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Abstract

Objectives—To develop and validate a proof-of-concept convolutional neural network (CNN)–

based deep learning system (DLS) that classifies common hepatic lesions on multi-phasic MRI.

Methods—A custom CNN was engineered by iteratively optimizing the network architecture and 

training cases, finally consisting of three convolutional layers with associated rectified linear units, 

two maximum pooling layers, and two fully connected layers. Four hundred ninety-four hepatic 

lesions with typical imaging features from six categories were utilized, divided into training (n = 

434) and test (n = 60) sets. Established augmentation techniques were used to generate 43,400 

training samples. An Adam optimizer was used for training. Monte Carlo cross-validation was 

performed. After model engineering was finalized, classification accuracy for the final CNN was 

compared with two board-certified radiologists on an identical unseen test set.
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Results—The DLS demonstrated a 92% accuracy, a 92% sensitivity (Sn), and a 98% specificity 

(Sp). Test set performance in a single run of random unseen cases showed an average 90% Sn and 

98% Sp. The average Sn/Sp on these same cases for radiologists was 82.5%/96.5%. Results 

showed a 90% Sn for classifying hepatocellular carcinoma (HCC) compared to 60%/70% for 

radiologists. For HCC classification, the true positive and false positive rates were 93.5% and 

1.6%, respectively, with a receiver operating characteristic area under the curve of 0.992. 

Computation time per lesion was 5.6 ms.

Conclusion—This preliminary deep learning study demonstrated feasibility for classifying 

lesions with typical imaging features from six common hepatic lesion types, motivating future 

studies with larger multi-institutional datasets and more complex imaging appearances.
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Introduction

Liver cancer is the second leading cause of cancer-related deaths worldwide and 

hepatocellular carcinoma (HCC) represents the most common primary liver cancer [1, 2]. 

Contrary to many other cancer types, HCC incidence rates continue to rise [3]. Rapid and 

reliable detection and diagnosis of HCC may allow for earlier treatment onset and better 

outcomes for these patients. As the availability and quality of cross-sectional imaging have 

improved, the need for invasive diagnostic biopsies has decreased, propelling imaging-based 

diagnosis to a more central role, with a unique status especially for primary liver cancer. 

However, the radiological diagnosis of potentially malignant hepatic lesions remains a 

challenging task. In this setting, standardized image analysis and reporting frameworks such 

as the Liver Imaging Reporting and Data System (LI-RADS) can improve radiological 

diagnosis by reducing imaging interpretation variability, improving communication with 

referring physicians, and facilitating quality assurance and research [4]. However, the 

increasing complexity of LI-RADS has made its implementation less feasible in a high-

volume practice, leaving an unmet clinical need for computational decision-support tools to 

improve workflow efficiency.

Machine learning algorithms have achieved excellent performance in the radiological 

classification of various diseases and may potentially address this gap [5–7]. In particular, a 

deep learning system (DLS) based on convolutional neural networks (CNNs) can attain such 

capabilities after being shown imaging examples with and without the disease. Unlike other 

machine learning methods, CNNs do not require definition of specific radiological features 

to learn how to interpret images, and they may even discover additional differential features 

not yet identified in current radiological practice [8]. However, such capabilities have not yet 

been fully demonstrated in the realm of HCC imaging. Most prior machine learning studies 

classified liver lesions on 2D CT slices and ultrasound images [9–14]. However, higher 

performance may be achieved with a model that analyzes 3D volumes of multi-phasic 

contrast-enhanced MRI, which is the reference standard for image-based diagnosis.
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Therefore, this study aimed to develop a preliminary CNN-based DLS that demonstrates 

proof-of-concept for classifying six common types of hepatic lesions with typical imaging 

appearances on contrast-enhanced MRI, and to validate performance with comparison to 

experienced board-certified radiologists.

