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Abstract

Metastasis remains the overwhelming cause of death for cancer patients. During metastasis, cancer 

cells will leave the primary tumor, intravasate into the bloodstream, arrest at a distant organ, and 

eventually develop into gross lesions at the secondary sites. This intricate process is influenced by 

innumerable factors and complex cellular interactions described in 1889 by Stephen Paget as the 

seed and soil hypothesis. In this review, we revisit this seed and soil hypothesis with an emerging 

understanding of the cancer cell (i.e. seed) and its microenvironment (i.e. soil). We will provide 

background to suggest that a critical outcome of the seed–soil interaction is resistance of the 

stresses that would otherwise impede metastasis.
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1. Introduction

1.1. Problem of metastasis

The cause of death for the vast majority of cancer patients is the development of metastatic 

lesions at sites distant from that of the primary tumor. Metastasis describes both the process 

of cancer spread (i.e. the verb, describing the events that characterize the spread of cancer) 

and the resultant secondary cancer (i.e. noun, describing the actual metastatic lesion). Since 

most cancer patients present with localized disease that is effectively managed with 

multimodality therapies including surgery, radiation, and chemotherapy, the development of 

metastasis at distant secondary organs must involve the dissemination of metastatic cells 

before patients present with a primary tumor. Based on the work of several groups, it is 

believed that the process of metastasis (i.e. the verb) involves tumor cells leaving the 

primary tumor through a well-regulated lysis of surrounding stroma. These cells must pass 

through the tumor basement membrane and then through or between endothelial cells in 

order to enter the circulation. While in the circulation, a tumor cells must resist the process 

of anoikis (programmed cell death associated with loss of cellular contact), evade immune 

recognition, cope with the sheer physical stress of the circulatory system, and eventually 

arrest at a distant organ. At the distant site, the cell must exit the circulation, survive the 
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stresses of a new and likely hostile microenvironment, proliferate, induce angiogenesis 

and/or co-opt existing blood vessels, and then successfully grow into a measurable 

metastatic lesion (Steeg and Theodorescu, 2008).

1.2. Clinical features/description

The timing, pattern and sites for the spread of cancer are in part defined by the specific 

cancer type. The route of spread of cancer may include blood stream (hematogenous), 

lymphatic vessels, or third space extension (i.e. ascitic fluid dissemination as seen in ovarian 

cancer). The site of distant metastasis may include regional lymph nodes, or visceral organs 

such as lungs, liver, brain, and bone. While Weiss et al. (1988) have shown that the primary 

site of metastases tends to occur at the first capillary bed encountered, it is increasingly 

believed that the specific site of distant metastasis is not simply to be due to anatomic 

location of the primary tumor or proximity to secondary sites but rather, involves 

interactions between tumor cells and the local microenvironment at the secondary site.

For many reasons, metastatic lesions are often not amenable to the surgical cures achieved in 

the management of the primary tumor. First, the development of metastases at distant 

secondary organs is often so widespread that surgery is not possible. In addition, the organs 

in which metastases develop may not be able to accommodate the necessary wide surgical 

margins needed for cure (i.e. brain). For many cancers, metastatic lesions themselves 

demonstrate increased resistance to conventional treatment modalities (i.e. chemotherapy). 

This resistance to therapy may be acquired as a result of past treatment of the patient or may 

be an innate feature of cells that have successfully negotiated the metastatic process. Based 

on the challenges that metastatic disease presents, new treatment options are needed in order 

to decrease morbidity and mortality.

1.3. Revisiting the seed and the soil

Stephen Paget’s seed and soil hypothesis suggested that the sites where metastases occur are 

defined not only by the tumor cell (“seed”) but also the microenvironment of the secondary 

metastatic site (“soil”). Recent data have shed new light on the acquisition of the “seeds” of 

metastasis, suggesting that some of the features of this tumor cell phenotype are conveyed 

early in the process of oncogenesis, whereas others are selected for during cancer 

progression (Scheel et al., 2007; Talmadge, 2007). Indeed, many of the features of the tumor 

cells (“seed”) now appear to be shared with primitive stem-like cells capable of not only 

tumor-initiation but also metastasis (Mehlen and Puisieux, 2006; Croker and Allan, 2008; 

Vermeulen et al., 2008). An attractive link between the tumor-initiating cell (cancer stem 

cell) hypothesis and metastasis is the programming and ability of these stem-like, self-

renewing and multipotent cells to resist stress, perhaps facilitated by their abilities to engage 

and develop connections with specific microenvironments (“soil”). In this review we will 

consider new data that describe the tumor cell, its microenvironment, and connections 

between the two as a critical means to resist the stresses that cells encounter during 

metastatic progression.
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2. Pathogenesis

