was approved by the University Medical Center
(UMC) Utrecht Biobank Research Ethics Committee.

Tissue-microarrays (TMAs) were constructed of primary spo-
radic insulinomas resected between 1991-2017 and 1997—
2017 for the UMC Utrecht and Amsterdam UMC, respective-
ly. Inherited cases (e.g., MEN1 syndrome) were excluded.
Neuroendocrine tumor diagnosis was confirmed by an expe-
rienced gastrointestinal pathologist (LAAB). Three 0.6-mm
cores per tumor were randomly taken from annotated tumor
areas in formalin-fixed paraffin-embedded (FFPE) blocks. In
case of multiple tumors, the largest tumor was used. Biopsies
of insulinoma liver metastases were identified by a search in
the UMC Utrecht pathology archive.

Information on age, sex, multifocality, surgery type, sur-
gery date, tumor size, location, grade, resection margin, and
lymph nodes was collected from pathology reports. If possi-
ble, macroscopic tumor size was used. Free margins were
interpreted as RO, also if the distance was less than 1 mm from
the resection margin. Medical records were reviewed to col-
lect information on the functional status of the tumor, presence
of genetic syndromes, and follow-up. Events of tumor relapse
(local recurrence, liver metastases, or other metastases) were
either histologically proven or diagnosed by the treating clini-
cian. The first radiological evidence of proven relapse was
used as event time point. Follow-up time is counted from date
of surgery until described events, death, or was censored at the
last visit to a relevant hospital clinician (surgery, internal med-
icine, endocrinology, gastroenterology, or oncology) or most
recent clinic visit. For overall survival, any cause of death and
the most recent clinic visit were used. Relapse was defined as
any distant metastasis (liver or other location) or local recur-
rence. Relapse-free, distant-free, and liver metastases-free sur-
vival were censored at last visit to a relevant hospital clinician.

Immunohistochemistry

Four-micrometer sections of FFPE tissue were cleared at
60 °C and deparaftinized in xylene. Endogenous peroxidase
was blocked by immersion in 0.6% H,0, (7210, Merck,
Kenilworth, USA) in methanol for 15 min. Antigen retrieval
was performed by cooking slides in a 10 mM citrate (pH 6) or
10/1 mM Tris/EDTA (pH 9) solution for 20 min. Nonspecific
binding was reduced by with Protein Block Serum Free
(X0909, Dako, Santa Clara, United States of America).
Antibodies were diluted in normal antibody diluent
(Immunologic, Duiven, The Netherlands) and applied on the
slides (Table 1). After incubation of post antibody blocking
solution for 15 min (Immunologic), the secondary antibody
Poly-HRP-goat anti Mouse/Rabbit IgG (cat. no.
VWRKDPVBI110HRP, Immunologic) was incubated for 30
min. Peroxidase activity was detected by DAB (D5637,
Sigma, St. Louis, USA) or Bright-DAB (cat. no.
VWRKBS04-110, Immunologic) as chromogen for 8 min.
After all incubation steps, except the protein block, slides were
washed with PBS-Tween-20 0.1% four times. Slides were
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Table 1 Antibodies and protocol variations
Antibody  Company Name Species and Pre- Dilution/time/ ~ Substrate  Scoring method
target (clone) treatment temperature
DAXX Atlas antibodies, HPA008736 Rabbit PAB ARS/pH6 1:100 1 h RT Bright-DAB  Negative if positive nuclear
Bromma, 20 min staining < 5% of tumor cells
Sweden
ATRX Sigma, HPA0001906 Rabbit PAB ARS/pH9  1:400 overnight DAB Negative if positive nuclear
St. Louis, MO 20 min 4°C staining < 5% of tumor cells
ARX Millipore, MABN102 Mouse MAB ARS/pH6 1:2000 1 hRT  DAB Positive if weak nuclear staining
Burlington, (11F6.2) 20 min > 50% or intermediate/strong
MA nuclear staining > 10% of
tumor cells
PDX1 Abcam, Cambridge, ab134150 Rabbit MAB ARS/pH6  1:2000 1 h RT DAB Positive if weak nuclear staining
UK (EPR3358(2)) 20 min > 50% or intermediate/strong
nuclear staining > 10% of
tumor cells
Ki67 Immunologic, VWRKILM9252-C05 Mouse MAB ARS/pH6 1:200 1 h RT DAB Digital image analysis of nuclear
Duiven, (MIB1) 20 min expression in at least 2000 tumor
The Netherlands cells
Glucagon  Cell Marque, 259A-15 Rabbit PAB ARS/pH6 1:100 1 h RT Bright-DAB  Positive if cytoplasmic staining
Rocklin, CA 20 min > 10% of tumor cells, scattered if
< 10% of tumor cells
Insulin Dako, Santa A564 Rabbit PAB ARS/pH6  1:100 1 h RT DAB Positive if cytoplasmic staining
Clara, CA 20 min > 10% of tumor cells, scattered if
< 10% of tumor cells
H3K36me3 Abcam, Cambridge, ab9050 Rabbit PAB ARS/pH6 1:2000 1 hRT  DAB Negative if positive nuclear staining
UK 20 min <30% of tumor cells
ARIDIA  Abcam, Cambridge, ab182560 Rabbit MAB ARS/pH6 1:1000 1 hRT  DAB Negative if positive nuclear staining
UK (EPR13501) 20 min < 5% of tumor cells