Materials and methods

This was a single-center engineering development and validation study compliant with the 

Health Insurance Portability and Accountability Act and the Standards for Reporting of 

Diagnostic Accuracy guidelines. The study was approved by the institutional review board 

and informed consent was waived. The two components of the study involved (1) 

engineering a CNN-based liver tumor classifier, followed by (2) proof-of-concept validation 

of the final optimized CNN by comparison with board-certified radiologists on an identical 

unseen dataset. An overview of the model training and validation portions is illustrated in 

Fig. 1.

Establishment of “ground truth” cases

A medical student (CH) searched the picture archiving and communication system (PACS) 

for abdominal MRI examinations between 2010 and 2017 depicting one of the following 

hepatic lesions: simple cyst, cavernous hemangioma, focal nodular hyperplasia (FNH), 

HCC, intrahepatic cholangiocarcinoma (ICC), and colorectal cancer (CRC) metastasis. Due 

to the nature of a singleinstitution investigation with limited availability of pathological 

proof, lesions were restricted to those displaying typical imaging features, incorporating 

clinical criteria to maximize the certainty of definite diagnosis. Table S1 contains the 

selected criteria for the Bground trutĥ utilized for each lesion type. Diagnosed lesions 

formally described by radiology faculty on official reports were double-checked post hoc 

according to these criteria with another radiological reader (BL), and lesions were excluded 

if they contained discrepancies or displayed poor image quality. Up to three imaging studies 

per patient were included as long as studies were more than 3 months apart. Up to nine 

different lesions were used in each study. The majority of included lesions were untreated; 

treated lesions were only included if the selected lesion showed progression, or the patient 

underwent loco-regional therapy more than 1 year ago and now presented with residual 

tumor. Patients younger than 18 years were excluded.

MRI acquisition protocol

This study involved MRI examinations performed from 2010 to 2017 available throughout 

the institutional PACS, designed to include a heterogeneous collection of MRI scanners and 

imaging studies. This incorporated both 1.5-Tand 3-T MR scanners, including Siemens 

Aera, Espree, Verio, Avanto, Skyra, and Trio Tim and GE Discovery and Signa Excite 

scanners. Multi-phasic contrast-enhanced T1-weighted breath-hold sequences from standard 

institutional liver MR imaging protocols were used with acquisition times of 12–18 s. 

Several different gadolinium-based contrast agents were used (dosed at 0.1 mmol/kg), 

including Dotarem (Guerbet), Gadavist (Bayer), Magnevist (Bayer), ProHance (Bracco 

Diagnostics), and Optimark (Covidien). Post-contrast images were analyzed, including late 

arterial phase (~20 s post-injection), portal venous phase(~70spost-
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injection),anddelayedvenousphase(~3min post-injection). Imaging parameters varied across 

different scanners and time frames; however, the majority were in the range of TR 3–5 ms, 

TE 1–2 ms, flip angle 9–13°, bandwidth 300– 500 Hz, slice thickness 3–4 mm, image matrix 

256 × 132 to 320 ×216, and field-of-view 300 ×200 mm to 500 ×400 mm.

Image processing

Eligible MRI studies were downloaded from the PACS and stored as DICOM files. The 

location and size of a 3D bounding box around the target lesion were manually recorded on 

the x-, y-, and z-axis. The images were processed and automatically cropped to show only 

the lesion of interest using code written in the programming language Python 3.5 (Python 

Software Foundation). The cropped image was then resampled to a resolution of 24 × 24 × 

12 voxels (Fig. 2). To minimize bias field effects, cropped images were normalized to 

intensity levels from −1 to 1. Affine registration with a mutual information metric was used 

to register portal venous and delayed phase MRI studies to the arterial phase. Ten lesions 

from each class were randomly selected to comprise the test set (12% of the entire dataset) 

using Monte Carlo cross-validation and the remaining lesions comprised the training set. 

Each image in the training set was augmented by a factor of 100 using established 

techniques [15] to increase the number of training samples, which allows the model to learn 

imaging features that are invariant to rotation or translation. During augmentation, images 

randomly underwent rotation, translation, scaling, flipping, interphase translation, intensity 

scaling, and intensity shifting.