2.1. Characteristics and emergence of the tumor cell (the “seed”)

The emergence of the metastatic phenotype within a primary tumor has been explained as a 

process that happens late in carcinogenesis. This hypothesis holds that tumor cells 

possessing the metastatic phenotype represent a very small fraction of cells within a 

heterogeneous primary tumor and that over time, a small proportion of tumor cells gain the 

attributes necessary for metastasis (Fidler and Kripke, 1977). In testing of this hypothesis, 

Varmus and colleagues were able to show untransformed mammary cells that had been 

delivered to mice by tail-vein injection and were able to accomplish many of the steps 

required for metastasis. Induction of MYC and mutant Kras oncogenes in these cells after 

their arrival and establishment in the lung yielded tumor after three to four weeks 

(Podsypanina et al., 2008). Additionally, another possibility has suggested that the 

emergence of the metastatic phenotype may not only occur as a late event in metastatic 

progression but rather may be linked to early oncogenic events that also drive primary tumor 

formation (Scheel et al., 2007). To further complicate this analysis, work by Hunter et al. 

(2003) has further suggested that the propensity for a primary tumor to metastasize may 

even precede primary tumor formation and is in fact related to the patient’s germline 

genetics. In a sense, these data return us to Paget’s hypothesis by suggesting that specific 

genetic determinants of the host (i.e. soil) contribute to the success of the metastatic process 

(i.e. seed). Taken together the work by several groups suggests that the risk for metastatic 

progression is in part defined by the genetics of the patient, genetic changes that develop 

early in the process of tumor development, and the subsequent and incremental emergence 

of cells within the tumor that possess the cellular armamentarium needed for metastasis.

2.2. Cancer stem cell/tumor-initiating cell hypothesis

A re-emerging hypothesis in the field of cancer biology is that cancers emerge from cells 

with primitive or stem-like features (see recent review (Lobo et al., 2007)). The basis of this 

hypothesis is that only a very small population of tumor cells is capable of tumor-initiation 

and self-renewal (stem-like). Although these tumor cells are not discretely identifiable, the 

population can be enriched using markers commonly found on primitive or stem-like cells 

(Singh et al., 2004b; Prince et al., 2007; Ricci-Vitiani et al., 2007; Cho et al., 2008). The 

recent finding of stem cell markers in many adult solid tumors has refueled an interest in this 

hypothesis that extends beyond pediatric and blood borne cancers where this model was first 

suggested. Interestingly, cells with stem-like properties include many of the features of the 

metastatic cell (“seed”). For example, embryonic and adult stem cells are capable of 

motility, invasion, survival during circulation, extravasation at secondary sites, dormancy 

and perhaps most importantly an ability to engage and interact with appropriate cellular and 

non-cellular partners at a secondary location to ensure their continued survival and eventual 

proliferation (seed–soil) (Ozturk et al., 2004). Since primary tumor-initiating cells may 

exhibit many of the features of the metastatic phenotype, these cells may be amenable to 

‘reprogramming’ through secondary genetic or epigenetic events (acquired or selected). The 

result of this reprogramming may be selection of an optimal metastatic phenotype. These 

cells are thought to be crucial to the initiation and dissemination of several cancer types and, 
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with their ability to resist conventional therapies, are likely to play a significant role in the 

metastatic process (Barnhart and Simon, 2007).

2.3. Stress and metastatic success

Of the determinants of success in metastasis, the tumor cell’s ability to resist the stresses 

associated with the multiple steps in the metastatic cascade and survive at distant sites may 

be paramount (Hedley et al., 2008). Indeed, this resistance of stress may be a feature 

common to stem-like cells, tumor-initiating cells, and metastatic cells. Stresses such as 

hypoxia, reactive species (RS), inflammation, nutrient deprivation, and pH can be a 

challenge to the growth and progression of a cancer and are usually and initially detrimental 

to the tumor’s survival. However, such stresses may also provide a selective pressure 

favoring growth of more metastatically ‘fit’ cells (Witz and Levy-Nissenbaum, 2006). These 

stresses are likely to be felt within the primary tumor, during the process of metastasis, and 

at the distant secondary metastatic sites (Fig. 1). The following section will summarize some 

of the stresses listed above that are faced by metastatic cells and the mechanisms that allow 

for accommodation to these stresses by successful metastatic cells.

2.3.1. Hypoxia—Low oxygen tension, or hypoxia, frequently occurs during tumor 

progression and metastasis. Tumor cells, unlike normal cells, are able to survive adverse 

hypoxic conditions through a diversity of mechanisms (Rong and Vande Woude, 1994; 

Reynolds et al., 1996; Maulik and Das, 2002; Birchmeier et al., 2003; Semenza, 2003; Xie 

and Huang, 2003). The transitions between “oxic” states can be additionally challenging for 

cells to endure. Cells that are able to resist the negative effects of low oxygen conditions and 

then competitively flourish in hypoxic environments have been shown to be highly 

dependent on the expression of the transcription factor hypoxia-inducible-factor-1 (HIF-1) 

