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ABSTRACT

Epigenetic modifications, including those on DNA and
histones, have been shown to regulate cellular meta-
bolism by controlling expression of enzymes involved in
the corresponding metabolic pathways. In turn, meta-
bolic flux influences epigenetic regulation by affecting
the biosynthetic balance of enzyme cofactors or donors
for certain chromatin modifications. Recently, non-en-
zymatic covalent modifications (NECMs) by chemically
reactive metabolites have been reported to manipulate
chromatin architecture and gene transcription through
multiple mechanisms. Here, we summarize these recent
advances in the identification and characterization of
NECMs on nucleic acids, histones, and transcription
factors, providing an additional mechanistic link
between metabolism and epigenetics.

KEYWORDS epigenetics, metabolism, non-enzymatic
modification, chromatin, human disease

INTRODUCTION

The genetic information of eukaryotes and archaea is
packaged in the nucleus as a dynamic nucleoprotein chro-
matin complex that not only stores it efficiently but also al-
lows it to remain readily accessible (Ammar et al., 2012). At
the molecular level, the DNA strand wraps approximately
1.65 times around a histone octamer complex, which itself
consists of two copies of each of the four core histones (i.e.,
H2A, H2B, H3, and H4) forming a nucleosome, the funda-
mental unit of chromatin (McGinty and Tan, 2015). Histones
contain an unusually high representation of positively
charged lysine and arginine residues that electrostatically

interact with the negatively charged phosphodiester back-
bone of DNA and stabilize the nucleosome core particle
(Erler et al., 2014). To regulate the interactions between
histones and nucleosomal DNA or transcription factors
(TFs), the histone residue side-chains are modified, typically
through enzyme-mediated incorporation of metabolite
molecules or cofactors, such as acetylation and methylation,
and even full proteins, such as ubiquitination and sumoyla-
tion (Bannister and Kouzarides, 2011). The resulting plethora
of modifications regulate cellular physiology by directly
impacting chromatin structure and the pattern of gene
expression, including essential enzymes involved in meta-
bolic pathways (Janke et al., 2015). Thereafter, these
enzymes can directly influence the epigenetic state of DNA,
RNA and histones by balancing the biosynthesis of co-fac-
tors that serve as the co-substrates and donors for covalent
modifications (e.g., S-adenosyl methionine for methylation
and acyl-coenzyme A for acylation), thereby propagating the
feedback loop (Fig. 1) (Rinschen et al., 2019).

Beyond enzyme-mediated epigenetic modifications,
chemically reactive metabolites have been shown to directly
modify nucleotides and histones via spontaneous non-en-
zymatic reactions (Zheng et al., 2019). Unlike canonical
post-translational modifications (PTMs), non-enzymatic
covalent modifications (NECMs) accumulate over time and
are much more dependent on the cellular microenvironment
(Harmel and Fiedler, 2018). Although metabolite-induced
NECMs have lower selectivity than enzymatic modifications,
histone proteins are particularly susceptible to NECMs due
to their long half-lives within cells and disordered, nucle-
ophilic tails (Commerford et al., 1982). Indeed, NECMs have
emerged as a new family of chromatin modifications with
direct effect on its structure and function. These NECMs
have been identified on DNA, RNA and histones and are
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implicated in disease states; however, their pathophysio-
logical mechanisms, particularly, the presence of any cau-
sative relationships, remain elusive (Zheng et al., 2019). In
this review, we summarize recent advances in NECM char-
acterization, categorize them based on chemical reactions,
and discuss their corresponding functions in disease pro-
gression, subsequently providing new perspectives regard-
ing the link between metabolism, diet, and epigenetic
regulation.

