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SUMMARY

Clinical actigraphy devices provide adequate estimates of some sleep measures across large 

groups. In practice, providers are asked to apply clinical or consumer wearable data to individual 

patient assessments. Inter-individual variability in device performance will impact such patient-

specific interpretation. We assessed two devices, clinical and consumer, to determine the 

magnitude and predictors of this individual-level variability. One hundred two patients (55 

(53.9%) female, 56.4 (±16.3) years old) patients undergoing polysomnography wore Jawbone UP3 

and/or Actiwatch2. Device total sleep time (TST), sleep efficiency (SE), wake after sleep onset 

(WASO), and sleep latency (SOL) were compared with polysomnography. Demographics, sleep 

architecture, and clinical measures were compared to device performance. Actiwatch 

overestimated TST by 27.2 minutes (95% confidence limits 138.3 minutes over to 84.0 under), 

overestimated SE by 6.8% (95% CL 34.1% over to 20.5% under), overestimated SOL by 2.6 

minutes (95% CL 63.3 over to 58.2 under), and underestimated WASO by 50.7 minutes (95% CL 

162.5 under to 61.2 over). Jawbone overestimated TST by 59.1 minutes (95% CL 208.6 minutes 

over to 90.5 under) and overestimated SE by 14.9% (95% CL 52.6% over to 22.7% under). In 

multivariate models, age, SOL, WASO, % N1, and AHI explained only some of the variance in 

device performance. Gender also affected performance. Actiwatch and Jawbone mis-estimate 

sleep measures with very wide confidence limits and accuracy varies with on multiple patient-level 

characteristics. Given these large individual inaccuracies, data from these devices must be applied 

only with extreme caution in clinical practice.
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INTRODUCTION

Electroencephalographic (EEG)-based measures of sleep during polysomnography (PSG) 

are the gold-standard for assessing sleep-wake state in patients suspected of having sleep 

disorders (Rechtschaffen and Kales, 1968). However, this testing carries substantial costs in 

time, personnel, and equipment. A technician must apply multiple skin electrodes and ensure 

adequate signal quality with low impedences, and then patients must attempt to sleep while 

wearing bulky and sometimes uncomfortable equipment, typically in a sleep laboratory 

instead of their home environment. Raw data must be visually inspected and manually 

scored by a trained technician, then interpreted by a board-certified physician. Because of 

the costs involved, only a single night of testing is typically performed, which in many cases 

is not representative of habitual sleep (Toussaint et al., 1995).

As a result, the move toward at-home testing with alternate data collection strategies has 

gained considerable momentum. The most widely adopted in clinical practice has been 

home sleep apnea testing, in which monitoring of respiration, typically without EEG, can be 

performed in the home setting to assess for obstructive sleep apnea. Although there are 

limitations to this testing, particularly with respect to accuracy in patients with comorbid 

cardiopulmonary disease, this home-based testing has been validated as an appropriate 

method of diagnostic testing in defined populations (Kapur et al., 2017).

Actigraphy devices capture movement, typically through a wristwatch-like device. Using a 

variety of algorithms, these devices can estimate sleep measures based on the assumption 

that sleep is a state of low movement and wake is a state of high movement. As such, 

actigraphy has been proposed as an ambulatory, at-home alternative to in-laboratory 

measures of key sleep indices, such as total sleep time (TST) and sleep efficiency (SE). In 

population-based studies, actigraphy generally performs well on average compared to PSG, 

for example with large, community-based studies showing a difference between PSG-

measured and actigraphically-estimated TST of only 12–13 minutes (Matthews et al., 2018).

Performance of actigraphy in clinical populations might be different than in population-

based studies, because of a difference in the frequency of sleep disorders. Yet multiple 

studies of actigraphy in clinical populations have been performed and, taken together, 

suggest that, especially for TST, there is good correspondence between PSG and actigraphy 

measures. For example, a recent meta-analysis of insomnia studies comparing actigraphic 

and PSG TST measures found a mean difference of only 9.5 minutes between these tests, 

with a 95% CI of −8.1 to 21.7 minutes, including over 600 participants (Smith et al., 2018a). 