Deep learning model development

The CNN model was trained on a GeForce GTX 1060 (NVIDIA) graphics processing unit. 

The model was built using Python 3.5 and Keras 2.2 (https://keras.io/) [16] running on a 

Tensorflow backend (Google, https://www.tensorflow.org/). Model engineering consisted of 

iteratively adjusting the network architecture (number of convolutional layers, pooling 

layers, fully connected layers, and filters for each layer, along with parameter optimization) 

and training cases (removing cases with poor imaging quality or ambiguous imaging 

features and increasing the number of training samples for lesion classes demonstrating 

lower performance). The final CNN consisted of three convolutional layers, where the first 

layer had 64 convolutional filters for each of the three phases in the original image, and the 

other two had 128 filters across all phases. Each filter generated filtered images by 

convolving voxels in 3 × 3 × 2 blocks. The model also contained two maximum pooling 

layers (size 2 × 2 × 2 and 2 × 2 × 1 respectively), which reduce the resolution of filtered 

images to provide spatial invariance (i.e., a feature that is shifted by a voxel can still be 

represented by the same neuron, which facilitates learning). The final CNN contained two 

fully connected layers, one with 100 neurons and the second with a softmax output to six 

categories that corresponded to the lesion types (Fig. 3). The selected imaging studies 

spanned 296 patients (155 male/141 female) (Table 1). A total of 334 imaging studies were 

selected, with a combined total of 494 lesions (74 cysts, 82 cavernous hemangiomas, 84 

FNHs, 109 HCCs, 58 ICCs, 87 CRC metastases). The average diameter of all lesions used 

was 27.5 ± 15.9 mm, ranging from 21.7 ± 15.5 mm for simple cysts to 45 ± 16.8 mm for 

ICCs (Table 2). The CNN used rectified linear units after each convolutional layer and the 

first fully connected layer, whichhelps the model to learn non-linear features[15].These are 
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usedin conjunction with batch normalization and dropout, which are regularization 

techniques that help the model to generalize beyond the training data [17]. Each CNN was 

trained with an Adam optimizer using minibatches of five samples from each lesion class. 

Hyperparameters were chosen via an exhaustive search through a manually specified portion 

of the search, an approach known in the literature as a grid search [18]. Samples were 

chosen randomly from the augmented dataset. The model was then tested on its ability to 

correctly classify 60 lesions in the test dataset (10 from each lesion class) and performance 

was averaged over 20 independent training iterations with different groupings of training and 

test datasets to gain a more accurate assessment.

Reader study validation

After development of the CNN model was complete, the classification accuracy of the final 

CNN was compared with two board-certified radiologists, using an identical set of randomly 

selected lesions that were unseen by either the CNN model or the radiologists. The two 

radiologists (39 and 7 years of experience) did not take part in the model training process 

and were blinded to the lesion selection. The reader study was conducted on an OsiriX MD 

(v.9.0.1, Pixmeo SARL) workstation. To provide even comparison of input data available to 

the CNN model, the simulated ready study contained several differences compared to actual 

clinical practice. The imaging studies were anonymized, and the radiologists were fully 

blinded to clinical data as well as MRI sequences not utilized for the CNN training. The test 

set for the reader study consisted of 10 randomly selected lesions of each class, 60 lesions in 

total, while the remaining lesions were assigned to the training set. The randomization was 

based on Monte Carlo cross-validation and the results of the reader study were compared 

after a single iteration to mimic their “first exposure” to the images. Each radiologist 

independently classified the 60 lesions characterized by the model in the test set based on 

the original three contrast-enhanced MRI phases (late arterial, portal venous, and delayed/

equilibrium). Their performance was evaluated in distinguishing the six lesion entities as 

well as three broader categories that simulate the application of a deep learning model to an 

HCC diagnostic imaging framework such as LI-RADS. The three broader derived categories 

were HCCs (corresponding to LR-5), benign lesions (grouping cysts, hemangiomas, and 

FNHs, corresponding to LR-1), and malignant non-HCC lesions (grouping ICCs and CRC 

metastases, corresponding to LR-M). The radiologists did not scroll any further than the 

superior and inferior margins of the lesion in order to avoid revealing possible other lesions 

within the liver and thereby biasing the read. The time from opening the MRI phases until 

classification of the lesion was recorded.