MAB monoclonal antibody, PAB polyclonal antibody, ARS antigen retrieval solution, R7 room temperature, DAB 3,3'-Diaminobenzidine

counterstained with hematoxylin and mounted with Pertex
(Histolab, Askim, Sweden).

Scoring was performed by at least two independent re-
searchers (WMH, WS, LAAB), blinded for each other’s re-
sults and clinical information. Disagreements were resolved
by consensus.

For ARX and PDX1, negative protein expression in tumor
tissue was defined as weak nuclear staining in < 50% of cells
or strong nuclear staining in < 10% of cells. Positive expres-
sion was defined as weak nuclear staining in > 50% of cells
or intermediate/strong nuclear staining > 10% of cells [27].
For insulin and glucagon, cytoplasmic staining of > 10% of
cells was considered positive expression for the respective
peptide hormone. Normal islets, containing a mix of cells
expressing or not expressing the respective peptide hormone,
were used as positive and negative controls, respectively. If
< 10% of cells had expression, cases were called scattered.
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DAXX, ATRX, and ARID1A were considered negative if <
5% of cells had positive nuclear staining and if there was
non-tumoral tissue present with positive nuclear staining
serving as internal control, e.g., islets of Langerhans, stromal
cells, endothelial cells, or lymphocytes [26, 28]. All negative
cases in the TMA were also stained on whole sections to
confirm the results. For H3K36me3 loss, a cut-off of 30%
of cells was used [26, 29]. Negative cases without a positive
internal control were non-informative. All cytoplasmic stain-
ing was ignored.

Ki67 labeling index (LI) was counted in at least 2000 cells
by digital image analysis with Sectra (PACS, Sectra AB,
Link6ping, Sweden), as previously described [30]. Digital
counts were confirmed by visual assessment. PanNETs were
graded by the 2017 WHO criteria (Ki67 G1 <3%, G2 3 to
20%, G3 >20%) [31]. If the pathology report also mentioned
tumor grade based on Ki67 or mitoses per 10 HPF, the highest
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grade was used for further analysis as the location of tumor
cores not always represents the most proliferative region.

Fluorescence In Situ Hybridization

After deparaffinization in xylene, 4 um FFPE sections for
CDKN2A/CEN9 FISH were pre-treated in 0.2 N HCL for
20 min, cooked in a 10 mM citrate buffer (pH 6) for 20 min
and washed in PBS. Slides were then digested in proteinase K
buffer for 10 min at 37 °C (5 uM Tris—=HCL, 1uM EDTA,
1 uM NaCl, 10 mg/L Proteinase K), washed with PBS and
dried. Ten microliters of CDKN2A/CEN9 probe mix
(CDKN2A/CEN 9 Dual Color probe, Zytolight,
Bremerhaven, Germany) was applied per slide. Slides were
denatured at 78 °C for 5 min and cooled on ice for 5 min.
Hybridization was performed in a ThermoBrite (Abbott
Laboratories, Chicago, IL) at 37 °C overnight. After removing
coverslips, slides were washed in washing buffer (WB) 1
(0.4x SCC, 0.5% NP-40, 73 °C), WB 2 (2x SCC, 0.1% NP-
40, room temperature), WB 3 (2x SCC, room temperature),
and PBS, for 2, 1, 5 min, and 20 s respectively. Nuclei were
counterstained and mounted with Vectashield with DAPI
(H-1200, Vector laboratories, Amsterdam, The Netherlands).

