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The 2019 novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak has caused a large
number of deaths, with thousands of confirmed cases worldwide. The present study followed computational
approaches to identify B- and T-cell epitopes for the spike (S) glycoprotein of SARS-CoV-2 by its interactions with
the human leukocyte antigen alleles. We identified 24 peptide stretches on the SARS-CoV-2 S protein that are
well conserved among the reported strains. The S protein structure further validated the presence of predicted

peptides on the surface, of which 20 are surface exposed and predicted to have reasonable epitope binding
efficiency. The work could be useful for understanding the immunodominant regions in the surface protein of
SARS-CoV-2 and could potentially help in designing some peptide-based diagnostics. Also, identified T-cell
epitopes might be considered for incorporation in vaccine designs.

1. Introduction

Emerging severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) is a recent pandemic and has been declared as a public health
emergency by the World Health Organization (WHO, 2020b). The dis-
ease rapidly spread across the globe and caused havoc to humanity (Wu
and McGoogan, 2020). By the start of May, SARS-CoV-2 had spread to
215 countries and infected over 3,862,676 people (WHO, 2020a). The
WHO is continuously monitoring and updating health-related plans to
curtail the disease spread. The absence of a specific treatment and
vaccine worsens the situation and threatens the world.

The International Committee on Taxonomy of Viruses (ICTV),
classified SARS-CoV-2 under the family Coronaviridae of order
Nidovirales. The genomic sequence of SARS-CoV-2 isolated from the
bronchoalveolar lavage fluid of a patient from Wuhan, China showed a
length of 29,903 nucleotides [GenBank accession number NC_045512]
(Wu et al., 2020). SARS-CoV-2 contains a positive-sense single-stranded
RNA with 5" and 3" untranslated region. The genome codes for ORF1a,
ORF1b, Spike (S), ORF3a, ORF3b, Envelope (E), Membrane (M), ORF6,
ORF7a, ORF7b, ORF8, ORF9b, ORF14, Nucleocapsid (N), and ORF10
from 5" to 3" (Wu et al., 2020; Zhu et al., 2020).

The S glycoprotein forms a homotrimer and mediates viral entry into
host cells. The S protein is a potential target for therapeutic and vaccine
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design against SARS-CoV-2 infection in humans (Li, 2016; Tortorici et al.,
2019). The S glycoprotein comprises two functional subunits: the S1 subunit
is responsible for binding to the host cell receptor and the S2 subunit is
responsible for fusion of the virus with the cell membrane. Usually in CoVs,
S is cleaved at the boundary between S1 and S2 subunits, which remain
non-covalently bound in the prefusion conformation, to activate the protein
for membrane fusion via extensive irreversible conformational changes
(Burkard et al., 2014; Park et al., 2016; Walls et al., 2017). Setting it apart
from other SARS-CoVs, it is found that the S glycoprotein of SARS-CoV-2
harbors a furin cleavage site at the boundary between the S1/S2 subunits
(Walls et al., 2020). By now, it is evident that SARS-CoV-2 S uses angio-
tensin-converting enzyme 2 (ACE2) receptor-mediated entry into cells.
Some studies suggest similar binding affinities to human ACE2 with the S
protein of SARS-CoV-2 and SARS-CoV (Letko et al., 2020; Walls et al.,
2020). However, some suggest that SARS-CoV-2 binds ACE2 with higher
affinity than SARS-CoV (Tai et al., 2020; Wang et al., 2020; Wrapp et al.,
2020).

As the situation worsens, there is a growing need for the develop-
ment of suitable therapeutics, vaccines, and other diagnostics against
SARS-CoV-2 for effective disease management strategies. Vaccines and
diagnostic assays based on peptides have become increasingly sub-
stantial and indispensable for their advantages over conventional
methods (Li et al., 2014; Mohanraj et al., 2017). The present study
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aimed to locate appropriate epitopes within a particular protein antigen
that can elicit an immune response and could be selected for the
synthesis of an immunogenic peptide. Using a computational approach,
the S glycoprotein of SARS-CoV-2 was explored to identify various
immunodominant epitopes for the development of diagnostics and
vaccines. Besides, the results could also help us to understand the SARS-
CoV-2 surface protein response towards T- and B-cells.