Statistics

The performance of the model was evaluated by averaging the sensitivity, specificity, and 

overall accuracy over 20 iterations, as described above. For validation of the CNN with 

radiological readings, the performances of both the model and the radiologists were 

computed by evaluating sensitivity, specificity, and overall accuracy on the same single 

randomly selected test set of unseen cases. Prevalence-based parameters such as positive 

predictive value and negative predictive value were not applicable for this study. A receiver 

operating characteristic curve was plotted to compare the model and radiologist performance 

in identifying HCC masses.
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Results

Deep learning model

The final CNN demonstrated a training accuracy of 98.7% ± 1.0 (8567/8680 volumetric 

samples) across six lesion types and 99.1% ± 0.7 (8602/8680) according to the three general 

derived LI-RADS categories (Table 3). The average test accuracy was 91.9% ± 2.9 

(1103/1200) among individual lesions and 94.3% ± 2.9 (1131/1200) across the three broader 

categories. The time to initially train the DLS was 29 ± 4 min. Once the model was trained, 

the actual runtime to classify each lesion in the test dataset was 5.6 ± 4.6 ms.

For the 20 iterations, the average model sensitivity across the six lesion types was 92%, with 

an average specificity of 98% (Table 4). The model sensitivity for individual lesion types 

ranged from 89% (177/200) for CRC metastases to 99% (197/200) for simple cysts (Table 

4). The corresponding model specificity for individual lesions ranged from 97% (965/1000) 

for ICC to 100% (1000/1000) for simple cysts. HCC lesions demonstrated a sensitivity of 

94% (187/200) and specificity of 98% (984/1000). For the case of the three broader 

categories, the sensitivity ranged from 94% (187/200 for HCC, 563/600 for benign lesions) 

to 95% (381/400 for malignant non-HCC lesions). The corresponding specificity ranged 

from 96% (770/800 for malignant non-HCC lesions, and 577/600 for benign lesions) to 98% 

(984/1000 for HCC). The study was conducted using the same number of lesions from each 

class, and thus doesnot reflect the actual prevalence of each lesion type.

Reader study

Classification of unseen randomly selected lesions included in the reader study demonstrated 

an average model accuracy of 90% (55/60 lesions). Radiologist accuracy was 80% (48/60) 

and 85% (51/60) on these same lesions, respectively (Table 3). The model accuracy for the 

three broader categories was 92% (58/60), compared with 88% (53/60) for both radiologists. 

The total elapsed time analyzing each lesion was 0.8 ms for the classification model versus 

14 ± 10 s and 17 ± 24 s for the radiologists.

Lesions included in the reader study showed an average CNN model sensitivity of 90% ± 14 

(9/10) and specificity of 98% ± 2 (49/50) across the six lesion types. This compared to an 

average sensitivity of 80% ± 16 (8/10) and 85% ± 15 (8.5/ 10) and specificity of 96% ± 3 

(48/50) 97% ± 3 (48.5/50) for the two radiologists respectively (Table 4). The model 

sensitivity ranged from 70% (7/10 for FNH) to 100% (10/10 for simple cysts and 

hemangiomas) with a specificity ranging from 92% (46/50 for HCC) to 100% (50/50 for 

simple cysts, hemangiomas, and ICC). Radiologist sensitivity ranged from 50% (5/10 for 