As a result of these and other studies, guidelines state that actigraphy can be clinically useful 

in evaluating people with insomnia, excessive sleepiness, and circadian rhythm disorders 

(International Classification of Sleep Disorders, 2014; Smith et al., 2018b).
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However, despite multiple studies showing that group averages of some sleep metrics are 

similar between PSG and actigraphy, wide-spread application of actigraphy to clinical 

practice requires that actigraphy accurately reflect PSG measures for each individual, not 

just for the group as a whole. Yet many studies that show good agreement between 

actigraphy and PSG measures on average have substantial numbers of outliers whose device 

performance is substantially less accurate (Blackwell et al., 2011;Kolla et al., 2016;Smith et 
al., 2018a). Thus, studies assessing actigraphy for potential clinical use must emphasize not 

only average accuracy but the range of accuracy and potential factors that affect this range.

Further, prior work has suggested differences across devices that may be clinically 

important, suggesting that conclusions may need to be device-specific (Mantua et al., 2016). 

Complicating this issue are the potential differences between Food and Drug Administration 

(FDA)-cleared, PSG-validated clinical actigraphy devices and the ever-expanding number of 

commercial, direct-to-consumer wearable devices such as the Jawbone or Fitbit. This latter 

group of devices is neither FDA-cleared nor consistently validated, but patient expectations 

are increasingly that physicians will incorporate data from these devices into their clinical 

evaluation. The FDA has signaled that it does not intend to regulate general wellness devices 

unless they are intended for specific clinical populations, which may serve to keep device 

manufacturers from testing their devices within sleep disorder populations (Kolla et al., 
2016). Some of these devices incorporate additional physiologic data, including heart rate 

and galvanic skin response, into their algorithms, which have the potential to improve 

diagnostic accuracy but might also introduce new sources of noise and individual variability. 

Further, the algorithms used by these devices are often proprietary (Kolla et al., 2016), 

limiting the ability of clinicians to understand exactly what is being measured and how. The 

American Academy of Sleep Medicine (AASM) has cautioned that these devices cannot 

supplant current diagnostic tools but encouraged consideration of their benefits for patient 

engagement and conversations about the importance of sleep (Khosla et al., 2018).

To better understand how actigraphy performs as a PSG-surrogate for sleep metrics in a real 

world clinical population, we performed a validation study of two different actigraphy 

devices, one clinical and one marketed directly to consumers, in a large group of patients 

being studied for suspected sleep disorders. Our aim was to evaluate the inter-individual 

variability in device accuracy and the potential correlates of this variability.

METHODS

Adult participants (n = 102) undergoing diagnostic PSG, split-night study, or positive airway 

pressure (PAP) titration were recruited from the Emory Sleep Center. Diagnoses included 

obstructive sleep apnea (OSA, n=53), a combination of obstructive and central sleep apnea 

(n=6), isolated central sleep apnea (n=1), idiopathic hypersomnia (n=3), behaviorally-

induced insufficient sleep syndrome (n=1), parasomnia (n=2), or nocturnal hypoxia (n=2). 

Thirty-four participants were studied for suspicion of sleep apnea, but had normal apnea-

hypopnea index (AHI) on testing. Characteristics of included participants are shown in Table 

1.
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The Actiwatch 2 (Philips Respironics) is a wearable actigraphy device produced for research 

and clinical use. It uses an internal accelerometer for movement detection, accompanied by a 

light sensor. Actiwatch devices were configured for 15-s epochs. Actiware software (version 

6.0.8) was set to medium sensitivity for wake detection.

The Jawbone UP3 was a commercially-available device for sale directly to consumers. It 

derives sleep estimates via accelerometry but additionally contains bio-impedance sensors 

that measure heart rate, respiration rate, and body temperature, and galvanic skin response. 

Information on the sleep staging algorithm is not publicly available, but summary sleep 

measures were obtained via the Jawbone website using de-identified device data. So that 

each device would fit comfortably at the wrist, participants wore one actigraphy device on 

each wrist, rather than both on the same wrist. Each PSG used standard electrode placement 

for electroencephalogram (EEG), electrooculography (EOG), chin and leg electromyogram 

(EMG), electrocardiography (ECG), respiratory effort, oximetry, body position, airflow, and 

snoring (Iber et al., 2007). PSGs were manually scored in 30-s epochs by registered sleep 

technologists using the AASM scoring manual and interpreted by a board-certified sleep 

specialist.