Slides for telomere/centromere FISH were cooked in
10 mM citrate buffer (pH 6) for 20 min, washed in dH,O
and dried. Probes (TelC-Cy3 F1002 PNA 180723PL-01,
Cent-FITC, F3013 172865, Panagene, Daejeon, Republic of
Korea) were diluted in hybridization mix (50% deionized
Formamide, 50% SCC 4x, 5% Dextran sulphate, Tween-20
0.5%) at a 400 nM concentration and applied on the slides.
After 5 min denaturation at 84 °C, slides were cooled on ice
for 5 min before hybridizing at 37 °C overnight. After remov-
ing coverslips, slides were washed in two cycles of 1x WB
(70% Formamide, 30% dH20, 10 mM Tris, 15 min) and 3%
PBS (2 min each time). Nuclei were counterstained with
DAPI in PBS 2 pg/ml (Sigma-Aldrich, D9542), and cover-
slips were mounted with Vectashield (H-1000, Vector
laboratories).

Slides were stored at 4 °C before imaging, and viewed with
a Leica DM5500 B using appropriate excitation and emission
filters. Images were made at 100x magnification with a Z
stack of 14 steps in Leica application Suite X (Leica
Microsystems, Rijswijk, The Netherlands).

The number of CDKN2A gene probe and centromere probe
signals were counted in at least 50 tumor cells for each case
(WMH, WS). At least nine photographs of tumor tissue (con-
firmed on H&E) were made for counting of cells. Only intact
non-overlapping nuclei with at least one centromere probe
were counted. Multiple signals separated <1 signal distance
were counted as one. If no signals were observed (gene and
centromere) in the tumor and surrounding stromal cells or if
there was too much background, cases were called non-infor-
mative. Homozygous loss was defined as at least 20% of

counted cells lacking CDKNZ2A probe signals with at least
one CEP9 probe. Hemizygous deletion of CDKN2A was con-
cluded if 45% of counted cells had one CDKNZ2A probe and
two CEP9 probes; monosomy of chromosome 9 (which can
be considered hemizygous loss) if 15% of cells had one
CDKNZ2A probe and one CEP9 probe. Cut-off values were
based on previous literature [26, 32]. If results were discor-
dant, additional photos were made and at least 100 cells were
counted (WMH).

ALT positivity was defined as ultra-bright, intra-nuclear
telomere FISH signals, 10x the signal intensity of cumulative
single telomere sum intensities in normal stromal/endothelial
cells, which are present in more than 1% of cells [18, 33]. The
percentage of ALT cells > 1% was determined on % 20 mag-
nification by visual assessment (WMH) in areas of tumor
tissue (annotated in H&E slide), with a cut-off of more than
20 ultra-bright foci per tumor core (max 2000 cells). If less
than 1% by visual assessment, all ultra-bright foci were count-
ed. All ultra-bright foci were confirmed at x 100 magnifica-
tion. Using the same laser/microscope settings, representative
ultra-bright foci near stromal cells were photographed and
digital grayscale TIFF images exported for each fluorophore
channel. Telomere signals were quantified using Telometer (a
free custom software Image] plug-in, downloaded from
demarzolab.pathology.jhmi.edu/telometer). Rolling ball
radius was set at the maximal telomeric signal diameter,
which was measured per photograph. Signals were separated
by the draw function if necessary. Centromere signals were
used as positive hybridization efficiency control and to
confirm specific probe binding.

Statistics

Data was managed and statistical tests were performed in
SPSS version 25 (IBM Nederland, Amsterdam,
The Netherlands). The Kaplan Meier method was used to plot
the effect of variables on events occurring over time, and
significance was assessed by the log-rank test. The X* or
Fishers exact test was used when comparing categorical data
between groups. Follow-up time was calculated using a re-
verse Kaplan Meier for relapse-free survival and observation
time was calculated from date of surgery until last visit to a
relevant hospital clinician, irrespective of events. P values <
0.05 were considered significant. Data was visualized in R
version 3.5.1 using packages Beeswarm and Survplot.