CRC metastases) to 100% (10/10 for simple cysts, hemangiomas), with specificity ranging 

from 92% (46/ 50 for CRC metastases) to 100% (50/50 for HCC and ICC). The average 

model sensitivity for three broader categorieswas 92% with a specificity of 97%. This 

compared to the radiologists’ sensitivity of 88% and specificity of 89% and 91%, 

respectively. The model demonstrated highest sensitivity for malignant non-HCC lesions at 

95% (19/20) compared to 85% (17/20) for both radiologists, whereas radiologists attained 

highest sensitivity for benign lesions at 97% (29/30) and 100% (30/30), compared to 90% 

(27/30) for the CNN.
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A receiver operating characteristic curve was constructed by varying the probability 

threshold at which the CNN would classifya lesion as HCC, with an area under the curve of 

0.992 (Fig. 4). This included a true positive rate of 93.5% (187/200) averaged over 20 

iterations and a false positive rate of 1.6% (16/1000). When including only lesions within 

the reader study, the model true positive rate was 90% (9/10), and the false positive rate was 

2% (1/50). Radiologists had a true positive rate of 60% and 70% (6/10 and 7/10, 

respectively) and a false positive rate of 0% (0/50).

Discussion

This study demonstrates a deep learning–based prototype for classification of liver lesions 

with typical imaging features from multi-phasic MRI, demonstrating high performance and 

time efficiency. While the study did not simulate clinical practice conditions, comparison 

with equivalent data input showed the potential of DL systems to eventually aid in 

improving radiological diagnosis of six classes of hepatic lesions (model accuracy of 92%, 

radiologist accuracy of 80% and 85%), as well as three broader categories of benign, HCC, 

and malignant non-HCC lesions (model accuracy of 94%, radiologist accuracy of 88%), 

with a classification time of 5.6 ms per lesion.

Building upon prior 2D CT and ultrasound models, the inherent improved soft tissue 

contrast resolution of MRI can enable this CNN to capture a wider variety of imaging 

features [14]. Additionally, the 3D volumetric approach may improve detection of 

inhomogeneous growth or enhancement patterns that may be relevant to lesion classification, 

while removing the model’s variability and dependence on manual slice selection [19, 20]. 

Furthermore, the use of heterogeneous imaging sources demonstrated the robustness of DLS 

in the setting of different MRI scanners and acquisition protocols.

Previous studies have paved the way for computational classification of diverse lesion types 

by grouping hepatic lesion entities into three to five classes [11, 13, 14]. Moving towards 

clinical implementation, classification becomes increasingly challenging when lesions are 

ungrouped and single entities are differentiated. In this case, a higher number of differential 

features must be learned with a lower chance of guessing correctly. The present study 

included six ungrouped lesion classes, demonstrating a high accuracy level of 91.9%. As 

expected, the overall accuracy was higher with three grouped classes (94.3%).

Since single-center developmental efforts often suffer from limited datasets, selection of 

idealized cases is often necessary, making the interpretation of classification results 

ambiguous. The direct comparison between the DLS and two radiologists allows for better 

interpretation of performance and potential clinical value. High sensitivity for HCC and 

CRC metastases was demonstrated relative to radiologists. The radiologists tended to 

misclassify HCCs with faint enhancement as CRC metastases and HCCs with unclear 

washout as FNHs, whereas the DLS could more reliably make use of other features to 

correctly identify the HCCs. Similarly, radiologists misclassified CRC metastases without 

clear progressive enhancement with cysts, and those with heterogeneous, nodular 

appearances were misclassified for ICCs, whereas the computational predictions were likely 

more robust to the absence of these features. Still, the radiologists’ diagnostic accuracy may 
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have matched or exceeded the DLS’s accuracy if given access to clinical information or 

additional imaging sequences. As a proof-of-concept study with limited sequences, this 

simulated environment provided unbiased comparison between the DLS and radiologists 

with the same available input data.