(Semenza and Wang, 1992). Indeed, several studies have shown an association between 

hypoxia, tumor progression, stem-ness and metastasis (Young et al., 1988; Brizel et al., 

1996; Hockel et al., 1996; Jang and Hill, 1997; De Jaeger et al., 1998; Rofstad and 

Danielsen, 1999; Rofstad et al., 2000; De Jaeger et al., 2001). Cancer cell adaptation of the 

HIF-1 pathway may occur secondary to genetic mutations or epigenetic events (Kapitsinou 

and Haase, 2008). HIF-1 promotes the expression of several metastasis-associated genes by 

binding to hypoxia-responsive elements within their respective promoters. Such HIF-1 

responsive genes include NOS (McQuillan et al., 1994; Melillo et al., 1995), IGF-II (Kim et 

al., 1998), CXCR4 (Semenza, 2003), and VEGF (Shweiki et al., 1992; Minchenko et al., 

1994). Increased expression of some of these genes (VEGF and CXCR4, for example) can 

also help to counteract hypoxia by increasing oxygen levels creating a more suitable 

environment for tumor growth (Xie and Huang, 2003). HIF target genes are also important 

for stem cell growth and maintenance and have recently been shown to play important roles 

in cancer (Keith and Simon, 2007). Hypoxia may also be crucial for the creation and/or 

maintenance of the undifferentiated state of cancer stem cells (Keith and Simon, 2007). 

Recently, Gustafsson et al. (2005) demonstrated that hypoxia promoted an undifferentiated 

cell state through Notch signaling. Other genes including hTERT, the catalytic component of 

human telomerase (Nishi et al., 2004), the multi-drug resistance ABC transporter Bcrp/

ABCG2 (Krishnamurthy et al., 2004), and the MET tyrosine kinase receptor (Boccaccio and 
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Comoglio, 2006), are HIF regulated, are expressed in both cancer cells and stem cells, and 

contribute to the metastatic phenotype of cells.

2.3.2. Reactive species—The transient and vacillating hypoxia of the tumor 

microenvironment confounds the problem of hypoxia during re-oxygenation through the 

formation of reactive oxygen or nitrogen species (Xie and Huang, 2003). These reactive 

species may have contrasting effects on metastasis (Ambs et al., 1997; Xie and Fidler, 1998; 

Xie and Huang, 2003). In some cancers the formation of RS, i.e. nitric oxide (NO), 

contributes to the metastatic phenotype while in other cancers, reduced RS are linked with 

metastasis (Yamamoto et al., 1994; Pipili-Synetos et al., 1995; Iwasaki et al., 1997; 

Yamamoto et al., 1998). Mechanistically, NO expression is associated with altered 

expression of many mediators of metastasis, including VEGF-C (Radomski et al., 1991; 

Franchi et al., 2006; Nakamura et al., 2006; Brideau et al., 2007), MMP9 (Marcet-Palacios 

et al., 2003), p53 (Cook et al., 2004), and HIF-1 α (Kimura et al., 2000; Sandau et al., 2001). 

Intratumoral RS may also contribute to genomic instability associated with advanced cancers 

and may play a trophic role in tumor progression (Ambs et al., 1997; Xie and Fidler, 1998; 

Radisky et al., 2005; Halliwell, 2007). The observation of reduced RS in metastatic versus 

primary tumors may represent an adaptive advantage of some metastatic cancers to 

effectively manage the detoxification of RS (Xie and Huang, 2003).

2.3.3. Inflammation—The link between inflammation and cancer has been recognized 

for many years now. For example, in, 1986, Dvorak described cancer as “wounds that fail to 

heal” (Dvorak, 1986). Both inflammatory mediators and cells involved in the inflammatory 

response react against cancer cells and contribute to tumor progression. As such, 

macrophages represent an important mediator of the cancer inflammatory environment and 

have been show to increase the incidence of metastases in both in vitro and in vivo (Gorelik 

et al., 1982, 1985). Their influence is determined, in large part, by the local cytokine profile. 

As part of the innate immune system, macrophages can be potent anticancer cells in a GM-

CSF rich environment (Gillessen et al., 2003). Conversely, successful cancers appear to 

create a cytokine environment that is dominated by CSF-1 rather than GM-CSF (Nowicki et 

al., 1996). In the CSF-1 dominated environment, macrophages contribute to the metastatic 

phenotype through many paths, including generation of RS, initiation of invasion and 

angiogenesis (Coussens et al., 2000; Huang et al., 2002; Pollard, 2004; Chen et al., 2005), 

and contribution to genomic instability (Condeelis and Pollard, 2006). In this way, 

successful metastatic cells appear to engage their microenvironment and recruit beneficial 

rather than deleterious populations of inflammatory cells to create a more “cancer hospitable 

environment.” Beyond the macrophage, other inflammatory cells contribute to the metastatic 

phenotype of cancers, including lymphocytes, neutrophils (Aeed et al., 1988; Welch et al., 

1989; Caruso et al., 2002), mast cells (Brideau et al., 2007), T-regulatory cells (Khazaie and 

von Boehmer, 2006; Wahl et al., 2006; Teicher, 2007), and platelets (Karpatkin et al., 1988; 

Borsig, 2008). These cells can negatively regulate the host immune response against cancer. 

