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a b s t r a c t 

Prediction of individual mobility is crucial in human mobility related applications. Whereas, existing re- 

search on individual mobility prediction mainly focuses on next location prediction and short-term de- 

pendencies between traveling locations. Long-term location sequence prediction is of great importance 

for long-time traffic planning and location advertising, and long-term dependencies exist as individual 

mobility regularity typically occurs daily and weekly. This paper proposes a novel hierarchical temporal 

attention-based LSTM encoder-decoder model for individual location sequence prediction. The proposed 

hierarchical attention mechanism captures both long-term and short-term dependencies underlying in 

individual longitudinal trajectories, and uncovers frequential and periodical mobility patterns in an in- 

terpretable manner by incorporating the calendar cycle of individual travel regularities into location pre- 

diction. More specifically, the hierarchical attention consists of local temporal attention to identify highly 

related locations in each day, and global temporal attention to discern important travel regularities over a 

week. Experiments on individual trajectory datasets with varying degree of traveling uncertainty demon- 

strate that our method outperforms four baseline methods on three evaluation metrics. In addition, we 

explore the interpretability of the proposed model in understanding individual daily, and weekly mobil- 

ity patterns by visualizing the temporal attention weights and frequent traveling patterns associated with 

locations. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Understanding and prediction of human mobility is significant

n urban planning [15] , ubiquitous computing [34] , contextual ad-

ertisement [1] , as well as intelligent transportation systems [9 , 10] .

ith the advancement of data collection technology, abundance of

merging trajectory data has been recorded, and supports quan-

itative analysis and prediction of human mobility [42] . For ex-

mple, GPS data, mobile phone data, and transit smart card data

ecord where people go. Social media data, credit card data, and

obile online payment data (e.g., Alipay) not only record locations

f where people go, but also what people do at these locations
∗ Corresponding author at: School of Remote Sensing and Information Engineer- 
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8] . Based on these data, there is a rising demand for individual

obility prediction as such prediction is a critical enabler for vari-

us human mobility related applications, such as intelligent urban

ransportation systems [45] , and location based advertising [32] .

n studies of individual mobility prediction, location prediction is

ne of the most notable branches. Numerous insightful works have

een done on this area, however, the problem of predicting indi-

idual locations remains challenging. 

• Long-term and short-term dependencies commonly exist in

individual mobility patterns. Individual mobility regularity 

typically occurs daily and weekly, and capturing dependencies

between different temporal locations in a longitudinal travel

sequence is essential for prediction [31 , 37] . 
• The dependencies between a location and its context may

change over time. A travel event often does not occur in isola-

https://doi.org/10.1016/j.neucom.2020.03.080
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.03.080&domain=pdf
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tion, and should be considered as a part of context with multi-

ple travel events. Regular travel events orderly occur over time,

and often periodically and frequently repeated with their sur-

rounding contexts [10 , 16 , 20] . 
• External factors, such as weather, emotion, and the interaction

with other individuals, may exert influences on travel decision-

making of an individual. The model needs to be evaluated on

different datasets with varying degrees of traveling uncertainty

to show its effectiveness [16 , 37 , 45] . 

Currently, the majority of research focus on next location pre-

diction, while the most commonly used next location prediction

models discard long-term dependencies on the past mobility pat-

terns [23] . Markov Chain and its variants are often used in current

location prediction tasks [12 , 37 , 45] . However, they are limited to

look back in time because of their inherent assumptions that the

current state only depends on the states of previously limited time

steps [23] . Meanwhile, next location prediction may work well

in instantaneous applications, while long-term prediction is also

needed to achieve a better long-term planning. Long Short-Term

Memory (LSTM) have been used for individual mobility prediction,

however it may fail to capture long-term dependencies when the

length of input sequence increases [33] . In addition, LSTM cannot

uncover the mobility regularities hidden in the black-box frame-

work, which is useful for understanding of travel behaviors, travel

preference analytics, and targeted demand management [10 , 16] . A

solution to capture short-term as well as long-term dependencies

by paying more attention to regular travel patterns underlying in

the historical location sequences dynamically, may largely improve

the accuracy and interpretability of individual location prediction. 

To handle aforementioned challenges and fill the research gap,

we propose a hierarchical temporal attention-based LSTM encoder-

decoder model which is capable to predict day-long, and week-

long trajectories where an individual will go. The advantages of

our method are verified through the comparison with four base-

line methods on real-world datasets with varying degrees of trav-

eling uncertainty. Meanwhile, the interpretability of the model is

revealed by visualizing the hierarchical temporal attention mecha-

nisms. 

The remainder of the paper is organized as follows.

Section 2 reviews the related work. Section 3 describes the

temporal attention-based individual location sequence prediction

method. Experiments in Section 4 demonstrate the advantages

of proposed method. Section 5 further analyzes and discusses

the effectiveness, interpretability, and limitation of the proposed

method. Section 6 concludes this article and points out future

research. 

2. Literature review 

In studies of location prediction, individual mobility is repre-

sented as a series of time-stamped locations, and the prediction

problem is commonly framed as that of predicting an individual’s

next location [12 , 37 , 45] . To solve the problem of next location pre-

diction, a plethora of methods have been proposed. Most used

methods are based on Markov Chain (MC) by modeling sequen-

tial patterns of individual location histories. These methods predict

individual mobility by applying each MC model to each individual

person, and have demonstrated the ability to achieve high predic-

tion performance [21 , 28] . However, individually fitted MC models

are prone to overfitting, and unable to predict locations that users

have never visited before. To address these issues, individuals with

similar mobility characteristics are firstly clustered before apply-

ing a MC-based method [4 , 6] . In addition to MC-based methods,

Bayes network models [3] , n-gram model [45] , as well as artificial

neural networks models [12] , also have been applied to next loca-
ion prediction. Previous research of location prediction mainly fo-

usses on the individual next location prediction problem instead

f prediction of a whole location sequence that consists of multi-

le ordered locations within a long period. Short term prediction

e.g., next location prediction) may perform well for near real-time

pplications with known of previous locations. However, for ap-

lications that need to beforehand know where an individual is

oing during a relative long period, long-term prediction may be

equired. To simultaneously achieve short-term and long-term pre-

iction, we treat location prediction as a sequence prediction prob-

em by using the historical location sequence to predict the future

ocation sequence in a certain period. 