2. Materials & methods
2.1. Collection of the targeted protein sequence

The amino acid sequences (n = 98) of S protein available at the
time of study on targeted SARS-CoV-2 were downloaded from the
National Centre for Biotechnological Information (NCBI) database.

2.2. Identification of potential peptides

To identify an immunodominant region, it is of extreme importance
to select the conserved region within the S protein of SARS-CoV-2. All
the sequences were compared among themselves for variability using
the protein variability server by the Shannon method (Garcia-Boronat
et al., 2008). The average solvent accessibility (ASA) profile was pre-
dicted for each sequence using the SABLE server (Adamczak et al.,
2004). BepiPred 1.0 Linear Epitope Prediction module incorporated in
Immune Epitope Database (IEDB) was used to predict potential epitopes
within the S protein (Haste Andersen et al., 2006; Larsen et al., 2006;
Ponomarenko and Bourne, 2007; Vita et al., 2019). The FASTA se-
quence of the targeted protein was used as an input for all the default
parameters.

2.3. Identification of B-cell epitopes

We used two web-based tools for B-cell epitope prediction: the IEDB
and ABCpred servers (Saha and Raghava, 2006). S protein structure
from the protein data bank (PDB, 6VSB) was analyzed for linear and
discontinuous B-cell epitopes using the ElliPro module on the IEDB
server with default settings (Ponomarenko et al., 2008; Wrapp et al.,
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2020). Also, the ABCpred server was used to detect B-cell epitopes using
the artificial neural network (ann) method.

2.4. Identification of T-cell epitopes

T-cell epitopes with a binding affinity towards major histocompat-
ibility complex (MHC)-I and MHC-II alleles were selected to boost up
both cytotoxic T-cell and helper T-cell mediated immune response.
IEDB server was used to predict the MHC-I and MHC-II binding epitopes
for the targeted protein. The reference set of alleles was used for pre-
dicting the MHC-I and MHC-II T-cell epitopes (Karosiene et al., 2012;
Nielsen et al.,, 2007; Nielsen et al., 2003; Peters and Sette, 2005;
Sturniolo et al., 1999).

3. Results and discussion

In our study, we targeted the S glycoprotein of SARS-CoV-2 as it is
present outside the virus and interacts with the host receptor. At the
time of the study, there were 98 sequences available for the targeted
protein of SARS-CoV-2. The S glycoprotein sequence is 1273 amino
acids long, except for that of the virus isolated from Kerala (India),
which is a 1272 amino acid long S glycoprotein (GenBank accession
number MT012098). Our interest here was to determine conserved
regions first and then determine surface-exposed regions, which are
potential epitopes to generate an immune response. We found that se-
quences among all the S proteins in the analysis are least variable and
highly conserved, as shown in Fig. 1. However, we found that there
were 12 point mutations in the amino acid sequences collected. The
mutated sites identified were as follows: positions 247 and 614 for se-
quence MT007544 (Australia), positions 145 and 408 for sequence
MT012098 (India), position 49 for sequence MT027064 (USA), position
221 for sequence MT039890 (South Korea), position 28 for sequence
MT049951 (China), position 797 for sequence MT093571 (Sweden),
position 157 for sequence MT159716 (USA), positions 655 and 930 for
sequence MT163720 (USA), and position 181 for sequence MT184910
(USA). Regions having a high ASA value are more surface exposed
compared to others. We identified a total of 24 peptides of varying
lengths, which were selected based on high ASA values (Table 1). The

ASA & sequence variability profile for spike protein of SARS-CoV-2
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Fig. 1. Profiles of average solvent accessibility (blue) in % and amino acid sequence variability (green) in numbers of the 98 SARS-CoV-2 protein plotted against
amino acid numbers. High ASA value means the solvent accessibility score is relatively higher for that region and it is more surface exposed with respect to its
neighbours. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1

Conserved region selected based on protein variability, average solvent acces-
sibility and antibody epitope prediction using BepiPred 1.0 Linear Epitope
Prediction module of IEDB selected for further analysis.