Results

The cohort consisted of 35 primary insulinomas. The clinical
characteristics of the patients are listed in Table 2. All cases
were confirmed to be clinically functioning insulinomas by
the treating hospital clinician. Three patients developed liver
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metastases during follow-up, one of whom also had local re-
currence and tumor depositions around the uterine append-
ages. While all metastastic primary cases initially presented
with symptomatic hypoglycemia, only two out of three cases
had hypoglycemic events at relapse by liver metastasis
(Table 3). Overall survival could not be analyzed as there were
no deaths during follow-up. The metastatic primary
insulinomas were larger than the indolent primary
insulinomas, but this did not reach statistical significance
(mean 32 indolent insulinomas 1.48 cm, SD 0.45, mean 3
metastatic insulinomas 7.20 cm, SD 3.12, ¢ test p =0.086;
Fig. 1). In addition, biopsies of liver metastases of two patients
with inoperable primary insulinoma were available (Table 3),
as well as a biopsy of a corresponding liver metastasis of one
of the primary insulinomas in the cohort (patient 2, Table 3).
When the sizes of the primary tumors of the inoperable
insulinoma patients were included, the five metastatic
insulinomas were significantly larger than the indolent cases
(mean 1.48 cm, SD 0.45, metastatic mean 6.16 cm, SD 2.63, ¢
test P=0.016). A size cut-off of 3 cm perfectly separated all
metastatic from indolent insulinomas.

Positive or scattered insulin expression was observed in all
insulinomas. Positive or scattered glucagon expression was
seen in about 60% of insulinomas. PDX1 expression was
observed in 34/35 primary insulinomas (97%), and 2/3 liver
metastases; in contrast, only 3/35 (9%) of primary
insulinomas were ARX positive, while all liver metastases
were ARX positive (Fig. 1, Tables 2 and 3). All ARX positive
primary insulinomas developed metastases during follow-up.
The ARX-positive percentage of cells varied between 10 and
90% of cells (Fig. 1, Table 3), and PDX1 expression was
intermediate to strong in 70-100% of cells for all positive
cases. Two (of 3) metastasizing primary insulinomas were
multifocal (two tumors per patient). To exclude the possibility
of'the smaller tumor being the insulinoma and the larger tumor
(tested in the TMA) possibly being an ARX-positive non-
functional PanNET, whole slides of all multifocal tumors were
stained for ARX, PDXI1, and insulin. ARX, PDX1, and insu-
lin expression was identical between tumors of the same pa-
tient. Thus, strong ARX expression in more than 10% of cells
identified metastatic insulinomas with a 100% sensitivity and
specificity. Of note, one of the metastatic insulinomas showed
areas with < 10% ARX positive cells with scattered positive
cells when assessing the whole slide (Patient 1, Fig. 1c¢).
Although no obvious heterogeneity was seen between differ-
ent tumor cores when scoring for ARX and PDX1, it is con-
ceivable that the number of ARX-positive cells was
underestimated using TMA cores for other cases. We therefore
sought to further confirm our results by reviewing all ARX-
negative insulinomas by digital image analyses on the TMA
similar to the Ki67 count [30]. In all these cases, expression
was observed in far less than 10% of cells, most often absent
or in less than 1% of cells.

@ Springer

Of 33 insulinomas interpretable by telomere FISH, two
cases (6%) had ALT which both developed liver metastases
during follow up (Fig. 1; Table 3). All tested liver metastasis
biopsies had ALT. All insulinomas (n = 34) with tumor tissue
present in the TMAs had retained ATRX expression, only one
case had heterogenic DAXX loss (also ALT positive). Insulin,
glucagon, ARIDIA, H3K36me3 THC, and CDKN2A FISH
were only tested on 31 cases, as for the last four insulinoma
cases, no unstained TMA slides were available. All cases (n =
30) with tumor tissue present in the TMA had retained
H3K36me3 and ARID1A expression. One case with homo-
zygous CDKN2A deletion and one case with monosomal
CDKNZ2A were observed (of 21 interpretable cases; Table 3).
The case with homozygous CDKNZ2A loss developed liver
metastases. The metastatic primary insulinomas were grade
1 (2/3) or grade 2 (1/3), and both metastasis biopsies were
grade 2 (Ki67 labeling index, Table 3).