Location sequence prediction is more challenging than next lo-

ation prediction. To predict a location sequence, methods of indi-

idual’s next location prediction need to iteratively generate the

ext location by regarding the newly predicted location as the

revious known location. This requires a higher accuracy in each

ocation prediction to alleviate the problem of error propagation

aused by prediction error of previous locations [30] . However, the

ainly used MC model as well as its variants in next location pre-

iction may be not competent because of its limitation in captur-

ng long-time dependencies [23] . The mostly used one-order MC

ssumes that the next status only depends on its previous status,

eanwhile, existing research also shows that higher order MC suf-

ers complex computation issues, and cannot significantly improve

he prediction accuracy [23 , 45] . However, individual travel behav-

ors often demonstrate daily, weekly, or specific repetition regular-

ties during a long period [16] . For example, a person will go to the

inema every Friday night. To predict this location, the long-term

ravel regularity plays a decisive role instead of its previous loca-

ion. A sequence model that can capture long-term and short-term

ependencies as well as individual travel regularities (e.g., daily

nd weekly) is highly-desired. 

Neural network sequence models provide a promising path for

ndividual mobility prediction. Long Short-Term Memory (LSTM)

s a notable variant of recurrent neural network (RNN) that has

een widely used in many applications of sequence data [17] . Un-

ike MC-based models, LSTM has the advantage of having a con-

inuous space memory which theoretically allows it to use ar-

itrarily length of past observations for sequence prediction. Ex-

ept for the basic LSTM, the LSTM based encoder-decoder model

lso has shown excellent performance for Seq2Seq tasks, like ma-

hine translation [29] , vehicle trajectory prediction [30] , as well

s time series prediction [26 , 33] . It uses one LSTM as an en-

oder to process the input sequence, and another LSTM as a de-

oder to generate the output sequence. Nevertheless, one problem

ith encoder-decoder network is that their performance will de-

eriorate rapidly as the length of input sequence increases [33] .

his imperfection limits the sequence length in location predic-

ion when we expect to make predictions based upon a relatively

ong input series. In addition, such a black-box framework cannot

ntuitively tell us the frequential and periodic individual mobility

atterns captured by the model, while these patterns are useful

or travel preference inference and recommendation [16] . Tempo-

al attention-based encoder-decoder network resolves this issue by

mploying an attention-mechanism to select parts of hidden states

cross all time steps of encoder, and shows the importance of each

ime step in a sequence [26 , 33 , 43] . However, research that specifi-

ally designs, or applies the LSTM encoder-decoder model with the

ttention-mechanism is insufficient in individual mobility predic-

ion. For studies of human mobility using deep learning methods,

lahi et al. [2] proposed an LSTM model, and predicted the tra-

ectories of pedestrians to avoid collisions in autonomous naviga-

ion. Krishna et al. [23] developed two LSTM-based models to fore-

ast human activity sequence (viz. eating, commuting, etc.) with

ssociated durations. Deep learning is also utilized to reveal the
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Fig. 1. Proposed individual location sequence prediction framework. 
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elationship between human mobility and personality information

22] . Further study is needed to increase the performance as well

s model interpretability of individual mobility prediction. 

In this paper, we propose a novel hierarchical temporal

ttention-based LSTM encoder-decoder model for individual lo-

ation sequence prediction. To achieve short-term and long-

erm location prediction, the next location prediction problem is

reated as a sequence-to-sequence (Seq2Seq) problem, and a LSTM

ncoder-decoder framework [38] with a beam search algorithm is

esigned for predicting location sequence of where an individual is

oing. To capture dynamical dependencies between traveling loca-

ions and uncover frequential and periodical mobility patterns hid-

en in the black-box of deep learning models in an interpretable

anner, we integrate the calendar cycles of individual mobility

atterns [16] into our model architecture and develop a hierarchi-

al temporal attention mechanism, consisting of local and global

emporal attention. During each location prediction, local temporal

ttention adaptively extracts related sub-location-sequence within

 day, while global temporal attention captures travel regulari-

ies across a week. Experiments demonstrate that the proposed

ethod outperforms four baseline methods by a substantial mar-

in. We also visually analyze the hierarchical attention mecha-

isms to explore the interpretability of our method in uncovering

ndividual underlying daily and weekly mobility regularities. 

. Methods 

In this paper, the individual location prediction is treated as a

eq2Seq problem. Given a sequence of time-stamped locations de-

oted as X = ( x 1 , x 2 . . . x T ) where an individual orderly visited dur-

ng a time period, the sequence prediction model aims to learn

 nonlinear mapping to the location sequence Y =( y 1 ′ , y 2 ′ . . . y T ′ )
uring next time period that the individual will orderly visited,

here x i (1 ≤ i ≤ T ) represents the i -th visited location of to-

ally visited T locations, while y i ′ is the i ′ -th (1 ′ ≤ i ′ ≤ T ′ ) location

hat the individual will visit in order. The problem is formulated

s Y = ( y 1 ′ , y 2 ′ . . . y T ′ ) = F (X ) = F ( x 1 , x 2 . . . x T ) , where F ( ∗) is the

onlinear function the model aims to learn. 