Sl. No. Start End Length Peptide

1 21 38 18 RTQLPPAYTNSFTRGVYY

2 69 81 13 HVSGTNGTKRFDN

3 144 155 12 YYHKNNKSWMES

4 178 191 14 DLEGKQGNFKNLRE

5 249 261 13 LTPGDSSSGWTAG

6 278 287 10 KYNENGTITD

7 314 325 12 QTSNFRVQPTES

8 407 428 22 VRQIAPGQTGKIADYNYKLPDD
9 437 450 14 NSNNLDSKVGGNYN

10 461 485 25 LKPFERDISTEIYQAGSTPCNGVEG
11 493 506 14 QSYGFQPTNGVGYQ

12 521 533 13 PATVCGPKKSTNL

13 567 581 15 RDIADTTDAVRDPQT

14 597 607 11 VITPGTNTSNQ

15 625 648 24 HADQLTPTWRVYSTGSNVFQTRAG
16 654 661 8 EHVNNSYE

17 673 691 19 SYQTQTNSPRRARSVASQS

18 700 713 16 GAENSVAYSNNSIA

19 768 780 13 TGIAVEQDKNTQE

20 788 799 14 IYKTPPIKDFGG

21 805 816 12 ILPDPSKPSKRS

22 1134 1150 17 NNTVYDPLQPELDSFKE

23 1153 1171 19 DKYFKNHTSPDVDLGDISG

24 1255 1267 13 KFDEDDSEPVLKG

potential epitope regions were predicted using the sequence of the S
protein of SARS-CoV-2 that showed the least variability (GenBank ac-
cession number NC_045512). The potential epitopes are represented by
blue peaks, while green-colored slopes represent non-epitopic regions
(Fig. 2).

The existence of B-cell linear and discontinuous (conformational)
epitopes within the identified segments could help us to identify the
peptides, which can elicit an immune response (Purcell et al., 2007).
We identified 18 linear epitopes, predicted by ElliPro (IEDB), which
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contained regions from 19 of our selected peptides (highlighted in red
in Table 2). These identified B-cell linear epitopes were placed based on
their positional value and scores. Epitopes with high scores have more
potential for antibody binding. Five of our selected peptides (peptide
numbers 3, 5, 19, 23, and 24 in Table 1) were not considered as po-
tential linear B-cell epitopes. Some parts of our identified epitopes were
in accordance with epitopes recognized in an earlier study (Ahmed
et al., 2020), which further supports the credibility of our identified
epitopes.

Using the same module, B-cell discontinuous epitopes were pre-
dicted, which gave 16 epitope regions that contained regions from 18 of
our selected peptides (highlighted in red in Table S1). Six peptides
(peptide numbers 3, 5, 14, 19, 23, and 24 in Table 1) were not predicted
as discontinuous B-cell epitopes. To further confirm, we used the
ABCpred server to detect B-cell epitopes, with a default threshold of
0.51. It identified various epitopes with different lengths and scores.
Out of those, the regions that contained our selected peptides are
highlighted in red in Table 3. A high score represents good binding
affinity with epitopes; most of our peptides scored more than 0.7 and
were predicted as linear B-cell epitopes.

We used the IEDB server to determine the binding affinity for the
human leucocyte antigen (HLA). As recommended by the IEDB server,
reference HLA allele sets were used for the prediction of MHC-I and
MHC-II T-cell epitopes, as they provide comprehensive coverage of the
population. All the predictions were made using IEDB recommended
procedures. The list of binding affinities for MHC-I T-cell epitopes is
given in Table S2, where low rank represents high binding affinity.
Similarly, the list of binding affinities for MHC-II T-cell epitopes are
given in Table 4. Regions from our selected peptides are highlighted in
red. The epitopes with rank < 1% for very high binding affinity were
selected. We also observed that some of the peptides we identified as
potential B-cell epitopes were present as T-cell epitopes with good
binding affinities.