Because our interest was in the summary measures of sleep that are frequently used in 

clinical decision-making, TST and SE were obtained from PSG and from each wearable 

device for analysis, rather than an epoch-by-epoch comparison of PSG and wearable 

devices. To derive summary measures from the wearable devices, start/end times were set to 

correspond to the PSG-identified lights-off and lights-on times. These times were used to 

generate TST and SE directly from the Actiwatch; for the Jawbone, TST was provided by 

the device and used to generate SE. Sleep efficiency was calculated as TST/ total recording 

time (TRT). As a result, the imprecision in aligning start/stop time between devices and PSG 

was +/− 15 seconds for the Actiwatch and +/− 60 seconds for the Jawbone. For the 

Actiwatch, sleep onset latency (SOL) and wake time after sleep onset (WASO) were also 

obtained, although these values were not available for the Jawbone at the time of this 

analysis.

Statistical analyses

Sleep measures estimated by Jawbone and Actiwatch were each compared to PSG measures 

via Pearson correlation. Difference scores (e.g., PSG_TST – Actiwatch_TST) were 

calculated to provide a measure of whether the wearable consistently over- or under-

estimated each sleep metric compared to PSG. A positive difference score indicates that the 

wearable device has underestimated the sleep measure. We calculated 95% confidence limits 

around each mean, i.e., the mean +/− 1.96*standard deviation. We chose to calculate 

confidence limits as our clinically relevant measure of dispersion, rather than confidence 

intervals using standard error, because our interest is in applying wearable device data to 

individual patient decision-making rather than estimating the mean value for a large group of 

subjects. Bland-Altman plots were constructed to compare each device to PSG on measures 

of total sleep time and sleep efficiency.

The absolute value of each difference score (e.g., |PSG_TST – Actiwatch_TST|) was also 

calculated, to provide a measure of amount of imprecision of the wearable devices, 
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regardless of whether the wearable over- or under-estimated the PSG measure. Difference 

scores and absolute value scores were then examined by demographic, PSG, and clinical 

features using Pearson correlation for continuous variables and t-tests, corrected for unequal 

variances when necessary, for categorical variables.

Difference scores for each measure were then assessed using linear regression models, to 

further assess which clinical and demographic features contributed to device performance. 

Models were assessed for assumption violations and collinearity. Independent variables 

initially included were age, gender, AHI, Epworth, PLMI, presence or absence of 

depression, %N1, %N3, %REM, WASO, and SOL, although the latter was excluded when 

modeling difference in SOL. Backward elimination was used to determine the most 

parsimonious model for each dependent variable, with significance for remaining in the 

model set at 0.05. Because of heteroscedasticity, despite transformations, difference scores 

for Actiwatch WASO were not further assessed in linear regression.

Depression was defined as a Patient Health Questionnaire-9 (PHQ9) score > 9 (indicates at 

least moderate depressive symptoms) (Kroenke et al., 2001). Age, body mass index, severity 

of daytime sleepiness as assessed by Epworth Sleepiness Scale score, AHI, periodic limb 

movements of sleep, arousal index, and percentage of time spent in each sleep stage were 

assessed as continuous variables. Analyses were performed using SAS (version 9.4). This 

study was approved by the Emory Institutional Review Board and all participants provided 

signed, informed consent.

RESULTS

Wearable Device Performance

There were two Actiwatch device failures, yielding an Actiwatch sample size of 100. There 

were twelve Jawbone technical failures and four participants who did not wear the Jawbone, 

yielding a Jawbone sample size of 86. Comparing Actiwatch to PSG, TST was strongly 

correlated, SE was moderately correlated, and WASO and SOL were only weakly correlated 

(Table 2). Comparing Jawbone to PSG, there was a moderate positive correlation for TST 

but a weaker correlation for SE.