This may be accomplished through production of inflammation-based products such as 

chemokines, ROS/RNS, cytokines, and growth factors (Reichert et al., 2002; Pawelec, 2004; 

Yang and Carbone, 2004). TGF-beta, which can be released by macrophages, lymphocytes, 

and/or platelets inhibits T-cell proliferation through suppression of interleukin (IL)-2 
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production (Becknell and Caligiuri, 2005; Ma et al., 2006) and blunts natural killer (NK) cell 

activity by interfering with IFN-gamma production (Rook et al., 1986; Bellone et al., 1995). 

Matrix metalloproteinases (MMPs) are a family of proteins capable of degrading the extra-

cellular matrix. Higher levels of MMPs are often associated with enhanced tumor invasion 

and metastasis and can often be secreted by several of the stromal cells present in the tumor 

microenvironment including macrophages and fibroblasts (Stetler-Stevenson et al., 1993; 

Sternlicht et al., 1999; Boire et al., 2005; Deryugina and Quigley, 2006). The ability of 

cancer cells to evade parts of the immune response and direct inflammatory cells towards 

benefit involves a complex set of relationships between the tumor cells and their 

environment at primary and secondary sites and appears crucial to the initiation and 

progression of cancer.

2.3.4. Nutritional and pH stress—Deprivation of cellular nutrition and alterations in 

pH balance are common stresses linked to cancer. The mammalian target of rapamycin 

(mTOR) is a critical cell signalling mediator involved with sensing the nutritional 

environment of cancer cells. The mechanisms of sensing and responding to these stresses 

occur through signaling intermediates such as AKT and mitogen-activated protein kinase. 

The current dogma suggests that mTOR coordinates signals from the nutritional and stress 

status of a cell resulting in upregulation and activation of specific proteins to maintain cell 

homeostasis. For example, tumor cells are highly dependent on the targets of mTOR-

mediated translation such as c-myc, VEGFR, hypoxia-inducible factor, and transforming 

growth factor-beta.

Reduction in the pH is often seen in tumors, and often occurs in conjunction with regions of 

hypoxia. One of the ways a tumor cell can manage this stress is through increased glucose 

metabolism, which is frequently observed in cancers. In the 1920s, Warburg (1956) reported 

the observation of increased aerobic glycolysis in tumor cells. This shift in cellular 

metabolism has recently been shown to be dependent on the M2 splice isoform of pyruvate 

kinase (Christofk et al., 2008). Other groups have hypothesized that the Warburg effect is a 

mechanism for pre-malignant cells to adapt to intermittent hypoxia (Gatenby and Gillies, 

2004). GLUT proteins, which function in transporting glucose across the plasma membrane, 

may also play an important role in the increased glucose metabolism phenotype of tumor 

cells. Studies have shown that hypoxia-responsive GLUT family members GLUT1 and 

GLUT3 are frequently overexpressed in tumors (Binder et al., 1997; Younes et al., 1997; 

Smith, 1999; Medina and Owen, 2002) while GLUT12 is found distinctively in prostate and 

breast cancer (Chandler et al., 2003; Rogers et al., 2003).

Another family of proteins that may play a role in helping cells cope with similar 

microenvironmental stresses are the chloride intracellular channels (CLICs). CLIC proteins 

are intimately involved in maintaining electrogenic gradients across both plasma and 

organelle membranes and thereby also serve in regulating organelle volume and pH (Jentsch 

et al., 2002). Beyond managing pH, cytoplasmic CLIC4 is also a direct response gene for c-

myc and p53 with consensus binding sites for each in its promoter (Fernandez-Salas et al., 

1999, 2002). CLIC4 is required for p53-induced apoptosis (Fernandez-Salas et al., 2002) 

and knockdown of CLIC4 in tumor cell lines results in inhibited tumor growth (Suh et al., 

2005). In response to various forms of stress, CLIC4 will translocate to the nucleus resulting 
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in cell cycle arrest and accelerated apoptosis (Suh et al., 2004). In addition, with advancing 

malignant progression, CLIC4 expression decreases in tumors while increasing in stromal 

cells (Suh et al., 2007) such as myofibroblasts (Seemayer et al., 1979; Ronnov-Jessen et al., 

1995; Martin et al., 1996; Bhowmick et al., 2004). This linked expression of CLIC4 between 

the tumor and stromal cells is suggestive of a molecular cross-talk between the tumor and its 

microenvironment. The mechanisms regulating activation and intracellular transit of CLIC 

proteins are not well understood, but may be connected to the metastatic phenotype of 

cancers.

2.3.5. Heat shock proteins—An overarching mechanism by which cancer cells resist 

stress is through the stabilization and protection of many of the proteins described above. 