The overall architecture of individual location sequence predic-

ion is demonstrated in Fig. 1 . As shown in Fig. 1 , three parts are

ncluded: input, temporal attention-based encoder-decoder LSTM 

odel, and output. During input construction, locations and exter-

al affect factors (e.g., time stamp) that have influence on location

equence prediction are embedded, and concatenated into vectors
s the input of encoder-decoder model. In the encoder-decoder

rchitecture, we employ two separate LSTMs, one to encode the

nput-sequences during last period, and another one with a beam

earch method to predict the top K probable output location-

equences during next period. More specifically, our framework is

omposed of hierarchical temporal attention mechanisms, namely

ocal and global temporal attentions, to respectively capture regu-

ar mobility patterns of an individual within a locally short period

s well as a long period. After training of this model, individual lo-

ation sequence in next period can be iteratively predicted. Details

f the framework are described in the following sub-sections. 

.1. Input construction 

The input of LSTM encoder-decoder model is a vector, concate-

ated by two parts, location and other attributes that affect loca-

ion prediction. To represent each location, we use the occupancy

rid map (OGM) that has been widely used in robotics and loca-

ion prediction for the object localization [10 , 30] . The OGM divides

he study area into equal-sized grids and each grid has a unique ID

o identify which grid an individual is in. We linearly assigned the

rid IDs, which range from one to the number of grids. A location

equence therefore is represented as a string of grid IDs. However,

he grid IDs do not represent the spatiotemporal dependencies be-

ween grids and cannot be fed to neural networks directly due

o its data type. Therefore, to capture dependencies between grids

nd make grid ID readily used for machine learning, we transform

ach grid ID into a finite-dimensional real-valued vector using the

mbedding method, which is capable to embed the enumerative

alues representing similar patterns into the close locations in em-

edding space [13 , 41] . Specially, the embedding method maps each

ategorial value v ∈ [V] to a real space R E × 1 by multiplying a pa-

ameter matrix W ∈ R E × V . For location sequence prediction, V

epresents the number of locations, and E represents the dimen-

ion of the real space. Parameters of W are obtainable by train-

ng the whole prediction model (described in Section 3.4 ). Through

mbedding, each location is represented as a vector with E dimen-

ions. We use P i to denote location i ( P i ∈ R E × 1 ). 

Besides location itself, time periodicity also matters in location

equence prediction. The day and the week are most conventional

alendar cycles that regular travel events repeat [16] . To capture

uch daily and weekly periodicity as well as avoid data sparseness

roblem, we organize location sequences by day. Locations where

n individual orderly visited in each day is represented as a lo-
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Fig. 2. LSTM encoder-decoder framework. 
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cation sequence, and we input location sequences of last week to

predict the location sequences of next week. In addition to loca-

tion information, time stamp information, such as day of week, is

also helpful for human mobility inferring [27] as mobility patterns

on different days (e.g., weekday and weekends) may be different.

We apparently embed, and concatenate the day of the week as a

part of the input. We use day-ID, an enumeration value ranging

from one to seven, to denote the day of a week. Similarly, the em-

bedding method [13] is used to transform each day-ID to a vec-

tor. We use D d to denote the vector of day-ID d ( D d ∈ R M × 1 ),

where M is the dimension of the day-ID vector and 1 ≤ d ≤ 7. As

shown in formula (1) , two day-IDs are used, one to denote which

day the location belongs to and another one to denote which day

to be predicted in next week. After embedding the location and

day-IDs, we concatenate the embedded vectors of each location

and each day-ID using (1) . As formulated in (1) , the concatena-

tion x i is the final representing vector of location i considering time

periodicity. 

x i = 

[
P i ; D k ( lastweek ) ; D j ( nextweek ) 

]
(1)

where x i ∈ R Q× 1 , Q = E + 2 M, and 1 ≤ k, j ≤ 7. 

Through such construction, the input of LSTM encoder-decoder

is a sequence of vectors ( x 1 , x 2 . . . x T ), that represents the location-

sequence of last week. The goal of the model is to learn regular

travel patterns from the input location sequence, and predict the

location-sequence of next week, noted as ( y 1 ′ , y 2 ′ . . . y T ′ ) where

y t ′ is the label of a predefined location at time step t ′ ( y t ′ ∈ [V] ). 

3.2. LSTM encoder-decoder and beam search 

LSTM is a variant of RNN that overcomes the vanishing gradi-

ent issue of RNN by introducing gating mechanism [17] . The LSTM

consists of hidden state and cell memory, that respectively stores

the summary of the past input sequence, and controls the informa-

tion flow between the input and output through gating mechanism

[17] . The following recursive equations demonstrate how the LSTM

works. 

f t = σ
(
W x f x t + W h f h t−1 + b f 

)
i t = σ ( W xi x t + W hi h t−1 + b i ) 

o t = σ ( W xo x t + W ho h t−1 + b o ) 

c t = f t � c t−1 + i t � tanh ( W xc x t + W hc h t−1 + b c ) 

h t = o t � tanh ( c t ) (2)

where f t , i t , and o t are gating vectors, that respectively control how

much information for the cell memory to forget, update, and out-

put. c t and h t respectively are cell memory state vector and hid-

den state vector ( c t and h t ∈ R n × 1 ). In these equations, σ = 

1 
1+ e −x 

is the sigmoid function (element-wise), � is element wise product,

and x t is the input vector. W xf , W hf , W xi , W hi , W xo , W ho , W xc , and