Despite these significant correlations, individual subjects demonstrated large differences 

when comparing PSG and wearable devices. Actiwatch (vs PSG) overestimated TST by 27.2 

minutes. The 95% confidence limits (CL, i.e., −1.96*standard deviation to 1.96*standard 

deviation) for the difference between measures ranged from an underestimation of 84.0 

minutes to an overestimation of 138.3 minutes. The Actiwatch overestimated sleep 

efficiency by 6.8%, with 95% CL of underestimating by 20.5% to overestimating by 34.1%. 

The Actiwatch overestimated SOL by 2.6 minutes (95% CL 58.2 minutes underestimated to 

63.3 minutes overestimated). WASO was the only measure underestimated by the 

Actiwatch, by 50.7 minutes (95% CL 162.5 minutes underestimated to 61.2 minutes 

overestimated).

The Jawbone overestimated TST by an average of 59.1 minutes (95% CL underestimated by 

90.5 minutes to overestimated by 208.6 minutes). The Jawbone overestimated SE by 14.9% 
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(95% CL underestimating by 22.7% to overestimating by 52.6%). Bland-Altman plots 

(Figures 1 and 2) highlight the wide range of differences between PSG and wearables, 

becoming more pronounced as total sleep time and sleep efficiency decrease.

Demographic features and wearable device performance

Age was weakly and negatively correlated to the difference scores with PSG for Actiwatch 

TST, Actiwatch SE, Jawbone TST, and Jawbone SE, i.e. both devices overestimated PSG 

measures of TST and SE more with increasing age (Tables 3 and 5). The Actiwatch 

underestimated WASO more with increasing age based on difference scores, but there was 

no effect of age on Actiwatch SOL.

Gender effects were not apparent in difference scores for either device, with the exception of 

greater underestimation of WASO among men by the Actiwatch (underestimated by 74.5 

minutes in men and 30.0 minutes in women; Table 4). Absolute value scores showed 

significant gender effects on TST, SE, and WASO, i.e., performance was worse for men with 

both devices, but the gender effect on TST and SE was not a consistent over- or under-

estimation.

BMI was weakly and negatively correlated with Actiwatch WASO, with more 

underestimation of WASO as BMI increased, but was unrelated to other Actiwatch measures 

(Table 3). BMI was weakly and positively correlated to difference scores for Jawbone TST 

and SE, i.e., the Jawbone overestimated sleep measures more in those with lower BMI.

Sleep architecture and wearable device performance

Wearable device overestimation of TST and SE increased with increasing sleep onset 

latency, i.e., sleep onset latency was weakly, negatively correlated with difference scores for 

Actiwatch TST, Actiwatch SE, Jawbone TST, and Jawbone SE (Tables 3 and 5). Sleep onset 

latency was weakly, positively correlated with difference score for Actiwatch SOL, such that 

people with longer PSG-measured sleep latencies had less overestimation of sleep latency by 

the Actiwatch (Table 3).

Similarly, wearable device overestimation of TST, SE, and SOL increased with increasing 

WASO, as reflected in negative correlations between WASO and difference scores for 

Actiwatch TST, Actiwatch SE, Actiwatch SOL, Jawbone TST, and Jawbone SE (Tables 3 

and 5). PSG-measured WASO had a very strong positive correlation (r = 0.95) with WASO 

difference score for the Actiwatch.

Considering sleep stage data and difference scores, the only Actiwatch feature related to 

sleep stages was WASO. The Actiwatch tended to underestimate WASO more as percentage 

of N1 increased and percentages of N3 and REM sleep decreased (Table 3). Absolute value 

scores were additionally related to sleep stages for Actiwatch TST, SE, and SOL, such that 

N1 and REM percentages affect Actiwatch accuracy but without a consistent effect on 

under- versus over-estimating these measures. Difference scores for both Jawbone measures 

of TST and SE were related to percentages of N1, N3, and REM sleep (Table 5). Jawbone 

overestimates sleep measures more as N1 increases and REM and N3 decrease.

Danzig et al. Page 6

J Sleep Res. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clinical features and wearable device performance

Epworth scores were unrelated to device performance. AHI was related to Actiwatch 

accuracy of SE, SOL, and WASO, with less overestimation of SE, more overestimation of 

SOL, and more underestimation of WASO with increasing severity of sleep apnea (Table 3). 