GLYCATION

The Maillard reaction is well known in food chemistry, where
aldehyde groups of reducing sugars, most of which are
aldoses (glucose, ribose, deoxyribose, fucose, glyceralde-
hyde etc.), react non-enzymatically with the nucleophilic
groups (e.g., amine, sulfydryl and hydroxyl) of biomacro-
molecules such as DNA, RNA and proteins, in a process
known as glycation (Hellwig and Henle, 2014). Unlike
O-linked glycosylation which is regulated by O-GlcNAc
transferase and O-GlcNAcase, glycation donors do not
require activation by uridine diphosphate (UDP) and their

modification sites on proteins are primarily lysine residues
instead of serine, threonine or tyrosine (Fig. 2A) (Spiro,
2002). The glycation process is relatively slow as once the
initial Schiff base is formed (Fig. 2B), a rate-limiting isomer-
ization step is required to drive the cascade forward (Hellwig
and Henle, 2014). However, upon the completion of this
hydride shift, an array of rearrangement products is rapidly
generated, ultimately forming chemically stable advanced
glycation end products (AGEs) (Singh et al., 2001).

Besides the canonical reducing monosaccharides that
can be assimilated through nutrition, several sugar meta-
bolism intermediates are also spawned from glycation
pathways within cells. For instance, methylglyoxal (MGO;
C3H4O2) is a reactive dicarbonyl sugar metabolite that
spontaneously reacts with primary amine and guanidino
groups (Fig. 2C) (Schalkwijk and Stehouwer, 2020). While
MGO is primarily generated as a byproduct during glycolysis
(Allaman et al., 2015), it can also be biosynthesized from
aminoacetone by a semicarbazide-sensitive amine oxidase
(SSAO) (Obata, 2006) or oxidized from acetone by a P450
enzyme, CYP2E1 (Bondoc et al., 1999) (Fig. 2C). MGO is
enriched in metabolically dysfunctional cells that overly rely
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Figure 1. The multi-level crosstalk between metabolism and epigenetic regulation of cellular transcription.
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on glycolysis for energy, resulting in the buildup of the gly-
colytic intermediates glyceraldehyde-3-phosphate (GA3P)
and dihydroxyacetone phosphate (DHAP), which ultimately
fragment into MGO (Allaman et al., 2015). Other types of
aldehyde-bearing metabolites (e.g., ascorbic acid, dopegal,
formaldehyde, 5-formylcytosine, and isolevuglandins) also
form NECMs on proteins via the same Maillard chemistry
(Fig. 2D and 2E) (Linetsky et al., 2007; Szende and Tyihák,
2010; May-Zhang et al., 2018; Raiber et al., 2018; Wanner
et al., 2020).

DNA and RNA glycation

Previous studies have demonstrated that guanine residues
in DNA and RNA can undergo methylglyoxal glycation
(Fig. 3A), thereby inducing DNA and RNA damage (Jaramillo
et al., 2017; Shuck et al., 2018). The MGO-induced DNA
damage product, N2-carboxyethyl-2’-deoxyguanosine
(CEdG) (Fig. 3A), is a significant DNA AGE in human cells
(∼1 in 107 dG) (Synold et al., 2008). CEdG has been
reported to be mutagenic in human cells and contributes to
genomic instability, while this DNA damage has few corre-
sponding repair pathways (Wuenschell et al., 2010; Tamae
et al., 2011). Based on its reactivity against RNA (Mitchell
et al., 2018), MGO derivatives have been applied as RNA
structural probes of guanine base-pairing for transcriptome-
wide RNA structure mapping (Weng et al., 2020). Finally,
MGO-induced DNA/RNA glycation might be an important
biomarker in human diseases such as diabetes and cancer
(Jaramillo et al., 2017), however, there remains a lack of
efficient sequencing methods reported for global profiling of
DNA/RNA glycation sites.