W hc are linear transformation matrices whose parameters need to

be learned, while b f , b i , b o , and b c are corresponding bias vec-

tors. We simplify the LSTM representations in (2) as the Eq. (3)

shows. 

h t , c t = LST M ( x t , h t−1 , c t−1 ) (3)

The LSTM encoder-decoder architecture is based on LSTM, and

now has been applied as the state-of-the-art sequence prediction

architecture. As shown in Fig. 2 , two LSTM networks, called en-

coder and decoder, respectively reads and generates variant-length

sequences. The encoder recursively inputs the sequence x 1 , . . . , x T 
of length T and updates the cell memory state vector c t and hid-

den state vector h t at each time step t through Eq. (3) . After T time

steps, the encoder summarizes the whole input sequence into the

final vectors c and h . 
T T 
Y t ′ = W l h t ′ , where W l ∈ R 

V ×n , Y t ′ ∈ R 

V × 1 , Y t ′ = [ y 1 . . . y V ] 
T 

 t ′ = 

e y t ′ ∑ V 
j=1 e 

y j 

 t ′ = max ( y t ′ ) (4)

The decoder uses c T and h T passed from the encoder as its ini-

ial cell memory state vector ( c 0 ′ = c T ) and initial hidden state vec-

or ( h 0 ′ = h T ) for T ′ -length sequence generation. During sequence

eneration, the decoder firstly uses a dummy input y 0 , and the

nitial vectors c 0 ′ and h 0 ′ , to obtain c 1 ′ and h 1 ′ through Eq. (3) .

quations in (4) are subsequently used to compute y 1 ′ that rep-

esents the location where an individual will go. For simplification,

e use formula (5) to represent equations in (4) . Similarly, by feed-

ng c t−1 ′ , h t−1 ′ , and y t−1 ′ to Eqs. (3) and (5) , the output sequence

 1 ′ , . . . , y T ′ are recursively generated. Note that, the LSTM decoder

roduces y t ′ for given y t−1 ′ . If y t−1 ′ is wrongly estimated, estima-

ion of subsequent values may be affected. 

 t ′ = f ( h t ′ ) (5)

To alleviate error propagation, beam search algorithm is in-

roduced into decoder process. As formulated in (4) , the way

o determine y t ′ is the greedy search strategy that simply

icks the value y t ′ that maximizes the conditional probability

( y t ′ | y t−1 ′ , c t−1 ′ , h t−1 ′ ) . Unfortunately, such greedy strategy suffers

rom the error propagation since wrong decision made at the cur-

ent time step would be propagated to the subsequent time steps.

he basic idea of the beam search is to choose K most probable hy-

otheses according to p( y t ′ | y t−1 ′ , c t−1 ′ , h t−1 ′ ) at each iteration [29] .

fter T ′ iterations, the decoder generates K T ′ -length sequences as

he most K probable result sequences. Note that the beam search

ith K = 1 degenerate into the greedy search. Details of beam

earch algorithm can be referred in [29] . 

We apply aforementioned LSTM based encoder-decoder frame-

ork for individual location sequence prediction. LSTM of en-

oder iteratively processes each location vector x t of the input se-

uence constructed in Section 3.1 as a hidden vector h t through

he Eq. (3) ; LSTM of decoder with a beam search algorithm fore-

asts the most probable K location sequences where an individual

ill go in next week using the Eq. (5) . In spite of beam search

lgorithm, the performance deterioration problem of this frame-

ork exists especially when the length of input sequence increases

43] . As mentioned above, the encoder treats the final cell memory

tate vector c T and hidden state vector h T as the summarization

nd output of the input sequence, and passes these two vectors to

he decoder as the initial input of decoder. This strategy may lead

o information loss of input sequence as all information is sum-

arized to the final cell memory state and hidden state at time

tep T [26 , 33] . To resolve this issue, we employ an attention-based
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ncoder-decoder network with the temporal attention mechanism

o select parts of hidden states that are highly related to target lo-

ation across all time steps of encoder, instead of the final states. 

.3. Temporal attention mechanisms 

.3.1. Temporal attention 

The temporal attention mechanism extracts regular travel be-

aviors by adaptively paying more attention to relevant hidden

tates of the encoder during future sequence generation [26 , 33] .

he temporal attention mechanism is essentially the weighted sum

f sequence { h t , 1 ≤ t ≤ T} as shown in Eq. (6) . The weighted

um H t ′ is used to predict the location y t+ 1 ′ at time t + 1 ′ through

ecoder. For the prediction of location y t+ 1 ′ , some locations may

e highly correlated. For example, an individual will regularly

isit the location y t+ 1 ′ after orderly visiting some other specific

ocations. The temporal attention mechanism adaptively assigns

reater weights to locations with higher correlations for the tar-

et location prediction. Travel regularities underlying in location

equences therefore, can be quantitatively analyzed by comparing

he values of these weights, making the encoder-decoder model

ore interpretable. 

 t ′ = 

T ∑ 

t=1 

u 

t 
t ′ · h t (6) 

Where H t ′ represents the summarization of encoder, and is

sed for prediction of y t+ 1 ′ in decoder, u t 
t ′ is the weight of the t -th

idden state vector of encoder, computed as defined in Eq. (7) . 

 

t 
t ′ = V 

T 
a tanh 

(
W 

′ 
a [ h t−1 ′ ; c t−1 ′ ] + W a h t + b a 

)

 

t 
t ′ = 

e u 
t 
t ′ 

∑ T 
j=1 e 

u j 
t ′ 

(7) 

Where W a ∈ R m × n , W 

′ 
a ∈ R m × 2 n , V a and b a ∈ R m × 1 are pa-

ameter matrixes that need to be learned through model training

rocess. 