Heat shock proteins (Hsp) including Hsp70 and Hsp90 are molecular chaperones of many of 

these proteins (referred to as “client” proteins) that in many cases are linked to oncogenic 

and metastatic cancer phenotypes. For the most part, Hsp–client protein interactions protect 

these proteins from degradation, and physiologic protection of specific proteins has emerged 

as a physiologic means to overcome short-term cellular stressors. Several Hsp clients include 

many of the same proteins that are often mutated or have deregulated expression in cancer. 

The fusion product of the Bcr and Abl genes, p210Bcr-Abl, is intimately involved in both 

acute lymphocytic leukemia and chronic myelogenous leukemia and its stability is 

dependent on its association with Hsp90 (Blagosklonny et al., 2001). Hsp client HER-2 is 

commonly overexpressed in several cancers and it too is reliant on its association with 

Hsp90 for stability (Xu et al., 2001). Inhibition of HSP90 can also reduce hypoxia-induced 

HIF1 α transcription (Hur et al., 2002). Other oncogenic proteins known to be stabilized by 

Hsps include mutated p53 (Zhang and Burrows, 2004) and the stress-responsive kinase Akt, 

a key player in cell survival and metastatic spread (Toker and Yoeli-Lerner, 2006). 

Overexpression of other HSPs is associated with various malignancies and/or poor prognosis 

in patients. For example, Tomasovic et al. (1984) was able to show that metastatic clones 

had a higher levels of thermal resistance and also displayed enhanced rates of synthesis of 

fours HSPs when compared to clones from the primary tumor. Hsp27 is correlated with poor 

survival in liver cancer (King et al., 2000), gastric carcinoma (Cardones et al., 2003), 

osteosarcoma (Uozaki et al., 2000), and colorectal cancer (Zhao et al., 2007). Enhanced 

Hsp70 expression is correlated with outcome in lymph node metastases in squamous cell 

carcinoma (Kawanishi et al., 1999) and prognosis in bladder (Syrigos et al., 2003) and breast 

cancer (Thanner et al., 2003). The stress-mediated induction of the ER-chaperone HSP70 

family member GPR78 by the unfolded protein response can lead to tumor proliferation 

(Luo et al., 2006; Dong et al., 2008), chemotherapeutic resistance (Pyrko et al., 2007), 

survival (Ranganathan et al., 2006; Fu et al., 2007), and metastasis (Fu and Lee, 2006; 

Zhang et al., 2006). These data additionally link the success of metastatic cells with the 

ability to effectively and selectively manage the stresses of protein accumulation.

2.4. Characteristics and emergence of the tumor microenvironment (the “soil”)

Upon arrival at a distant site, the new microenvironment (the “soil”) encountered by the 

metastatic cell is considered to be foreign and/or inhospitable. Survival of metastatic cells at 

the secondary site is likely a consequence of intrinsic features of the metastatic cell and an 

ability to effectively engage in a molecular cross-talk with its surroundings and modulate the 
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environment of the secondary site. This engagement can occur by several mechanisms. One 

such mechanism may be through the use of the cytoskeletal protein ezrin. Ezrin is necessary 

and/or sufficient for metastasis in several cancers (Khanna et al., 2004; Yu et al., 2004) and 

links the plasma membrane as well as plasma membrane associated proteins with the actin 

cytoskeleton. Through this linker function, ezrin is thought to help cells resist stress 

(unpublished data) and improve metastatic efficiency by better enabling the cell to 

physically engage its microenvironment and transduce microenvironmental cues in order to 

respond to stress. Recent studies have suggested that ezrin contributes to metastatic 

efficiency through inhibition of apoptotic death experienced by most cancer cells upon their 

arrival at secondary sites (personal communication, C. Khanna).

Similar to ezrin’s role, cell–cell interactions are likely necessary for effective modulation of 

secondary sites. Integrins, key mediators of cell–cell interactions, often have deregulated 

expression in tumor cells (Juliano and Varner, 1993; Kurschat and Mauch, 2000). This 

aberrant expression is thought to provide enhanced proliferative and survival capabilities 

(Aplin et al., 1999; Hynes, 2002; Nikolopoulos et al., 2004; Naylor et al., 2005; Reddig and 

Juliano, 2003) in the tumor cell’s new microenvironment. Growth factor receptor–ligand 

interactions between tumor cells and host stromal cells can often result in an interactive 

signaling loop between tumor and host cells (Condeelis and Pollard, 2006; Yamaguchi et al., 

2006) resulting in induction of angiogenesis (Pollard, 2004) or upregulation of pro-survival 

pathways (Derynck et al., 2001; Kalluri and Neilson, 2003; Bhowmick et al., 2004; Mueller 

and Fusenig, 2004; Kalluri and Zeisberg, 2006). Stromal cells such as macrophages and 

fibroblasts are often involved in such signaling loops (Forsberg et al., 1993; Condeelis and 