Histone glycation

Histones are primary glycation substrates because of their
long half-lives and abundant lysine (Lys) and arginine (Arg)
residues (Zheng et al., 2019). While different types of aldose-
induced histone glycation have been observed through both
in vitro and in vivo experiments for decades (Talasz et al.,
2002), an epigenetic link and working model in disease
states has only been recently reported (Zheng et al., 2019).
Specifically, histone glycation was found to induce epige-
netic dysregulation through three distinct mechanisms: 1)
competition with essential enzymatic PTMs for sites (e.g.,
glycation adducts replace H3K4me3 and H3R8me2), 2)
changing the charge states of histone tails and subsequently
affecting the compaction state of the fiber, and 3) altering
three-dimensional chromatin architecture by inducing both
histone-histone and histone-DNA crosslinking (Zheng et al.,
2019). The epigenetic impacts of histone glycation were
shown to be dependent on sugar concentration and expo-
sure time. These results were summarized in a two-stage
histone MGO-glycation damage model, which proposed that
the initial acute exposure stage introduces a low number of
scattered adducts induces chromatin 'relaxation', transitions

to fiber compaction following chronic exposure due to AGE
and cross-link formation (Fig. 3B) (Zheng et al., 2019). The
two-stage model intuitively suggests that histone glycation
serves as a double-edged sword in gene transcription,
where the compaction of chromatin is dynamically manipu-
lated first by spontaneous rearrangement and then by
crosslinking of glycation products. Despite their well-docu-
mented occurrence and effects, the detailed structures of
histone AGEs are still poorly understood because of their
highly dynamic nature, chemical complexity and low abun-
dance. The most prominently used methods for characteri-
zation of histone glycation are mass spectrometry and
antibody-based immunological assays (Galligan et al.,
2018). However, new chemical tools (Zheng et al., 2020) and
proteomics methods (Chen et al., 2019), capable of tracking
or discerning specific adducts, are currently being developed
to further understand the biochemical mechanisms of these
events.

Transcription factor glycation

The oncoprotein, nuclear factor erythroid 2-related factor 2
(NRF2), is a master regulator of the antioxidant response
pathway and serves as a key pathological transcription
factor in diseases such as cancer and atherosclerosis
(Kawai et al., 2011). NRF2 exercises its functions in asso-
ciation with Kelch ECH associating protein 1 (KEAP1), in
what is designated the KEAP1-NRF2 pathway (Kansanen
et al., 2013). KEAP1 is a substrate adaptor protein for a
CUL3-dependent E3 ubiquitin ligase complex which targets
NRF2 for ubiquitination and subsequent degradation by the
26S proteasome (Zhang et al., 2004). PTMs on KEAP1, as
well as oxidative and electrophilic stress, can reduce its
ubiquitination activity, resulting in the cellular accumulation
and activation of NRF2 (Keum, 2011; Kansanen et al., 2013).
This in turn initiates the transcription of cytoprotective genes
at antioxidant-response element loci.

Two recent studies demonstrated that both KEAP1 (Bol-
long et al., 2018) and NRF2 (Sanghvi et al., 2019) undergo
glycation under physiologically relevant metabolic stress.
The glycation of multiple lysine residues of NRF2 inhibits its
oncogenic function, which is reversed by the deglycase
activity of fructosamine-3-kinase (FN3K, Fig. 3C) (Sanghvi
et al., 2019). Moreover, MGO selectively modifies KEAP1 to
form a methylimidazole crosslink between proximal cysteine
and arginine residues, resulting in the covalent dimerization
of KEAP1 as well as the accumulation of NRF2 once more
(Fig. 3C) (Bollong et al., 2018). These findings illustrate that
sugar molecules can influence epigenetic events through
glycation of transcription factors and/or their associated
regulatory proteins.

Regulatory mechanisms of glycation

Since excessive glycation forms crosslinks within chromatin,
which blocks transcription, distinct pathways have evolved to
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ameliorate cellular glycation damage (Zheng et al., 2019).
These regulatory mechanisms include preventing the initial
glycation by scavenging the free reducing sugar molecules
as well as directly deglycating the modified substrates. In
mammalian cells, scavenger systems systematically remove
most of dicarbonyl molecules while deglycases such as
FN3K (Szwergold et al., 2001), PAD4 (Zheng et al., 2019),
and DJ-1 (Lee et al., 2012; Richarme et al., 2015; Richarme
et al., 2017) are tasked with detecting and reversing the
remainder.