In addition to the input locations of encoder, the previous loca-

ion of decoder may also exert affects in current location predic-

ion. The weighted sum H t ′ represents the summarization of the

nput location sequence, and y t ′ is the previous location of y t+ 1 ′ .
e obtain the combination of H t ′ and y t ′ using (8) , and treat ̂ y t ′ 

s the input of decoder for y t+ 1 ′ prediction following equations in

9) . 

 

 t ′ = 

̂ W c [ y t ′ ; H t ′ ] (8) 

h t ′ = LST M ( ̂  y t ′ , h t−1 ′ , c t−1 ′ ) 

 t+ 1 ′ = f ( h t ′ ) (9) 

here W c ∈ R Q × ( Q + n ) . 
Integrated with the temporal attention mechanism, LSTM

ncoder-decoder model more efficiently captures regular travel

ehaviors. Travel regularity indicates the degree to which sub-

equences of travel events are repeated [16] . For a location se-

uence prediction, different locations may be correlated to differ-

nt sub-sequences. The temporal attention mechanism adaptively

ssigns greater weights to those higher-related sub-sequences dur-

ng each location prediction. However, locations of regular sub-

equences may be along with irregular locations. For example, a

erson regularly goes to work place from his home, and goes home

rom his work place during every workday. Along with these regu-

ar travel sub-sequences, this person may occasionally go to some

laces that do not belong to regular travel behaviors (e.g., occa-

ionally go to the cinema). Irregular locations contained in se-

uences may affect the performance of the model. Especially when

he length of sequence increases, the temporal attention may be
istracted by the increased number of irregular locations [11 , 40] .

nspired by theories of human attention that behavioral results

re best modeled by two-stage attention mechanism, as well as

ome dual-stage attention-based research for time series predic-

ion [26 , 33] , we propose a novel hierarchical temporal attention

echanism for individual location sequence prediction. 

.3.2. Hierarchical temporal attention 

The hierarchical temporal attention networks for location se-

uence prediction are demonstrated in Fig. 3 . Different from afore-

entioned one-layer temporal attention, the hierarchical tempo-

al attention consists of two layers, local temporal attention and

lobal temporal attention. Local temporal attention measures the

elative importance of different locations within each day. Global

emporal attention pays attention to the relative importance of dif-

erent days within a week. Instead of directly assigning weights to

 -length locations of a week in one-layer temporal attention, hier-

rchical temporal attention computes the weights in two stages. 

Local temporal attention : Given the location sequence of the

 th day ( x 1 d , x 2 d . . . x L d ), the local temporal attention obtains the

eighted summation vector of this day. Not all locations of a day

qually contribute to the prediction of the target location. Hence,

e introduce attention mechanism to extract locations that are

ighly correlated to the target location, and aggregate represen-

ations of those related locations to form a summarization vector

hat represents regularity in this day. Different from one-layer tem-

oral attention, the local temporal attention is weighted sum of

he sequence { h t i , 1 ≤ t i ≤ L d } of each day, where L d is the number

f locations in the d th day, 1 ≤ d ≤ 7, and h t i is the corresponding

idden state vector of location x t i . As shown in formula (10) , H 

t d 
′ 

epresents the regularity vector of the d th day. The corresponding

eights are computed in Eq. (10) . 

 t d 
′ = 

L d ∑ 

t i =1 

u 

t i 
t d 

′ · h t i 

u 

t i 
t d 

′ = V 

T 
a tanh 

(
W 

′ 
a [ h t−1 ′ ; c t−1 ′ ] + W a h t i + b a 

)

u 

t i 
t d 

′ = 

e 
u 

t i 
t d 

′ 

∑ L i 
t i =1 

e 
u 

t i 
t d 

′ 
(10) 

Local temporal attention obtains the regularity vector sequence

 H t 1 
′ , H t 2 

′ . . . H t 7 
′ } of a week. To predict the target location of y 

t+ 1 ′ 
n d th day of next week (1 ≤ d ≤ 7), not all days equally exert

nfluences. For daily and weekly periodic travel regularities, the

pecific days of last week may be more correlated to the corre-

ponding days in next week. For example, travel patterns of week-

ay during last week may be more similar to weekday patterns of

ext week, instead of patterns of weekends. To reward days that

re clues to correctly predict the target location in next week, we

roposed the global temporal attention, a week-level weight as-

ignment mechanism. 

Global temporal attention : The global temporal attention obtains

he weighted summation vector of a week. As shown in (11) , ̂ H t ′ 
s the week-level vector that summarizes all correlated informa-

ion of last week for target location prediction. The corresponding

eights are computed using equations in (11) . Similar to one-layer

emporal attention, we combine ̂ H t ′ and y t ′ using (12) , and use the

ombined value ̂ y t ′ for y t+ 1 ′ prediction through (9) . 

̂ H t ′ = 

N d ∑ 

d=1 

u 

d 
t d 

′ · H t d 
′ 

 

d 
t d 

′ = V 

T 
a tanh 

(
W 

′ 
a [ h t−1 ′ ; c t−1 ′ ] + W a H t d 

′ + b a 
)

(11) 
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Fig. 3. Hierarchical temporal attention networks for location sequence prediction. 
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′ = 

e 
u d 

t d 
′ 

∑ N d 
d=1 

e 
u d 

t d 
′ 

̂ y t ′ = 

̂ W c 

[
y t ′ ; ̂ H t ′ 

]
(12)

where N d is the number of days used for global attention compu-

tation. In our case, N d equals to 7. 