Pollard, 2006; Kalluri and Zeisberg, 2006; Yamaguchi et al., 2006) and can contribute to the 

invasive behavior of tumor cells through release of chemokines (Negus et al., 1997; Brigati 

et al., 2002; Coussens and Werb, 2002; Pollard, 2004) or production of matrix-degrading 

proteases (Stetler-Stevenson et al., 1993; Sternlicht et al., 1999; Giraudo et al., 2004; 

Pollard, 2004; Boire et al., 2005). Work by Kitadai et al. (2006a, b) suggests that secretion of 

PDGF by tumor cells may also contribute to metastasis by acting on tumor PDGF-R positive 

stromal cells, which in turn may secrete growth factors supportive for the tumor. Similar 

mechanisms are seen in prostate and breast cancer cells that are capable of secreting 

endothelin-1 (ET-1). ET-1 binds the endothelin A receptor expressed in osteoblasts, resulting 

in their activation. The activated osteoblast produces growth factors essential for metastatic 

tumor growth in bone, thereby leading to bone metastases (Yin et al., 2003).

In summary, successful metastatic cells that arrive at secondary sites engage cells in the 

microenvironment as a means to modulate the secondary site and produce an environment 

conducive to metastatic cell survival. Recent data now suggest that the development of such 

an environment may occur in advance of the arrival of metastatic cells themselves via 

priming by bone marrow derived cells (Kaplan et al., 2005).

2.4.1. Cell–cell/microenvironment interactions—The ability of cells to effectively 

develop heterotypic interactions with other cells and to non-cellular elements in the 

microenvironment is pivotal in a metastatic tumor cell’s ability to successfully adapt to its 

new surroundings. Integrins are critical players in forming these interactions, are known to 

mediate anchorage-independent growth (Eble and Haier, 2006), angiogenesis (Eble and 
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Haier, 2006), enhanced survival (Guo and Giancotti, 2004), and are thought to act as 

oncogenes and/or tumor-suppressor genes (Juliano and Varner, 1993; Hulleman and 

Boonstra, 2001). Briefly, integrins, which are frequently internalized and/or recycled 

(Caswell and Norman, 2006), consist of non-covalently associated α and β subunits with 

cytoplasmic, membrane, and extra-cellular domains (Hynes, 2002; Ramsay et al., 2007). 

Through extra-cellular matrix ligand binding, integrins can transduce signals to the cell and 

are also capable of responding to intracellular messages (Ramsay et al., 2007). Integrins may 

also have co-receptor functions that are adhesion-independent. Overexpression of β4 

integrin, for example, can act as a signaling substrate for the HGF receptor C-met, resulting 

in enhanced anchorage-independent growth and tumorigenesis in nude mice (Bertotti et al., 

2005, 2006).

Along with integrins, intercellular adhesion molecules (ICAMs), also play a significant role 

in mediating cellular interactions. ICAMs are members of the immunoglobulin superfamily 

and intimately involved in mediating cell–cell, cell–ECM, and immune interactions (Dustin 

et al., 1986; Roland et al., 2007). Because of their ability to influence cell–cell and cell–

microenvironment interactions, it comes as no surprise that aberrant expression of these 

molecules is associated with both cancer development and metastatic progression. A 

summary of these associations with cancer is provided in Table 1.

2.4.2. Tumor stroma—The activated stroma of the tumor microenvironment consists of 

several components including growth factors, other secreted molecules, and host cells that 

are all thought to highly influence the behavior of tumor cells (reviewed in Liotta and Kohn 

(2001)). Of the host cells present in the tumor microenvironment, endothelial cells, 

macrophages (discussed above) and fibroblasts are established players in the metastatic 

process (Kalluri and Zeisberg, 2006). The cellular and non-cellular features that make up the 

tumor stroma are not only necessary for the metastatic behavior of cells but in fact have been 

shown to be sufficient. An activated “metastatic tumor stroma” is sufficient to convert non-

metastatic cells to metastatic. The determinants of the metastatic tumor stroma” is in part 

generated by macrophages and fibroblast secretion of matrix metalloproteinases, which 

liberate a cascade of events that contribute to stromal activation and to chemokines 

(chemotactic proteins) and their associated receptors, which direct and modulate the cellular 

component of the stroma (Deryugina and Quigley, 2006). Table 2 lists specific features of 

the “metastatic stroma” and associations made with specific metastatic cancers.