In addition, Glyoxalases 1 (GLO1) and 2 (GLO2) together
form a GLO1/GLO2 pathway that converts free MGO to
D-lactate using glutathione (GSH) as a cofactor (Fig. 4A) (Xu
and Chen, 2006; Distler and Palmer, 2012). First, the glu-
tathione reacts with the dicarbonyl and forms a hemithioac-
etal which GLO1 can convert into lactoyl-glutathione (Distler
and Palmer, 2012). GLO2 then hydrolyzes the lactoyl-glu-
tathione, releasing D-lactate and regenerating the glu-
tathione (Xu and Chen, 2006). Carnosine synthase 1
(CARNS1) is an ATP-dependent enzyme that catalyzes the
condensation of L-histidine and β-alanine to form the
dipeptide metabolite carnosine (Fig. 4B) (Drozak et al.,
2010). Carnosine is an endogenous small molecule scav-
enger for both reactive oxygen species (ROS) and reactive
carbonyl species (RCS) (Cripps et al., 2017). These scav-
enging mechanisms inspired the development of drug leads,
such as alagebrium chloride (ALT-711), for anti-glycation and
anti-aging (Little et al., 2005).

As a kinase, FN3K catalyzes the C-3 phosphorylation of
fructosamines formed by glucose-glycation, and the resulting
unstable phosphate product undergoes spontaneous cleav-
age to yield 3-deoxyglucosone (3DG) and the regenerated
amine (Fig. 4C) (Van Schaftingen et al., 2007). This enzy-
matic activity of FN3K has been demonstrated through both
in vitro and in vivo experiments, however, its mitochondrial
and cytosolic subcellular localization restricts FN3K from
exhibiting its deglycation function as an eraser enzyme in the
nucleus (Veiga da-Cunha et al., 2006). Alternatively, peptidyl
arginine deiminase 4 (PAD4/PADI4) is known to be respon-
sible for the conversion of arginine side-chains into citrulline
(Suzuki et al., 2002) and antagonizing histone arginine
methylation (Cuthbert et al., 2004; Wang et al., 2004).
Recently, PAD4 has been shown to be capable of reversing
MGO-glycation on H3 and H4 and converting their early
glycated arginine adducts into citrulline (Zheng et al., 2019).
DJ-1 (also referred to as PARK7) belongs to the peptidase
C56 family of proteins and protects neurons against oxida-
tive stress and cell death (Taira et al., 2004). Its catalytic
cysteine residue (C106) is positioned in a ‘nucleophilic
elbow’ and responsible for both its oxidative stress sensing
and deglycase activity (Nair et al., 2018). Previous studies
indicate that DJ-1 erases early glyoxal (GO) and MGO-gly-
cation adducts from both nucleotides and proteins (Fig. 4D)
(Richarme and Dairou, 2017). Moreover, DJ-1 is also cap-
able of converting free MGO into L/D-lactate through inter-
molecular hydrolysis of DJ-1 arginine and lysine residues

that have reacted with the free MGO and formed early gly-
cation intermediates (Toyoda et al., 2014; Zheng et al.,
2019). Intriguingly, MnmC, which is involved in the bacterial
tRNA-modification pathway and is FAD-dependent, was
recently reported to be capable of reversing the AGEs, car-
boxyethyl-lysine (CEL) and carboxymethyl-lysine (CML),
releasing an unmodified lysine structure (Kim et al., 2019).
The engineered variant of MnmC has improved catalytic
properties against CEL (Fig. 4E), thus providing insights into
future protein-based therapies for AGE-induced protein
damage (Kim et al., 2019).