3.4. Model training 

The parameters of the temporal attention-based LSTM encoder-

decoder (including the embedding matrices) are trained referring

to a multi-class classification problem [30] . Since each location is

denoted as a grid ID, prediction of each location is essentially to

classify which grid the location belongs to. The grid containing the

target location should be selected among all V grids. We use the

one hot vector O i = [ 0 , . . . 0 , 1 , 0 , . . . 0 ] t o indicate the targ et loca-

tion at time step i . The index of the entry in O i that equals to one

is the true-value grid ID of this location. For location sequence pre-

diction, the normalized vector Y i computed through (4) indicates

the probability distribution of each grid. Following studies of clas-

sification as well as previous trajectory prediction study [30] , we

use cross entropy as the loss function (13) to train the model via

back-propagation algorithm [36] . 

L ( �) = −
T ′ ∑ 

i =1 

V ∑ 

j=1 

o i, j ln y i, j (13)

where � denotes the set of parameters in our model. T ′ is the total

number of locations in output sequence, and V is the total number

of different locations that an individual tends to visit. o i, j is the j th

element of O i , and y i, j is the j th element of Y i associated with the

label o i, j . 

4. Experiments 

In this section, we present the performance of the proposed

method based on long-observed individual’s GPS trajectory data.

Four baseline methods are selected and three indicators are de-

signed to evaluate the effectiveness of our method. 

4.1. Data collection and preprocessing 

A dataset consisting of individual GPS trajectories of private cars

is used for experiments. The dataset totally records 37,854 trajec-

tories of 49 individuals from March, 2017 to October, 2018 through
PS equipment loaded in vehicles. Each trajectory is represented

y a sequence of time-stamped points, recording where an individ-

al goes from and to. Each point contains the information of lat-

tude, longitude, time, and individual ID which is a unique string

or identifying the person who generates the trajectory. The Ori-

in and Destination (OD) of each trajectory is extracted, and all

D pairs within a day are chronologically organized as the individ-

al traveled location sequence of the day. Note that each location

s primitively represented as a coordinate with continuous values,

he OGM in Section 3.1 is used to merge points that are within the

ame grid. Considering that individuals may not select driving as a

raffic mode when the travel distance is less than 1 km in China

18 , 44] , we set the grid size as 1 km × 1km. Hereto, the visited

ocation sequence of an individual is represented by a sequence of

rid-IDs. In following studies, a location is equivalent to a grid. 

To make a comprehensive experiment on individuals with

arying degrees of traveling uncertainty, the entropy of stay

oints of each individual in the dataset is calculated. In infor-

ation theory, entropy measures the level of randomness or un-

redictability of a process. In human mobility studies, entropy

as been used to measure the variation or regularities of indi-

idual travel behaviors [16 , 45] . Higher entropy indicates higher

ncertainty in individual travel patterns, and is generally more

ifficult to predict, vice versa [37] . We divide the individuals

ith distinct levels of traveling uncertainty into groups accord-

ng to the entropy of stay points. The individuals with continu-

us long-term recordings and maximum entropy of stay points

n each group are selected as the representatives of the groups.

inally, the representatives in three groups are selected for ex-

eriments. Statistical results of the three datasets are depicted in

able 1 . 

As shown in Table 1 , the entropy of stay points increases from

ata_1 to Data_3, showing an increasing traveling uncertainty on

he three datasets. The trajectories, OD interactions, and activity

otspots of three exemplary individuals in three datasets are

isualized in Fig. 4 . In the figure, travel activities in Data_1 are

ore densely distributed in fewer hotspots compared to the other

wo datasets, indicating a lower traveling uncertainty with higher

obility regularities. Frequential travel activities in Data_2 and

ata_3 are dispersed in more hotspots, and the travel interactions

etween hotspots are more diverse than that in Data_1, implying a

igher uncertainty and lower predictability of Data_2 and Data_3.

n experiments, we equally and randomly partition the data into

on-overlapped ten subsamples for each dataset. A subsample is

andomly selected as a test set, and the other nine subsamples are

elected as the training set. 
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Table 1 

Details of selected three datasets. 

Datasets Number of different 

locations per year 

Number of location 

sequences per year 

Average length of location 

sequences per week 

Yearly entropy 

of stay points 

Average entropy of stay 

points per week 

Data_1 45 1635 55 3.2 2.6 

Data_2 82 694 95 3.8 3.2 

Data_3 317 1138 60 5.8 3.5 

Table 2 

The model performance over five-times repeating experiments, including best performance, mean, and variance. 

Methods Data_1 Data_2 Data_3 

MRE MA MR MRE MA MR MRE MA MR 

Best result MC 77.3% 23.0% 57.2% 70.1% 34.6% 57.2% 79.7% 21.3% 45.5% 

LSTM 18.0% 87.3% 80.3% 29.7% 79.4% 80.1% 26.6% 80.7% 82.2% 

ED 12.7% 92.6% 90.8% 29.7% 80.4% 80.1% 17.6% 88.0% 87.3% 

TAED 7.2% 96.2% 94.9% 21.3% 86.1% 85.1% 14.4% 89.9% 89.0% 

HTAED 4.1% 97.5% 97.0% 9.8% 92.4% 93.9% 9.0% 93.3% 94.4% 

Mean MC 78.0% 22.2% 54.3% 72.9% 29.8% 52.3% 84.6% 16.1% 41.5% 

LSTM 19.3% 84.6% 80.3% 30.3% 78.5% 79.4% 28.2% 78.4% 80.4% 

ED 13.7% 91.1% 88.9% 30.3% 79.2% 79.4% 20.7% 85.6% 84.6% 

TAED 7.5% 95.3% 94.2% 23.6% 83.9% 84.0% 16.9% 87.7% 87.1% 

HTAED 5.9% 96.5% 95.6% 16.1% 88.3% 87.4% 14.3% 89.5% 89.4% 

Standard deviation MC 0.005 0.005 0.018 0.032 0.045 0.050 0.029 0.031 0.027 

LSTM 0.014 0.033 0.006 0.006 0.009 0.008 0.019 0.028 0.023 

ED 0.010 0.020 0.032 0.010 0.013 0.008 0.040 0.030 0.034 

TAED 0.004 0.010 0.009 0.024 0.019 0.014 0.030 0.021 0.023 

HTAED 0.013 0.009 0.010 0.038 0.024 0.037 0.037 0.027 0.033 

Fig. 4. Trajectories, Origin-Destination arcs and activity hotspots of the exemplary representatives in three datasets. 
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.2. Settings 