2.4.3. Pre-metastatic niche—A novel hypothesis that extends our understanding of 

role of the stroma in the formation of metastasis is the pre-metastatic niche hypothesis 

(Kaplan et al., 2005). Kaplan et al. recently showed that tumor cell secreted factors were 

able to direct bone marrow derived VEGFR-1 + hematopoietic progenitor cells (HPCs) to 

future metastatic sites prior to the arrival of metastatic cells. Blocking the formation of the 

pre-metastatic niche prior to tumor development through the use of antibodies against 

VEGFR1 and VEGFR2 significantly inhibited metastasis (Kaplan et al., 2005, 2006). The 

HPCs of the pre-metastatic niche are thought to prime the pre-metastatic site in order to 

make it more favorable for incoming tumor cells. The migration of HPCs within the bone 

marrow is influenced by the interaction between the integrin VLA-4 and its ligand 
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fibronectin (Kaplan et al., 2006). Since upregulation of fibronectin occurs within the pre-

metastatic niche and VEGFR-1+ HPCs express VLA-4, it is reasonable that the same 

interaction that influences migration of HPCs in bone marrow may also play a role in the 

adhesion of HPCs with the niche (Kaplan et al., 2005, 2006). The origins of the pre-

metastatic niche in the bone marrow allows extension of a related hypothesis, that cancer 

cells may in fact transit to the bone marrow prior to their eventual spread to distant 

secondary sites. Similar to the pre-metastatic niche, the bone marrow microenvironment may 

provide a permissive environment for tumor cells (Kaplan et al., 2006). Indeed, several 

cancers metastasize to bone marrow in a CXCR4-dependent manner (Muller et al., 2001; 

Kaifi et al., 2005). Beyond protection, the bone marrow may in fact contribute to the 

metastatic phenotype of residing cells (Scadden, 2006). The reciprocal role of tumor cells on 

the bone marrow stroma is highlighted work from Nicola et al. (2003) who recently 

demonstrated that bone marrow stroma taken from breast cancer patients is significantly less 

adhesive towards tumor cells than normal bone marrow stroma. It is reasonable that this may 

make it easier for tumor cells to leave the niche after becoming ‘educated.’

2.5. Therapy

As discussed above, a better understanding of the molecular cross-talk between tumor cell 

and tumor microenvironment and how this affects the generally more agrgressive and 

chemotherapy-resistant biology of metastatic tumors is needed. However, despite new 

insights, metastasis still remains the overwhelming cause of death in cancer patients and new 

therapies are therefore needed that target the disease in a different way. An opportunity 

exists to improve outcomes for cancer patients by using our understanding the tumor cell 

(seed), the microenvironment (soil), and the molecular cross-talk between seed and soil.

Our understanding of the tumor seed and its stem-like features may predict the failure of 

treatments that target the tumor cell alone. Cancer cells with stem-like features (CSCs) may 

be best positioned to effectively resist the insult of many types of cancer therapy. While 

large fractions of tumor cells are sensitive, CSCs are thought to persist in a quiescent state 

only to recur at future times (Reya et al., 2001; Al-Hajj et al., 2004; Wicha et al., 2006). 

Targeting CSCs, or their protective niche may be the basis of more successful therapy (Yang 

and Wechsler-Reya, 2007). Exemplary of this, CSCs in brain tumors are thought to reside in 

“vascular niches” (regions rich in blood vessels) (Shen et al., 2004; Ramirez-Castillejo et al., 

2006) that are often lined with endothelial cells that secrete stem cell survival and self-

renewal factors. Calabrese et al. (2007) was able to show that by targeting these vascular 

niches with specific inhibitors in tumor-bearing mice, they were able to slow the growth rate 

of the tumor and significantly decrease the overall number of CSCs while having little effect 

on proliferation of most of the other tumor cells (Calabrese et al., 2007). Therefore, the 

addition of therapies that target CSCs in their niches to current treatment regimens may be 

valuable (Yang and Wechsler-Reya, 2007). An alternative means of targeting CSCs may 

include the use of differentiation agents. Compounds such as cyclopamine (hedgehog 

signaling) and imatinib (Wnt/β-catenin pathway) have been used to target pathways that are 

likely critical to a CSC’s ability to self-renew (Galmozzi et al., 2006; Li et al., 2007). It is 

tempting to speculate that the success of other differentiation inducers such as retinoic acid 

may be due to induction of differentiation in CSCs there by eliminating their ability to self-
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renew (Li et al., 2007). Such therapies may be useful as part of long-term combination 

therapy strategies that target quiescent cancers with stem-like features.

The role of the tumor microenvironment in promoting tumor development and progression 

has been highlighted above. Therapies that now seek to modulate the tumor–host 

microenvironment and its components are feasible and should be considered (Langley and 

Fidler, 2007). For example, targeting macrophage/tumor cell interactions may be an 

attractive therapeutic target due to the multifactorial role macrophages play in regulating 

inflammation, angiogenesis, invasion, and the ECM. In support of this idea, macrophage 

knock-out mice exhibit a reduced rate of tumor growth and a dramatic decrease in 

metastases compared to litter-mate controls (Lin et al., 2001), while overexpression of the 

macrophage growth factor colony-stimulating-factor-1 accelerates the rate of tumor growth 

and metastasis (Lin et al., 2001). Additionally, a high density of tumor-associated 

macrophages is associated with a poorer prognosis in a large proportion of published studies 

(Lin et al., 2002). Targeting non-cellular features of the tumor stroma should also be 

considered as a treatment for metastasis. For example, induction of NO in the tumor stroma 

via expression of the NOS II expression machinery may be part of the mechanism associated 

with IFN-β and IFN-γ therapy, which has been shown to suppress metastasis in pancreatic 

adenocarcinoma (Wang et al., 2001). The hypoxic and acidic environment that is 

characteristic of tumor microenvironments may also be exploited to kill tumor cells. 