Glycation and human diseases

Metabolic syndromes and diabetes increase the risks
associated with neurodegenerative diseases, cancer, and
hypoimmunity, among other disorders (Kopelman, 2007).
Aldose-induced glycation opens a new door to expound this
clinical phenomenon, however, an accurate mechanistic
explanation for the correlation between glycation and human
disease has remained elusive. Existing efforts indicate that
glycation plays important pathophysiological roles in disease
progression (Fournet et al., 2018). In cancer, imbalanced
glycation could promote cancer by several mechniasms; the
two recent transcription factor studies uncovered completely
distinct biological implications of the NRF2/KEAP1 glycation
pathway in cancer development. The glucose-induced gly-
cation of NRF2 influences its protein-protein interaction
properties and suppresses its oncogenic activity (Sanghvi
et al., 2019), while the MGO-induced glycation of the tumor
suppressor KEAP1 causes the accumulation of NRF2 in
cells and thus promotes cancer progression (Fig. 3C) (Bol-
long et al., 2018). The two-stage model of histone MGO-
glycation (Fig. 3B) also provides a practical explanation for
the observation that moderate amounts of MGO benefits
cancer cell proliferation through the promotion of promiscu-
ous transcription, while excess MGO causes chromatin
crosslinking, subsequently abated transcription, and ulti-
mately leads to cell death (Zheng et al., 2019).

In neurons, MGO-glycation of Nav1.8, a human sodium
ion channel, intensifies nociceptive neuron firing and causes
hyperalgesia in diabetic neuropathy (Bierhaus et al., 2012).
Furthermore, for decades, AGEs have been correlated to
neurodegenerative disorders such as Alzheimer’s, Parkin-
son’s, and Huntington’s diseases (Li et al., 2012). Interest-
ingly, the deglycase activity of DJ-1, which is also known as
Parkinson disease protein 7 (PARK7), plays an important
role in the progression of a familial form of Parkinson’s dis-
ease (Repici and Giorgini, 2019). Given that core histones in
neurons have extremely long half-lives due to lack in repli-
cation, one hypothesis proposes that DJ-1’s deglycase
activity is a protection mechanism against the development
of neurodegenerative diseases (Ariga et al., 2013).

It has been well established that diabetic patients expe-
rience significant and characteristic hypoimmunity and/or
immune dysfunction (Geerlings and Hoepelman, 1999).
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Previous studies also showed that high plasma concentra-
tions of aldoses or reactive carbonyls, such as methylgly-
oxal, are associated with obesity and diabetes (Matafome
et al., 2013). One possible mechanism for the formation of
diabetic hypoimmunity is that aldose-mediated glycation of
immunoglobulins and surface receptors causes immunocyte
exhaustion, while histone and DNA glycation may lead to

long term epigenetic impacts on immune responses (Wei
et al., 2017; Teodorowicz et al., 2018).

ACYLATION

Acylation is a ubiquitous and important post-translational
modification that regulates protein structure and function
(Drazic et al., 2016). While most of the cellular protein
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acylations are facilitated by acyltransferases, non-enzymatic
acylation induced by activated esters or anhydrides is also
widely reported (Wagner and Hirschey, 2014). Importantly,
some of these non-enzymatic acylation adducts were shown
to be removed by common deacylases such as SIRT2 and
SIRT3 (Wagner and Hirschey, 2014). Since most of the
reported deacylases (such as the sirtuin family) are cofactor
NAD+-dependent, the metabolic disorder of NAD+ and
NADH biosynthesis will also influence the deacetylation
regulations in cells (Wagner and Hirschey, 2014; Drazic
et al., 2016).