AHI was unrelated to Jawbone performance. PLMS were unrelated to performance of either 

device. Presence or absence of depression minimally affected device performance, with only 

Actiwatch SOL showing less accuracy in those with elevated PHQ9 depression scores (Table 

4).

Linear regression

Using backward model selection of linear regression models for difference scores, between 

one and four variables were retained in each model as significant predictors of wearable 

tracker error (Table 7). Significant predictors for each model varied by sleep metric and 

wearable device, but included age, SOL, WASO, % N1, and AHI, with WASO retained in all 

models and AHI in all but one. Overall explanatory power of the independent variables was 

low, with amount of variance explained by the models (i.e., adjusted r-squared values) 

ranging from 0.18 to 0.38.

DISCUSSION

Prior studies have shown that wearable devices may be useful tools for the evaluation of 

group differences in certain sleep metrics (Smith et al., 2018b), given sufficiently large 

group sizes, but our study highlights the difficulties in using this wearable device data on an 

individual patient level. We have demonstrated large amounts of individual variability 

between the gold standard PSG and two different wearable devices, one clinical and one 

targeted to consumers. We have also identified several relevant, common demographic and 

clinical features that impact wearable device accuracy.

Both the clinical and the consumer device over-estimated TST and SE on average, with 

worse performance by the consumer Jawbone than the clinical Actiwatch. The inaccuracies 

of these devices in our clinical population were large enough to be problematic for clinical 

decision making, e.g., the Actiwatch overestimated total sleep time by nearly half an hour on 

average. More importantly, the range of individual-level inaccuracies were of clinically-

significant magnitude, such that a clinician attempting to apply the Actiwatch result would 

not know whether it was overestimating sleep time by more than 2 hours or underestimating 

by almost 1.5 hours (Figure 1A). Similarly wide ranges for Actiwatch SE, SOL, WASO, and 

both Jawbone measures seriously limits the clinical utility of these devices for sleep center 

patients.

Several demographic features affected the performance of the wearable devices. With 

increasing age, wearables became modestly but significantly less accurate compared to PSG, 

with wearable devices tending to increasingly overestimate sleep measures of TST and SE 

with increasing age. Because wearable devices often fail to correctly identify wake after 

sleep onset (WASO) (Meltzer et al., 2012), the age effect may reflect the decreases in total 

sleep time and increases in WASO seen with advancing age (Ohayon et al., 2004).
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Gender significantly affected the results for both Actiwatch and Jawbone, with both 

wearable devices performing substantially worse in men. While some studies have also 

found a difference in accuracy based on gender (Johnson et al., 2007), others suggest its 

impact is minimal (Marino et al., 2013). This discrepancy between studies may reflect a 

difference in the age of included participants or the particular wearable devices under study. 

More research is needed to understand potential mechanisms related to the decreased 

accuracy in men compared to women.

The effect of BMI on wearable device performance differed for the two devices, in that BMI 

only affected Actiwatch estimation of WASO, while BMI affected both measures of 

Jawbone performance. Further, increasing BMI was associated with worse performance of 

Actiwatch but better performance of Jawbone with increasing BMI. It is possible, but 

speculative, that some of this difference could reflect differences in sensor type between the 

two devices, i.e., accelerometry alone versus accelerometry plus bio-impedance data.

Increasing severity of sleep apnea affected some, but not all, Actiwatch measures. The 

effects of sleep apnea were not consistent, with relatively better performance in SE with 

increasing sleep apnea severity but worse estimation of SOL and WASO with increasing 

severity. This is somewhat in contrast with the findings in the MrOS study, which found 

underestimation of sleep time in those with severe sleep apnea (Blackwell et al., 2011). 

Depression, as defined by an elevated PHQ9 score, minimally affected device performance. 

Although others have found that periodic limb movements of sleep are associated with less 

overestimation of sleep metrics by actigraphy (Blackwell et al., 2011), we could not confirm 

this in our patient population.