.2.1. Evaluation metrics 

Multiple criteria are used to evaluate our model, including

ean relative error (MRE), mean accuracy (MA), and mean recall

MR). In the calculation of MRE, the error between the predicted

ocation sequence and the target location sequence is measured

sing the Levenshtein distance (also called edit distance). Leven-

htein distance has been widely used to measure the similarity

etween two sequences [35] . It is the minimum number of in-

ertions, deletions, and substitutions required to transform one

equence into the other, therefore the orders of locations in the

equence are considered [16] . The formula of MRE is defined as

ollows: 

RE = 

1 

n 

n ∑ 

i =1 

Edit 
(
Se q pred icted _ i , S e q target _ i 

)
max 

(
length 

(
Se q pred icted _ i , S e q target _ i 

)) (14) 

Where n is the number of sequences,

dit( Se q pred icted _ i , S e q target _ i ) is the Levenshtein distance of i th

redicted sequence compared with its corresponding target se-

uence. The denominator normalizes the error, making MRE value

n [0,1] [24] . 

In addition to MRE, the other two indicators, namely MA and

R, that have been widely used in classification tasks, are used

o evaluate the performance of the model regardless of the loca-
ion orders in a sequence. The formula of MA and MR are shown

n (15) and (16) . In the formulas, N correct _ i is the number of cor-

ectly predicted locations in the i th predicted sequence. Note that

hen a location both exists in the predicted sequence as well as in

he target sequence, and the times of appearance in predicted se-

uence is not more than that in target sequence, we will regard it

s a correctly predicted location and one will be added to N correct _ i .

A = 

1 

n 

n ∑ 

i =1 

N correct _ i 

length 

(
Se q pred icted _ i 

) (15) 

R = 

1 

n 

n ∑ 

i =1 

N correct _ i 

length 

(
Se q target _ i 

) (16) 

.2.2. Baselines 

We compare our model with four baselines as follows: 

MC : Many studies of individual location prediction are based on

arkov Chain (MC), and the literature has shown that first-order

C, can approach the limit of predictability for next location pre-

iction problem, and increasing the order does not necessarily im-

rove the prediction performance [28] . We therefore use first-order

C as a benchmark method, and iteratively predict individual lo-

ation sequence by treating the predicted location as a previous

nown location. 
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Fig. 5. Model performance comparison under different weekly input sequence lengths and the performance trends are plotted by fitting cubic polynomial curves. 
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L STM : L STM has demonstrated its advantage over MC in human

activity sequence prediction and vehicle trajectory prediction [23] . 

LSTM Encoder-Decoder (ED) : It uses a LSTM to encode the in-

put sequence and another LSTM to iteratively predict the future

sequence, that has outperformed basic LSTM in trajectory predic-

tion [30] . 
a  
Temporal Attention based Encoder-Decoder (TAED) : Temporal

ttention based encoder-decoder model has shown performance

mprovement than basic encoder-decoder model in time series pre-

iction and document classification [33 , 43] . There is no existing

emporal attention-based encoder-decoder model directly for in-

ividual trajectory prediction. We design and develop a temporal

ttention-based encoder-decoder following our sequence predic-
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l  
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t  
ion framework, to compare with the proposed hierarchical tem-

oral attention-based encoder-decoder model (HTAED). 

.2.3. Parameter settings 

In experiments, we set parameters of HTAED model as fol-

ows. In input construction step, we compared different embed-

ing dimensionality for location and day over {64,128,256,512} and

5,10,15} respectively, and finally embedded location ID to R 256 , and

mbedded day ID to R 10 . During the training phase, Stochastic Gra-

ient Descent with momentum is used as the optimizer, and we

valuated our model for different momentum values from 0 to 0.9.

he learning rate was set 0.01 after testing 0.1, 0.01, and 0.001.

or simplicity, we set the same dimensionality to hidden state vec-

ors in encoder and decoder. The dimensionality was finally set to

56 as it outperformed over the other values. The K value in beam

earch algorithm was 3 because a larger value not significantly in-

reased the performance of the model. We trained the model for

00 epochs, and repeated each experiment for five-times. Follow-

ng the evaluation rule used in [41] and [26] , we use our best

odel performance to compare the best performance of each base-

ine method under different parameter settings. For LSTM-related

aselines, the settings, including dimensionality of location ID, day

D, and hidden state, the optimizer, learning rate, as well as train-

ng process, are the same to that of HTAED. 