Coenzyme A-activated thioesters of different acids not
only serve as donors for enzymatic acylation but also non-
enzymatically modify proteins, generating acylated lysine
residues (Fig. 5A). Recently, the GSH-activated thioester of
lactate has been reported to serve as the donor for lysine
lactoylation of glycolytic enzymes (Fig. 5B) (Gaffney et al.,
2019) while CoA-activated lactate serves a similar function
on histones (Zhang et al., 2019). The lactoylation donor,
lactoyl-glutathione, can be specifically hydrolyzed by GLO2
and DJ-1 (Fig. 5B) (Xu and Chen, 2006; Matsuda et al.,
2017). Interestingly, since GSH-activated lactate is biosyn-
thesized by GLO1 from MGO (Fig. 4A) (Distler and Palmer,
2012), lactoylation is a new type of NECM indirectly induced

by MGO. Homocysteine thiolactone (HTL) is an intramolec-
ular thioester of homocysteine (Hcy), which induces non-
enzymatic homocysteinylation on lysine residues (Fig. 5C)
(Jakubowski, 2000). Recent studies in neuronal tissues have
shown that multiple residues of all four core histones can be
modified by HTL, subsequently down-regulating the
expression of selected neuronal-tube closure-related genes
(Xu et al., 2015; Zhang et al., 2018). This discovery provides
a potential mechanistic explanation for the correlation
between high maternal Hcy levels and developmental neu-
ronal tube defects.

Anhydrides are more active than esters, making them
even better donors for non-enzymatic acylation. An anhy-
dride generated during DNA damage, 3’-formyl phosphate,
serves as an acyl donor for lysine formylation (Fig. 5D)
(Jiang et al., 2007). An additional anhydride, 1,3-bisphos-
phoglycerate (1,3-BPG), is a primary glycolytic intermediate
that selectively reacts with lysine residues forming 3-phos-
phoglyceryl-lysine (pgK, Fig. 5E) (Moellering and Cravatt,
2013). Interestingly, pgK modifications have been demon-
strated to inhibit glycolytic enzymes and accumulate on
proteins generating a potential feedback mechanism for
glycolysis regulation (Moellering and Cravatt, 2013).

OH
OH

A

O

4-HNE HN

B

O
O

B
O

4-ONE

OH
OH

OOH O

HN

O
OH

HN

O
O

HN

O
OH

HN

O
O

HN

H2N

H2N

Figure 7. NECMs induced by 4-HNE (A) and 4-ONE (B) via the Michael addition.

REVIEW Qingfei Zheng et al.

410 © The Author(s) 2020

P
ro
te
in

&
C
e
ll



ALKYLATION

Alkylation of proteins or nucleosides is usually induced by
alkylating agents ingested from the environment, such as
methylnitrosourea (MNU) and tobacco-specific nitrosamines
(Shuker et al., 1993). However, the non-enzymatic alkyla-
tions induced by endogenous metabolites (e.g., S-adenosyl-
L-methionine) have been reported to be potentially muta-
genic reactions (Rydberg and Lindahl, 1982). Compounds
with ring strain, such as the microbial metabolite, yatake-
mycin, which contains a unique chiral cyclopropane moiety,
also exhibit alkylating activities (Parrish et al., 2003).
Yatakemycin is a DNA-alkylating agent with remarkable
cytotoxicity against cancer cells, and its resulting alkylation
adducts can be removed by the DNA glycosylase, YtkR2
(Fig. 6A) (Xu et al., 2012). Another alkylating agent, col-
ibactin (Fig. 6B), is a genotoxic secondary metabolite pro-
duced by microorganisms harboring the pks genomic island,
including certain gut commensal Escherichia coli strains
(pks+ E. coli). Alkylation by colibactin causes multiple epi-
genetic impacts on the host organisms, including cell cycle
arrest, DNA double-strand breaks, and senescence (Wilson

et al., 2019). Moreover, colibactin-producing E. coli have
been shown to accelerate colorectal cancer tumor progres-
sion, a finding that defined a new link between gut microbiota
and human disease (Dalmasso et al., 2014).