Overall, it was found that the regions identified in Table 1 not only
had good B-cell and T-cell affinities, but the majority of them had also
overlapped with discontinuous epitopes (Table S1). The peptide
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Fig. 2. Graphical representation of B-cell linear epitopes of spike protein of SARS-CoV-2. B-cell linear epitopes predicted using BepiPred 1.0 module incorporated in

IEDB server using default threshold value (0.35).
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Table 2
IEDB ElliPro predicted linear epitopes for spike protein of SARS-CoV-2. Sequences that match our selected peptides are marked in red.
I\SI:;. Start | End | Peptide reli(i)c.l:::s Score
1 27 37 | AYTNSFTRGVY 11 0.701
2 56 196 LPFFSNVTWFHFDNPVLPENDGVYFASTNIIRGWIFGTTLDSKTQSLLIVNNAT 103 0851
NVVIKVCEFQFCNDPFLGEFRVYSSANNCTFEYVSQPFLKNLREFVFKN
3 280 286 | NENGTIT 7 0.521
4 322 375 | PTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFS 54 0.646
5 393 515 TNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSY 30 0.842
NYLYRPLQSYGFQPTVGYQPYRVVVLSF
6 464 511 | FERDISTEIYNCYFPLQSYGFQPTVGYQPYRVV 33 0.707
7 465 509 | ERDISTENCYFPLQSYGFQVGYQPYR 26 0.663
8 520 537 | APATVCGPKKSTNLVKNK 18 0.617
9 577 585 | RDPQTLEIL 0.665
10 603 608 | NTSNQV 0.522
11 616 643 | NCTEVTGSNVF 11 0.578
12 652 661 | GAEHVNNSYE 10 0.594
13 687 691 | VASQS 5 0.612
14 700 719 | GAENSVAYSNNSIAIPTNFT 20 0.659
15 789 805 | YKTPPIKDFGGFNFSQI 17 0.621
16 789 815 | YKTPPIKDFGGFNFSQILPDPSKR 24 0.609
17 807 815 | PDPSKR 6 0.558
18 | 1069 | 1146 PAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTF 73 0.832

VSGNCDVVIGIVNNTVYDPLQPELD

segments identified from the set of 98 sequences of the SARS-CoV-2 S
glycoprotein appear to hold reasonable potential to act as immunogens.
Peptide-based diagnostics and vaccines have previously been proposed
against virus outbreaks (Dey et al., 2017; Ichihashi et al., 2011;
Navalkar et al., 2015; Oany et al., 2014; Zhao et al., 2009). The
availability of a 3D structure (6VSB) of the SARS-CoV-2 S glycoprotein

Table 3
ABCpred determination of B-cell binding affinities. Note that high score in-
dicates good binding affinity.

Sl. No. Sequence Start Score
1 PPAYTNSFTRGVYY 25 0.91
2 IHVSGTNGTKRFDNPVLPFN 68 0.89
3 VYYHKNNKSWMESEFRVYSS 143 0.9
4 DLEGKQGNFKNLREFVFKNI 178 0.82
5 YLTPGDSSSGWT 248 0.7
6 LLKYNENGTITDAVDCALDP 276 0.76
7 IYQTSNFRVQPTES 312 0.68
8 RQIAPGQTGKIADYNYKLPD 408 0.75
9 WNSNNLDSKVGGNYNYLY 436 0.67
10 SNLKPFERDISTEIYQAGST 459 0.82
11 LQSYGFQPTNGVGYQP 492 0.9
12 HAPATVCGPKKSTN 519 0.72
13 QQFGRDIADTTDAVRDPQTL 563 0.82
14 VITPGTNTSNQVAV 597 0.77
15 AIHADQLTPTWRVYSTGS 623 0.67
16 IGAEHVNNSYECDIPIGAGI 651 0.9
17 YQTQTNSPRRARSVASQS 674 0.82
18 GAENSVAYSNNSIAIPTN 700 0.63
19 AVEQDKNTQEVFAQ 771 0.89
20 IYKTPPIKDFGGFN 788 0.77
21 ILPDPSKPSKRSFIEDLL 805 0.63
22 VIGIVNNTVYDPLQPE 1129 0.83
23 DKYFKNHTSPDVDLGD 1153 0.69
24 CSCGSCCKFDEDDSEPVLKG 1248 0.73