Validation studies of earlier versions of the Jawbone UP have shown similar limitations in 

device performance to what we have described with the Jawbone UP3. Differences between 

TST measured by UP and PSG in two studies were 9 minutes and 63 minutes, respectively, 

while differences in SE were 2% and 9% (Gruwez et al., 2019;Toon et al., 2016). Even in 

the study that showed relatively small mean differences between PSG and UP, participants 

had a clinically significant difference in PSG and UP estimates of TST in 36% of 

participants and SE in 47% of participants (Toon et al., 2016). These two studies differed in 

their patient population, with children and adolescents in the study with better wearable 

performance and adults in the other. Among children, age significantly affected UP 

performance, with underestimation of TST in preschool children but overestimation in 

adolescents (Toon et al., 2016). In the study of children, sleep apnea did not affect UP 

performance on measures of TST, WASO, or SE but less underestimation of SOL was seen 

with increasing severity of sleep-disordered breathing (Toon et al., 2016). These studies 

underscore the potential inaccuracy of the UP device and potentially meaningful effects of 

age and, to a lesser extent, sleep disordered breathing.

Although multiple factors affected device accuracy in our study, most correlations were 

modest. In linear regression, most models retained only 1–3 variables, and the best models 

explained only approximately 1/3rd of the variance in device performance. This suggests that 

other, unidentified factors additionally contribute to the wide variability of device 

performance. This relatively weak explanatory power of commonly-assessed clinical and 
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demographic features further limits clinical application, as predictions about how an 

individual patient’s characteristics may affect device accuracy cannot be made with much 

certainty. Further, many associations held true for only one or the other wearable device, 

highlighting device-specific differences that prevent categorical assumptions about how 

particular patient-specific features may or may not affect wearable device accuracy.

This study had several limitations. We studied sleep lab patients, so the results may not 

apply to those without sleep disorders or symptoms. Single night PSG does not perfectly 

reflect habitual sleep, due to first-night effect (disruption due to a new sleeping environment) 

(Toussaint et al., 1995). There may be factors in the home environment, e.g., pets, that affect 

accuracy of wearable devices but cannot be easily tested with in-laboratory PSG. Because 

our interest was in summary measures used in clinical practice, we did not perform epoch-

by-epoch comparisons. We studied the Jawbone UP3, which has subsequently been removed 

from the market; there are recent plans for re-launch (website, 2017). Finally, we chose to 

start and stop the actigraphy device monitoring period based on the lights-off and lights-on 

time for PSG, to allow standardization of recording time. However, this may artificially 

bolster device performance, as this information is not as precisely available in the home 

setting (Trotti, 2019).

Wearable devices have benefits, including lower cost, use in the habitual sleep environment, 

and patient engagement. However, both clinical and consumer devices have substantial 

limitations in estimating sleep time and sleep efficiency in individuals with sleep disorders 

and are significantly impacted by OSA, sleep stages, age, and gender. Routine application of 

data from these devices into clinical practice would introduce substantial diagnostic error, 

and these devices are not currently accurate enough to supplant existing diagnostic tools. 

Sleep specialists should interpret data from these devices with extreme caution and discuss 

the limitations of these devices with those patients who wish to or already are using these 

devices in hopes of improving their sleep. There is an urgent need for collaboration between 

sleep specialists, engineers, and device manufacturers to yield improved sleep tracking 

devices accurate enough to apply to individual patient decision-making, across a variety of 

sleep and medical disorders.
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Figure 1: 
Comparison of Actiwatch measures to polysomnographic measures for a) total sleep time 

and b) sleep efficiency. AW = Actiwatch, PSG = polysomnography
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Figure 2: 
Comparison of Jawbone measures to polysomnographic measures for a) total sleep time and 

b) sleep efficiency.
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TABLE 1:

Patient characteristics

Mean (standard deviation) or Number (percent)

Age, years 56.4 (16.3)

Female gender 55 (53.9)

Body mass index, kg/m2 31.8 (8.0)

Epworth Sleepiness Scale score 9.7 (4.9)

Elevated PHQ9 score for depression 32 (35.6)

PSG Total sleep time, minutes 299.1 (84.1)

PSG sleep efficiency, % 74.8 (16.9)