MICHAEL ADDITION

Enones, also termed α, β-unsaturated carbonyls, are reac-
tive electrophilic agents that can non-enzymatically modify
nucleophilic groups of proteins and nucleosides (e.g., -SH, -
NH2 and -OH) via the Michael addition. The oxidation of
cellular lipids generate α, β-unsaturated alkenals, including
4-hydroxy-2-nonenal (4-HNE) and 4-oxo-2-nonenal (4-ONE)
(Doorn and Petersen, 2002; Näsström et al., 2011). These
electrophilic metabolites form adducts on both DNA and
histone proteins, altering the structures and functions of
chromatin (Fig. 7) (Sun et al., 2017). The 4-ONE non-enzy-
matic addition to histones H3 and H4 was reported to pre-
vent nucleosome assembly and occupy histone PTM sites
that are essential for epigenetic regulations (e.g., H3K23 and
H3K27) (Galligan et al., 2014). Similar to some acylations,
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the 4-ONE histone NECMs can be hydrolyzed by the dea-
cylase, SIRT2 (Cui et al., 2017). These results suggest a
connection between metabolic disorders, oxidative stress,
and epigenetic regulation.

REDOX REACTION

Redox reactions are some of the most important and ubiq-
uitous chemical processes in all organisms (Ochs, 2019).
Reactive oxygen species (ROS), such as H2O2, are contin-
uously produced and scavenged in cells, and can oxidize
cysteine thiols into sulfenic, sulfinic, or sulfonic acid (Fig. 8A)
(Chauvin and Pratt, 2017). These oxidations may often
induce alterations in the structure and functions of proteins,
which often act as sensors to induce a downstream cellular
response to the oxidative state changes (Marinho et al.,
2014). Although the precise pathological roles of ROS
remain controversial (Schumacker, 2006), in human cells
there are multiple oxidative stress sensor proteins including
GAPDH and DJ-1, which have key regulatory cysteines
sensitive to ROS fluctuations (Duan et al., 2008). Cells have
evolved multiple mechanisms to complete the redox cycles,
such as sulfiredoxin (SRX), a reported sulfinic acid reduc-
tase that can reduce cysteine sulfinylation (Fig. 8A) (Basu
and Koonin, 2005). Moreover, cells produce metabolites
possessing thiol groups to reduce ROS and protect cellular
components from oxidative damage (Poole, 2015). This
class of reducing agents includes among others, GSH,
ergothioneine (EGT) and mycothiol (MSH), which all play
critical roles in the distinct domains of life (Fig. 8B) (Hand
and Honek, 2005; Van Laer et al., 2013). Intriguingly, some
of these small-molecule thiols are reported to non-enzy-
matically modify protein cysteine residues via reduction, and
this modification can be enzymatically reversed by deglu-
tathionylase enzymes such as glutaredoxin (GRX) and
thioredoxin (TRX) (Fig. 8C) (Greetham et al., 2010). For
example, H3 cysteines were shown to be modified by GSH
through S-glutathionylation, which leads to a looser chro-
matin structure (García-Giménez et al., 2013). Importantly,
the levels of S-glutathionylation increase during cellular
proliferation and decrease during aging, highlighting a
potential physiological causal relationship between non-en-
zymatic redox reactions and human health (Hake and Allis,
2006).

CONCLUSIONS AND PERSPECTIVES

While NECMs are long-established in biochemistry, emer-
gent questions surrounding aberrant metabolism-related
human diseases have revitalized renewed interest in them.
Although membrane proteins are the primary targets of
serum metabolites (Matsuda et al., 2013), core histones are
the principal targets of intracellular metabolites during NECM
formation (Zheng et al., 2019). Because of their long half-
lives and nucleophilic N-terminal tails, histones accumulate
stable enzymatic and non-enzymatic PTMs. DNA and

histone NECMs, spontaneously induced by multiple classes
of reactive metabolites including ROS and RCS, providing a
direct causal link between metabolism and long-term epi-
genetic dysregulation. We propose that histones adopt the
roles of ‘NECM sponges’ in cells as part of an epigenetic
feedback loop in metabolic disorders.