provided an opportunity to inspect the predicted peptides. Placement of
the peptide segments identified by ASA and conserved sequence ana-
lysis on the S glycoprotein showed that 20 of the regions we identified
lie on the surface (Fig. 3). In order to limit recognition and evade the
immune response of the host, coronaviruses use conformational
masking and glycan shielding (Walls et al., 2019; Xiong et al., 2018).
SARS-CoV-2 S trimer also exists in multiple distinct conformational
states, which is necessary for receptor engagement, leading to the in-
itiation of fusogenic conformational changes (Walls et al., 2020). The
considerable number of peptides at the surface region of the S glyco-
protein allows for the potential use of those peptide regions as im-
munogens. Binding to the ACE2 receptor is a critical initial step for the
SARS-CoV-2 in entering target cells. Recent studies have also pointed
out the vital role of ACE2 in mediating the entry of SARS-CoV-2
(Hoffmann et al., 2020). Receptor binding motif (RBM) is part of the
receptor-binding domain (RBD) of SARS-CoV-2, which contains most of
the contacting residue for ACE-2 binding (Lan et al., 2020). It was
observed that some of our identified peptides from Table 1 (peptide no.
7-12) fall in the regions of RBD (amino acid no. 319-540) and RBM
(amino acid no. 438-506), which makes them potential peptide regions
to be used.

The emergence of new viral diseases like SARS-CoV-2 represents a
substantial global disease burden. Over the past few months, there have
been increased research efforts for the design and development of di-
agnostics and vaccines for SARS-CoV-2. Some related analyses have
been reported in distinct, parallel studies (Baruah and Bose, 2020;
Bhattacharya et al., 2020; Grifoni et al., 2020). Our study leverages the
available resources and computational methods and adds to the on-
going research focused on the development of diagnostics and vaccines
against SARS-CoV-2. Other than already existing ones, we have iden-
tified a further number of peptides, which adds to the library of pep-
tides that are likely to be recognized by human immune responses.
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Table 4
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IEDB prediction of binding affinity with MHC-II alleles, peptides with percentile rank less than 1.00 are shown here. The binding affinity
is considered higher for low percentile rank. Sequences that match our selected peptides are marked in red.