PSG sleep onset latency, minutes 20.0 (23.9)

PSG wake after sleep onset, minutes 81.6 (64.4)

Apnea-hypopnea index 13.2 (17.0)

Periodic limb movements of sleep index 16.6 (24.0)

Abbreviations: kg/m2 = kilogram/meter2,PHQ9 = Patient Health Questionnaire-9, PSG = polysomnogram
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Table 2:

Correlations between polysomnography and wearable measures of sleep

PSG and Actiwatch correlations PSG and Jawbone correlations

R p-value R p-value

TST, minutes 0.75 <0.0001 0.60 <0.0001

SE, % 0.61 <0.0001 0.31 0.003

SOL, minutes 0.29 0.003 N/A N/A

WASO, minutes 0.40 <0.0001 N/A N/A

Abbreviations:PSG = polysomnogram, TST = total sleep time, SE = sleep efficiency, SOL = sleep onset latency, WASO = wake after sleep onset
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Table 3:

Actiwatch performance – correlations (r) with demographic and clinical features

Diff, TST Diff, SE Diff, SOL Diff, WASO Abs, TST Abs, SE Abs, SOL Abs, WASO

Age, years
−0.36

#
−0.36

# 0.11 0.41*
0.33

#
0.34

# 0.17 0.44*

BMI, kg/m2 0.18 0.17 −0.08
−0.29

% −0.14 −0.14 0.05
−0.30

%

SOL, minutes −0.22^ −0.21^ 0.47* 0.01
0.26

% 0.25^ 0.46* 0.07

WASO, minutes −0.50* −0.47* −0.25^ 0.95* 0.57* 0.55* 0.22^ 0.96*

N1 −0.17 −0.17 −0.01 0.48*
0.33

#
0.36

# 0.23^ 0.48*

N3 0.14 0.15 −0.07
−0.29

% −0.14 −0.16 −0.14
−0.27

%

REM 0.06 0.05 −0.09 −0.21^ −0.24^
−0.26

% −0.21^ −0.25^

ESS −0.11 −0.08 0.03 0.04 0.10 0.06 0.01 0.07

AHI 0.19 0.21^ −0.21^ 0.20^ 0.25^
0.28

% 0.22^ 0.20^

PLMI 0.04 0.04 0.04 0.07 −0.04 −0.04 0.17 0.07

Statistical significance is indicated as follows:

*
p < 0.0001,

#
p < 0.001,

%
p < 0.01,

^
p < 0.05.

Abbreviations:Diff = difference, i.e., MeasurePSG minus MeasureWearable, Abs = absolute value of difference, i.e., |MeasurePSG minus 
MeasureWearable|, PSG = polysomnogram, TST = total sleep time in minutes, SE = sleep efficiency (TST/total recording time × 100%), SOL = 
sleep onset latency in minutes, WASO = wake after sleep onset in minutes, N1 = percentage of time spent in N1 sleep, N3 = percentage of time 

spent in N3 sleep, REM = percentage of time spent in rapid-eye movement sleep, BMI = body mass index, kg/m2 = kilogram/meter2, REM = rapid 
eye movement sleep, ESS = Epworth Sleepiness Scale, AHI = apnea-hypopnea index, PLMI = periodic limb movement of sleep index
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Table 4:

Actiwatch performance – tests by categorical group

Diff, TST Diff, SE Diff, SOL Diff, WASO Abs, TST Abs, SE Abs, SOL Abs, WASO

Gender Men −38.5 −9.5 −4.4 74.5 58.0 14.8 16.4 76.9

Women −17.5 −4.5 −1.0 30.0 33.3 8.1 18.7 34.8

T −1.86 −1.76 −0.53 4.13*
2.90

%
3.14

% −0.45 4.18*

PHQ9 < 9 −30.5 −7.4 −0.1 51.6 46.0 11.5 12.3 55.5

> 9 −22.2 −6.0 −10.5 50.7 42.0 10.5 29.5 53.8

−0.64 −0.45 1.16 0.07 0.44 0.48 −2.4^ 0.13

Statistical significance is indicated as follows:

*
p < 0.0001,

#
p < 0.001,

%
p < 0.01,

^
p < 0.05.