These performance metrics suggest that a DLS could serve as a quick and reliable “second 

opinion” for radiologists in the diagnosis of hepatic lesions, helping to reduce interpretation 

difficulty and inter-reader variability when imaging features are more ambiguous. In HCC 

diagnosis, most inter-reader studies demonstrated a moderate level of reliability in 

determining LI-RADS classes [21–26], and the rigor and complexity of LI-RADS 

constitutes a major barrier for broad adoption [25, 27]. The DLS classified lesions into 

benign, HCC, and malignant non-HCC lesions (roughly corresponding to LR-1, LR-5, and 

LR-M respectively) with an accuracy of 94.3%. While this is a preliminary feasibility study 

with many limitations, it suggests that a DLS could potentially interface with LI-RADS, for 

example, by averaging the model and radiologist predictions to score lesions that are 

suspicious for HCC but lack a definite benign/malignant appearance (i.e., LR-2/3/ 4). Such 

an implementation could reduce rote manual tasks, helping to simplify LI-RADS for clinical 

workflow integration [27].

While these results are promising, there are several limitations that make this a preliminary 

feasibility study. As a single-center investigation, only a limited number of imaging studies 

were available for each class. Thus, only lesions with typical imaging features on MRI were 

used, excluding lesions with more ambiguous features or poor image quality as well as more 

complex lesion types such as infiltrative HCC or complicated cysts. Additionally, LI-RADS 

is only applicable to patients at high risk for HCC. However, because non-HCC lesions are 

much less common in cirrhotic livers, this study also included lesions in livers without 

cirrhotic background or hepatitis-B/C, and thus the input does not identically conform to 

current consensus. Additionally, due to limited data from a single institution, pathological 

proof was not available for all lesions. Thus, “ground truth” criteria were carefully selected 

and defined for each lesion type as thoroughly outlined in Table S1. Notably, for lesions 

without pathological diagnosis, “ground truth” was established by analyzing all available 

clinical and imaging data, including T1 pre-contrast, T2, and other sequences. However, 

these sequences were not used in the model training and subsequent reader study, and thus 

their potential additive value for the CNN performance needs to be evaluated in further 

studies. Additionally, the simulated reader comparison did not reflect conditions in clinical 

practice, as the test set contained equal numbers of each lesion type and participants did not 

have access to ancillary information such as clinical data. However, this allowed for initial 

validation of the CNN with radiologists using the same conditions and input data for a more 

equivalent comparison. Within these limitations, this approach met the study’s purpose to 

demonstrate initial feasibility of a liver MRI lesion classification prototype from available 

data at one large academic medical center, providing motivation for the establishment of 

larger multi-institutional databases.

In summary, this preliminary study provides proof of principle for a DLS that classifies six 

hepatic lesion types on multi-phasic MRI, demonstrating high performance when validated 

by comparison with board-certified radiologists. As the demands of radiological practice 
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continue to increase, a synergistic workflow that combines the experience and intuition of 

radiologists with the computational power of DL decision-support tools may offer higher-

quality patient care in a time-efficient manner.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• Deep learning demonstrates high performance in the classification of liver 

lesions on volumetric multi-phasic MRI, showing potential as an eventual 

decision-support tool for radiologists.

• Demonstrating a classification runtime of a few milliseconds per lesion, a 

deep learning system could be incorporated into the clinical workflow in a 

time-efficient manner.
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Fig. 1. 
Flowchart of the lesion classification approach, including model training, model testing, and 

reader study
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Fig. 2. 
Sample images of lesion classes and corresponding derived LI-RADS categories. Boxes 

indicate the cropping of each lesion, which adds padding to the lesion coordinates as 

determined by a radiologist. The model was able to overcome extrahepatic tissues such as 

the kidney
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Fig. 3. 
Neural network model architecture used to infer the lesion entity based on the input image, 

shown for an example of intrahepatic cholangiocarcinoma. The derived LI-RADS 

classification follows from the lesion class

Hamm et al. Page 15

Eur Radiol. Author manuscript; available in PMC 2020 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Model receiver operating characteristic curve for distinguishing HCCs. This model achieves 

high sensitivity for HCC at the cost of a few false positives. AUC, area under curve
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