SL No. Allele Start End Method  Peptide Percentile
Rank
1 HLA-DRBI*11:01 1 15 Consensus  MFVFLVLLPLVSSQC 0.59
2 HLA-DPAI1*03:01/DPB1*04:02 1 17 Consensus ~ MFVFLVLLPLVSSQCVN 0.12
3 HLA-DRBI*01:01 1 18 Consensus ~ MFVFLVLLPLVSSQCVNL 0.41
4  HLA-DRBI*13:02 109 126  Consensus TLDSKTQSLLIVNNATNV 0.07
5  HLA-DRBI*13:02 119 136  Consensus IVNNATNVVIKVCEFQFC 0.68
6  HLA-DPAI1*01:03/DPB1*04:01 168 185 NetMHCIlpan FEYVSQPFLMDLEGKQGN 0.87
7 HLA-DPA1*02:01/DPB1*05:01 183 197  Consensus QGNFKNLREFVFKNI 0.74
8  HLA-DPA1*02:01/DPB1%05:01 184 197  Consensus GNFKNLREFVFKNI 0.62
9 HLA-DRB5*01:01 192 209  Consensus FVFKNIDGYFKIYSKHTP 0.39
10 HLA-DRBI*11:01 198 209  Consensus DGYFKIYSKHTP 0.64
11 HLA-DRB5*01:01 234 248  Consensus NITRFQTLLALHRSY 032
12 HLA-DRBI*01:01 236 249  Consensus TRFQTLLALHRSYL 0.75
13 HLA-DRBI*15:01 237 251  Consensus RFQTLLALHRSYLTP 0.84
14  HLA-DQAI1*05:01/DQBI1%03:01 255 268  Consensus SSGWTAGAAAYYVG 0.76
15  HLA-DQAI1*05:01/DQB1%03:01 255 269  Consensus SSGWTAGAAAYYVGY 0.94
16  HLA-DRBI*04:01 314 331  Consensus  QTSNFRVQPTESIVRFPN 1
17 HLA-DRBI*15:01 319 335  Consensus RVQPTESIVRFPNITNL 0.95
18 HLA-DPA1%03:01/DPB1%04:02 339 352 Consensus GEVFNATRFASVYA 0.79
19 HLA-DRB5*01:01 344 358 Consensus ATRFASVYAWNRKRI 0.49
20  HLA-DRBI1*11:01 349 360  Consensus SVYAWNRKRISN 0.36
21 HLA-DRB3*01:01 400 413 Comsensus  FVIRGDEVRQIAPG 0.47
22 HLA-DRB3*01:01 402 418  Comsensus  IRGDEVRQIAPGQTGKI 0.94
23 HLA-DRBI1*11:01 443 460  Comsensus  SKVGGNYNYLYRLFRKSN 0.65
24  HLA-DRBI*11:01 444 457  Comsensus KVGGNYNYLYRLFR 0.9
25 HLA-DRB3*01:01 461 472 Consensus LKPFERDISTEI 0.79
26 HLA-DPA1*01:03/DPB1*02:01 501 518  Consensus NGVGYQPYRVVVLSFELL 0.6
27 HLA-DPA1%02:01/DPB1*01:01 501 518  Consensus NGVGYQPYRVVVLSFELL 0.38
28  HLA-DRBI*01:01 506 523  Consensus QPYRVVVLSFELLHAPAT 0.69
29 HLA-DPA1%03:01/DPB1*04:02 507 521  Consensus PYRVVVLSFELLHAP 0.25
30  HLA-DRBI1*01:01 514 526  Consensus SFELLHAPATVCG 0.02
31 HLA-DRBI1*01:01 515 528  Consensus FELLHAPATVCGPK 0.49
32 HLA-DQAI1*05:01/DQB1%03:01 664 675  Consensus  IPIGAGICASYQ 0.43
33 HLA-DRBI*07:01 684 701  Consensus ARSVASQSIIAYTMSLGA 0.77
34 HLA-DRBI*07:01 713 727  Consensus  AIPTNFTISVTTEIL 0.4
35  HLA-DRBI*15:01 749 763  Consensus CSNLLLQYGSFCTQL 0.58
36 HLA-DQAI1*04:01/DQB1%04:02 763 775  Consensus LNRALTGIAVEQD 0.73
37 HLA-DQAI1*03:01/DQB1%03:02 764 776  Consensus NRALTGIAVEQDK 0.91
38 HLA-DPAI1*01:03/DPB1*04:01 809 826 NetMHCIIpan PSKPSKRSFIEDLLENKV 0.59
39 HLA-DRBI*01:01 855 867  Consensus FNGLTVLPPLLTD 0.89
40  HLA-DRBI*09:01 884 898  Consensus SGWTFGAGAALQIPF 0.33
41 HLA-DQAI1*05:01/DQB1%03:01 885 897  Comsensus GWTFGAGAALQIP 0.42
42 HLA-DRBI*13:02 1127 1141  Consensus DVVIGIVNNTVYDPL 0.7
43 HLA-DQAI1*05:01/DQBI1%03:01 1216 1229  Consensus  IWLGFIAGLIAIVM 0.38

Facilitated by high mutation rates, traditional vaccines based on anti-
body-mediated protection are often poor inducers of T-cell responses
and can have limited success (Rosendahl Huber et al., 2014). Peptide-
based sensitive and rapid diagnostic kits are considered a better alter-
native to the conventional serological tests, including whole antigenic
protein (Mohanraj et al., 2017). In our study, we predicted both B-cell
and T-cell epitopes for conferring immunity in different ways. We
speculate that the identified epitopes with considerably good epitope
binding efficiency have the potential to be an immunodominant pep-
tide. The study could help us to use the predicted peptide as an im-
munogen for the development of diagnostics and vaccines against
SARS-CoV-2.

4. Conclusion

In the present study, peptide segments were identified on S proteins
for the development of diagnostics and vaccines against SARS-CoV-2.
The recent availability of 3D data on 2019-CoV S glycoprotein has
helped the search. SARS-CoV-2, being an RNA virus, has a high muta-
tion rate and undergoes active recombination (Yi, 2020). Although the
peptides identified are ideal candidates as immunogens for the devel-
opment of peptide-based diagnostics and vaccines, more refinement
and lab trials are essential steps that are yet to be undertaken for early
development before the identified epitopes are rendered obsolete.
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