Bioreductive drugs, compounds that are only toxic under low oxygen conditions or reduced 

pH, such as tirapazamine have shown promising results when used in combination with 

other chemotherapeutic agents in clinical trials (Kovacs et al., 1999; Craighead et al., 2000; 

Xie and Huang, 2003). Similar strategies to target the hypoxic conditions of the tumor 

microenvironment may be considered as part of gene therapy using hypoxia-responsive 

promoters for gene expression (Xie and Huang, 2003). Other physiological conditions 

unique to the tumor microenvironment may limit current therapeutic approaches and may 

also be targets of novel treatments. Specifically, P-glycoprotein is a major component of the 

blood–brain barrier and other pharmacologic sanctuaries that are responsible for the poor 

penetration of chemotherapeutic agents (Cordon-Cardo et al., 1989). Thus, therapies that 

seek to modulate this protein may prove useful in the treatment of patients with CNS cancer 

or CNS metastasis.

Finally, targeting the cross-talk that occurs between the tumor cell and the microenvironment 

may over-ride the influence of the microenvironment on the metastatic phenotype. Classical 

targets of this cross-talk include VEGF, FGF, and PDGF. It is likely that the benefit of 

strategies that target these growth factors extends beyond the process of antiangiogenesis. 

(Kabbinavar et al., 2005; Sandler et al., 2006).

While much progress has been made to understand the biology of metastasis and metastatic 

lesions, many questions remain unanswered. The biology is complex with the cell’s fate 

being heavily influenced by the concepts introduced over 100 years ago in Paget’s seed and 

soil hypothesis. The phenotype of a metastatic cancer results from the tumor cell, the tumor 

microenvironment, and the interaction between tumor cell and its microenvironment. The 

process of metastasis is taxing (stressful). Successful metastatic cells are uniquely able to 

manage the stresses of metastasis by virtue of intrinsic features of the cell, the tumor 
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microenvironment that is in part activated by the tumor cell, and the ability of the tumor cell 

to successfully engage and interact with its microenvironment. As our understanding of this 

complex biology improves, new opportunities to target the tumor (seed), the tumor 

microenvironment (soil) and their interactions will emerge. It is hoped that these efforts will 

improve outcomes for patients with metastasis or at high risk for metastasis.
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Fig. 1. 
Tumor cells must resist stress in order to metastasize. Metastasis is thought to be a very 

inefficient process, in part, due to the number of stresses tumor cells must overcome in order 

to reach secondary sites and develop into gross metastatic lesions. Throughout each stage, 

tumor cells are confronted with various stresses, any of which may kill the cell. This results 

in a fragile balance between life and death for the cell. Only those tumor cells which can 

successfully manage the stress will survive. Depicted are examples of the various stresses 

tumor cells face during each stage of the metastatic process and some of the mechanisms the 

cell may use to deal with those stresses. Note that each stress and coping mechanism listed 

above are not exclusive to a particular stage of metastasis and likely apply to more than one 

of the stages. Cancer stem cells, those cells which are thought most able to resist the stresses 

of the metastatic cascade, are depicted in yellow. GF = growth factor; MMPs = matrix 

metalloproteinases; HSPs = heat shock proteins; CLICs = chloride intracellular ion channels.
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Table 1

Heterotypic interactions between a tumor cell and its microenvironment (both cellular and non-cellular 

elements) are critical to the cell’s ability to engage its surroundings in order to manage stress. Listed are some 

of the aberrantly expressed molecules that are thought to facilitate those interactions in specific cancers.

Molecule Associated cancer Reference

ανβ3 Melanoma Nip et al. (1992)

α2β1, α3β1 Gastric carcinoma liver
metastases

Ura et al. (1998)

ανβ3 Bone-residing metastases Liapis et al. (1996), Byzova et al. (2000)

ανβ5 Colon carcinoma cells liver
metastases

Enns et al. (2005)

α6β6 Colon carcinoma Bates et al. (2005)

ανβ3 Colon carcinoma Max et al. (1997)

ICAM-1 Melanoma, metastatic breast and liver carcinoma, 
gastric carcinoma

Natali et al. (1990, 1997), Sun et al. (1998), Rosette et al. (2005), 
Tachimori et al. (2005)

ICAM-2 Metastatic gastric carcinoma Tanaka et al. (2004)

ICAM-5 Head and neck squamous carcinoma Maruya et al. (2005)
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