Discussion

All metastatic insulinomas in this cohort were larger than
3 cm. Strikingly, all metastatic insulinoma lesions showed
ARX expression, which was not observed in any of the indo-
lent primary insulinomas. Four out of five (80%) metastatic
insulinomas had ALT—not reported before in insulinomas—
while none of the indolent insulinomas showed ALT.
Interestingly, the two recent studies that identified ARX as
marker for PanNET relapse after surgery, also included non-
metastatic insulinomas: Cejas et al. found no ARX immuno-
histochemical expression in 17 primary insulinomas [27] and
Chan et al. reported ARX mRNA expression (alpha signature)
in one out of three insulinomas. None of the insulinomas in
these studies metastasized, but remarkably, the ARX-
expressing case in the study of Chan et al. was also ATRX
mutated and very large (8 cm), while all the negative cases
were small (< 2cm) and ATRX, DAXX, MEN1 wild type [20].
These results are in line with our observation that there is an
association between size, ALT, and ARX expression in
insulinomas. To our knowledge, ALT has not been described
before in any insulinoma. Retention of ATRX/DAXX protein
expression in one of the insulinomas with ALT may be ex-
plained by non-truncating mutations, translocations, or other
underlying mutations causing the ALT phenotype [34]. In the
literature, presence of somatic ATRX and DAXX mutations or
protein loss detected by immunohistochemistry is uncommon
in sporadic insulinoma—in contrast to non-functional
PanNET [12-15, 26]. A recent large whole-genome sequenc-
ing study definitively established that insulinomas and non-
functional PanNETs have distinct genetic underpinnings, and
recurrent copy number variations together with ATRX and
DAXX mutations are a characteristic feature of non-
functional PanNETs [12]. However, such alterations might
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Table 2  Patient and tumor characteristics

Insulinomas

Sex (%)

Age at surgery

Median follow-up

Median follow-up

Relapse (liver/other/local)
Liver metastases (%)
Other distant metastasis (%)

Local recurrence (%)

Death of all causes (%)
Location (%)

Tumor size
>2 cm (%)
>3 cm (%)

Grade (%)

Resection margins (%)

Lymph nodes (%)

ARX (%)
PDX! (%)

ATRX/DAXX (%)

Telomeres

CDKN2A

ARID1A and H3K36me3

Insulin (%)

Glucagon (%)

Male

Female

Mean (+ SD)

Reverse KM + (mean, IQR months)

Observation time (mean, IQR months)

Yes

No

Yes

No

Yes

No

Yes

No

No

Head
Corpus
Tail
Multifocal
Unknown
Mean (+ SD)

1

2

3

Missing

Free

Involved
Unsure

Not mentioned
Free

Involved

Not mentioned
Positive
Negative
Positive
Negative

ATRX negative
DAXX negative
Both positive
Missing
Alterative lengthening of telomeres
Normal telomeres
Missing

Normal
Monosomal
Homozygous loss
Not interpretable
Not tested

Both positive
Missing

Not tested
Positive
Scattered
Negative
Missing

Not tested
Positive
Scattered
Negative
Missing

Not tested

16 (46%)
19 (54%)
55 (£ 18)
49 (57, 5-81)
30 (52, 5-58)
3 (9%)
32 91%)
3 (9%)
32 91%)
1 3%)
34 (97%)
1 3%)
34 (97%)
35 (100%)
4 (11%)
4 (11%)
18 (51%)
2 (6%)

7 (20%)
1.97 (+1.84)
10 (29%)
3 (9%)
31 (89%)
3 (9%)

0 (0%)

1 3%)
17 (49%)
7 (20%)
8 (23%)
3 (9%)
14 (40%)
0 (0%)
21 (60%)
3 (9%)
32 (7%)
34 (97%)
1 3%)

0 (0%)

1 3%)
33 (94%)
1 3%)

2 (6%)
31 (89%)
2 (6%)
18 (51%)
1 3%)

1 3%)
11 (31%)
4

30 (97%)
1 3%)

4

28 (90%)
2 (7%)

0 (0%)

1 3%)

4

13 (42%)
5 (16%)
12 (39%)
1 3%)

4

SD standard deviation, KM Kaplan Meier, /OR interquartile range
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Fig. 1 ARX expression, tumor size and liver metastases-free survival in
primary insulinomas. a—c Positive ARX expression in the three metastatic
primary insulinomas (patient 1, 2, 3) and no ARX expression in a non-
metastatic insulinoma (d). Photos of immunohistochemistry, white-bal-
anced, with 50-pum scale bar. e Tumor size plot. Cases with liver

be more prevalent in metastatic insulinomas, of which only
few are present in the cohorts previously reported in the liter-
ature. Interestingly, in a cohort with multiple rare malignant/
metastatic insulinomas, a high number of chromosomal aber-
rations was strongly associated with metastases [35]. As
ATRX/DAXX mutations and ALT correlate with copy number
variations and chromosomal instability [21, 36], this may be a
reflection of ATRX/DAXX mutations that were not tested at
that time. Loss of the tumor suppressor CDKN2A has been
reported once before in a malignant insulinoma [37] and was
recently described as a marker of malignant behavior in non-
functional PanNET [26].