Incidentally, some of the NECM-inducing reactive
metabolites are exogenous to human cells. Metabolites
produced by human gastrointestinal microbiota are known to
exhibit essential functions in quorum sensing and virulence
(Li et al., 2018). However, a substantial body of evidence has
shown that the reactive microbial metabolites, such as col-
ibactin (Dalmasso et al., 2014) and peptide aldehydes (Guo
et al., 2017), directly modify host DNA or proteins to influ-
ence the cell cycle and immune response. The studies of
reactive metabolite-induced NECMs will continue to aid in
understanding pathophysiological host-microbe interactions
such as the gut-brain axis (Cryan et al., 2019).

Relative to canonical and enzymatically regulated bio-
molecule modifications, NECMs are less characterized due
to the structural diversity, dynamic nature, and instability of
the adducts formed (Zhu et al., 2018). There is a critical need
for novel approaches to study NECMs including the devel-
opment of high-resolution trace mass spectrometry, chemi-
cal probes for specific enrichment, and site-specific
antibodies. Individual and customized NECMs can also be
specifically introduced into designated targets in vivo using
intein-mediated protein splicing (Maksimovic et al., 2019)
and amber codon suppression (Zhang et al., 2003).

Overall, non-enzymatic covalent modifications, which are
identified as a ubiquitous biomarker on biomacromolecules,
have extended the so-called ‘histone code’ (Jenuwein and
Allis, 2001) and become a new link between metabolic dis-
orders and epigenetic dysregulation. However, because
epigenetic changes are heritable (Trerotola et al., 2015),
cellular microenvironment-driven DNA and histone NECMs
have potential implications in far-reaching processes such
as embryonic development, ultimately resulting in postnatal
impacts on organisms (Jawahar et al., 2015). Even though
the interplay between metabolism and epigenetics has been
well established in the past few years (Etchegaray and
Mostoslavsky, 2016; Reid et al., 2017; Tzika et al., 2018;
Montellier and Gaucher, 2019), recent studies of metabolite-
induced epigenetic modifications opened a new door for
understanding the missing links between them. Moreover,
NECMs that target non-epigenetic proteins may also induce
long-term biological effects and require further studies.
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AGE, advanced glycation end product; Arg, arginine; 1,3-BPG, 1,3-

bisphosphoglycerate; CARNS1, carnosine synthase 1; CEdG, N2-

carboxyethyl-2’-deoxyguanosine; CEL, carboxyethyl-lysine; CML,

carboxymethyl-lysine; Co-A, coenzyme A; CUL3, cullin 3; CYP2E1,
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fructosamine 3 kinas; GA3P, glyceraldehyde-3-phosphate; GAPDH,

glyceraldehyde 3-phosphate dehydrogenase; GlcNAc, N-acetylglu-

cosamine; GLO, glyoxalases; GO, glyoxal; GRX, glutaredoxin; GSH,

glutathione; Hcy, homocysteine; 4-HNE, 4-hydroxy-2-nonenal; HTL,

homocysteine thiolactone; KEAP1, Kelch ECH associating protein 1;

Lys, lysine; MGO, methylglyoxal; MNU, methylnitrosourea; MSH,

mycothiol; NAD, nicotinamide adenine dinucleotide; NECM, non-

enzymatic covalent modification; NRF2, nuclear factor erythroid

2-related factor; OGT, O-GlcNAc transferase; 4-ONE, 4-oxo-2-

nonenal; PAD4, protein arginine deiminase 4; PARK7, Parkinson

disease protein 7; pgK, 3-phosphoglyceryl-lysine; PTM, post-trans-

lational modification; RCS, reactive carbonyl species; RNA, ribonu-

cleic acid; ROS, reactive oxygen species; SAM, S-adenosyl

methionine; SIRT, sirtuin; SRX, sulfiredoxin; SSAO, semicar-

bazide-sensitive amine oxidase; TF, transcription factor; TRX,

thioredoxin; UDP, uridine diphosphate
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