Abbreviations:Diff = difference, i.e., MeasurePSG minus MeasureWearable, Abs = absolute value of difference, i.e., |MeasurePSG minus 
MeasureWearable|, PSG = polysomnogram, TST = total sleep time in minutes, SE = sleep efficiency (TST/total recording time × 100%), SOL = 
sleep onset latency in minutes, WASO = wake after sleep onset in minutes, PHQ9 = Patient Health Questionnaire-9
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Table 5:

Jawbone performance -- correlations (r) with demographic and clinical features

Diff, TST Diff, SE Abs, TST Abs, SE

Age, years −0.26^
−0.30

%
0.35

#
0.40

#

BMI, kg/m2
0.29

% 0.27^ −0.24^ −0.23^

SOL, minutes −0.22^ −0.22^ 0.22^ 0.21^

WASO, minutes −0.59* −0.58* 0.73* 0.71*

N1
−0.30

%
−0.31

%
0.38

#
0.39

#

N3 0.24^ 0.24^ −0.24^ −0.24^

REM 0.24^ 0.25^ −0.26^ −0.27^

ESS 0.04 0.06 −0.12 −0.13

AHI 0.11 0.10 −0.01 −0.01

PLMI −0.01 −0.03 0.13 0.15

Statistical significance is indicated as follows:

*
p < 0.0001,

#
p < 0.001,

%
p < 0.01,

^
p < 0.05.

Abbreviations:Diff = difference, i.e., MeasurePSG minus MeasureWearable, Abs = absolute value of difference, i.e., |MeasurePSG minus 
MeasureWearable|, PSG = polysomnogram, TST = total sleep time in minutes, SE = sleep efficiency (TST/total recording time ×100%), SOL = 

sleep onset latency, WASO = wake after sleep onset, BMI = body mass index, kg/m2 = kilogram/meter2, N1 = percentage of time spent in N1 
sleep, N3 = percentage of time spent in N3 sleep, REM = percentage of time spent in rapid eye movement sleep, ESS = Epworth Sleepiness Scale, 
AHI = apnea-hypopnea index, PLMI = periodic limb movement of sleep index
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Table 6:

Jawbone performance by categorical group

Diff, TST Diff, SE Abs, TST Abs, SE

Gender Men −73.0 −18.6 87.5 22.2

Women −45.2 −11.3 58.7 14.6

T −1.71 −1.79 2.17^ 2.26^

PHQ9 < 9 −53.4 −13.5 69.1 17.5

> 9 −72.6 −18.1 80.3 19.8

T 1.07 1.02 −0.74 −0.60

Statistical significance is indicated as follows:

*
p < 0.0001,

#
p < 0.001,

%
p < 0.01,

^
p < 0.05.

Abbreviations:Diff = difference, i.e., MeasurePSG minus MeasureWearable, Abs = absolute value of difference, i.e., |MeasurePSG minus 
MeasureWearable|, PSG = polysomnogram, TST = total sleep time in minutes, SE = sleep efficiency (calculated as TST/total recording time × 
100%), PHQ9 = Patient Health Questionnaire-9
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Table 7:

Final linear regression models

Actiwatch Jawbone

Diff, TST Diff, SE Diff, SOL Diff, TST Diff, SE

Age, years -- B = −0.20 B = 0.59 -- --

AHI B = 0.98 B = 0.29 B = −0.54 B = 0.90 --

SOL, minutes B = −0.44 -- -- -- --

WASO, minutes B = −0.50 B = −0.10 B = −0.23 B = −0.76 B = −0.18

N1 -- -- B = 1.01 -- --

Overall model adjusted R-squared 0.35 0.34 0.18 0.38 0.32

All models significant at p < 0.0001. Abbreviations:B = beta coefficient, Diff = difference, i.e., MeasurePSG minus MeasureWearable, TST = total 
sleep time in minutes, SE = sleep efficiency (calculated as TST/total recording time × 100%), SOL = sleep onset latency, AHI = apnea-hypopnea 
index, WASO = wake after sleep onset, N1 = percentage of time spent in N1 sleep
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