Several studies have reported large insulinomas to be ma-
lignant more often, and the late symptomatology suggests
relatively low or acquired insulin production (Fig. 2) [1, 38,
39]. The ARX transcription factor is not expected to be

Time (months)

metastases in the size plot are circled (green), WHO grade is given. f
Kaplan Meier of liver metastases-free survival for ARX expression in
the primary insulinoma cohort. P value was calculated with the log-
rank test

expressed in insulinomas [40], as it is not expressed in pan-
creatic beta-cells [41, 42]. In contrast, around 50-60% of non-
functional sporadic PanNETs express ARX [27]. Although
focal nesidioblastosis was considered as explanation for
ARX expression, it was deemed highly unlikely due to the
characteristic tumor morphology, random peptide hormone
expression, and the presence of metastases [43].

Acquired insulin production could be the result of
transdifferentiation of ARX positive non-functional
PanNETs or (subclinical) glucagonomas. The latter phenom-
enon has been shown in mice [44, 45], and a recent report
described a human non-functional PanNET that progressed
into a metastatic insulinoma with liver metastases over the
course of 2 years [46]. Importantly, all malignant cases in this
study had hypoglycemic symptoms at presentation, which re-
solved after surgery of the primary tumor. All but one
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Fig. 2 Tumorigenic mechanisms in clinically defined insulinomas.
Hypothetic distinct pathways of tumorigenesis in clinical insulinomas
based on previously published data in combination with current
findings [1, 12, 26, 35]. 1 Typical small insulinomas characterized by
recurrent YY1 mutations (25%), neutral, or amplified chromosomal

copy numbers, and endocrine transcription factor expression consistent
with normal beta-cell differentiation (PDX1+/ARX-). 2 Large
insulinomas with distinct tumorigenic mechanisms often seen in non-
functional PanNETs and endocrine transcription factor expression incon-
sistent with normal beta-cell differentiation (ARX+)
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metachronous liver metastases (patient 2) gave new episodes
of symptomatic hypoglycemia when diagnosed. Interestingly,
in patient 2, both the primary and the corresponding liver
metastasis only had few PDX1-positive cells (potential insulin
producing cells), so perhaps the solitary liver metastasis
(3 cm) did not grow to a size in which a low percentage of
cells could have caused symptoms.

There are several strengths of this study. The assay to assess
expression of the nuclear transcription factor ARX is very
robust. Whole slides that were stained show no variable ex-
pression due to fixation, and pancreatic islets, enteroendocrine
duodenal/antrum cells serve as positive internal controls.
Although several other markers have been proposed based
on molecular analyses, protein, or mRNA expression, this is
the first study to show a clear association of one single immu-
nohistochemical marker with malignant behavior in
insulinomas [35, 47, 48].

The small cohort size and number of metastatic cases is a
limitation of this study, caused by the fact that metastatic
insulinomas are very rare. Validation of our findings in other
cohorts would be of important value. For the limitations in-
herent to cut-off scoring systems and TMAs, we have tried to
minimize their effect by scoring blinded by two independent
observers, confirming key percentages by digital analysis, and
staining whole slides to confirm immunohistochemical ex-
pression when necessary.

To conclude, large tumor size (> 3 cm) was confirmed to be
a strong marker of metastatic behavior in insulinomas. In ad-
dition, we found that large metastatic insulinomas are driven
by tumorigenic mechanisms often seen in non-functional
PanNETs, but not in small indolent insulinomas.
Furthermore, we demonstrate that ARX—which is normally
not present in beta-cells—is expressed in a subset of
insulinomas and is associated with large tumor size, ALT,
and metastatic disease. In contrast, ARX expression was ab-
sent in any of the small indolent insulinomas in this study or
the previous literature. We hypothesize that cellular differen-
tiation and tumorigenic mechanisms more closely related to
non-functional PanNETs are important for the development of
malignant insulinoma. Our findings with regard to rare meta-
static insulinomas may be of value to personalize follow-up
and treatment strategies in the future.
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