.3. Model comparison 

The comparison results between the proposed method and the

our baselines on three datasets, including best performance, mean,

nd variance over five-times repeating experiments are listed in

able 2 . As shown in Table 2 , the best performance and mean

erformance of our method outperform all the baselines on three

atasets and three metrics. The proposed algorithm shows signifi-

ant improvements in accuracy both considering the orders of lo-

ations and regardless of the orders. This advantage is especially

bvious on the second dataset, whose average sequence length of a

eek is larger than the other two datasets. The standard deviation

f our model is larger than that of LSTM, ED, and TAED in gen-

ral as our model involves more parameters, and introduce more

ncertainty in parameter initialization process. However, the mean

erformance of our model is superior to the best performance of

he other four methods except MA on Data_3 which is lower than

ADE, showing its effectiveness on performance improvement. In

ummary, LSTM based methods achieve better performance than

C, demonstrating the ability of LSTM on capturing long time

ependency. LSTM based encoder-decoder models are superior to

STM due to the positive effects of the decoder component. In ad-

ition, the TAED as well as HTAED bring significant improvement

n performance, that illustrates the power of temporal attention

echanism in Seq2Seq problems. 

Table 2 shows that travel activities with higher entropy of stay

oints (Data_2 and Data_3) are overall more difficult to be pre-

icted compared with lower entropy (Data_1), indicating that un-

ertainty is also a challenge for individual mobility prediction.

eanwhile, the results also show that entropy has its limitations in

easuring travel uncertainty or predictability. The entropy of stay

oints of Data_2 is lower than that of Data_3, however, traveling

ctivities in Data_2 are more difficult to be predicted than that of

ata_3 according to results in Table 2 . Entropy of stay points only

easures the probability distribution of different locations, while

he orders and the dependencies between different locations in the

ocation sequences are not considered. The average length of loca-

ion sequences in Data_2 are much larger than that of Data_3 as

hown in Table 1 , which may be one of the reasons why Data_2 is

ess predictable as it may contain more complex and long-distant

ependencies in traveling activities. 
. Analysis and discussion 

.1. Model effectiveness for different length input and output 

equences 

As the length of input and output sequence may affect the

odel, we evaluate the performance of different models under

ariant-length input and output sequences. Because of the limit of

C on predicting the length of a location sequence, we removed it

n this evaluation. The MRE of different methods are represented

s points with different symbol styles and colors in Figs. 5 and 6 ,

nd the performance trends of different models are plotted by fit-

ing polynomial curves. 

As depicted in Fig. 5 , the performances of HTAED under dif-

erent length of input sequences are better than that of the other

hree models as it captures more meaningful dependencies by in-

orporating the daily-weekly mobility structure into the model ar-

hitecture. In the figure, the performance of the four models shows

imilar trends as the input sequence length changes in general,

ndicating that the predictability of individual mobility patterns

hanges with input sequence length. However, the performance

f these models does not show a significant decline as the input

ength increases over the three datasets, implying that the pre-

ictability is not simply controlled by input sequence length. In

act, entropy, dependency strength, and dependency distance be-

ween different locations may all exert influences on predictabil-

ty [16] . For individual location sequence prediction, longer-term

ependencies exist in longer length of sequences, but the longer

ength of a sequence does not necessarily contain longer-term de-

endencies. For example, if predicting the next location relies on

ts previous 100 locations, the length of the input sequence is at

east 100. While if predicting the next location only relies on its

ependency on its previous location, the 100 locations become

nnecessary. To furtherly explore the dependencies or regularities

ontained in each sequence, more advanced metric considering fre-

uential patterns as well as orders needs to be studied. Overall,

he HTAED outperforms the other methods by a considerable mar-

in, illustrating the power of the proposed hierarchical temporal

ttention mechanism in enhancing the long-term predictive per-

ormance. 

Furthermore, we explore the performance of different models

n prediction under different output sequence lengths. In the

gure, the proposed method outperforms the other methods with

ower MREs on prediction of different length location sequences

ver three datasets. Meanwhile, the performance of different

odels does not significantly deteriorate when predicting on more

istant future over the three datasets. Longer-term prediction

oes not necessarily mean less predictability, which is actually

etermined by multiple factors, such as entropy and dependen-

ies between different locations [16] . Different length of location

equences may represent different travel patterns. Travel patterns

ith a longer location sequence of a day consisting of more

ifferent locations may be different from travel patterns with few

ocations. Good performance on generating location sequences

ith variant lengths indicates the effectiveness of capturing dif-

erent patterns. Therefore, the proposed hierarchical temporal

ttention mechanism improves the performance in forecasting

ifferent length of travel sequences against the baselines. 

.2. Visualization and analysis of local and global temporal attention 

eights 

To further investigate our model, we visualize, and analyze the

ocal and global temporal attention weights. Previous research has

emonstrated the interpretability characteristics of temporal atten-

ion mechanisms [26 , 33] . For example, in document classification,
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Fig. 6. Model performance comparison under different daily output sequence lengths and the performance trends are plotted by fitting quadratic polynomial curves. 
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a larger weight assigned to a word indicates that this word plays a

more important semantic role in deciding the semantic category of

a document [43] . This characteristic makes the model more inter-

pretable than traditional black-box deep learning methods, such as

basic LSTM and LSTM encoder-decoder models [5] . For individual

location sequence prediction, a location with a larger weight indi-

cates the higher importance of the location in future sequence pre-

diction. So, we perform a case study and show how the proposed

method captures travel regularities through our hierarchical tem-

poral attention mechanisms. 

As shown in Fig. A in Appendix, the hierarchical temporal at-

tention weights of four predictions with different destination lo-

cations and days for an individual are visualized. Recall that the
ocal and global attention weights represent the relative impor-

ance of different locations within a day and different days over

 week respectively. Blue lattices in Fig. A denotes the location

eights within a day, and pink lattices denotes the day weights

f a week. The deeper the colors are, the greater the weights are,

nd different numbers marked in the grids represent different lo-

ations. In the figure, we can find that, when predicting a target

ocation, the same location but with different orders in the input

equence, exerts different weights of influences, revealing that the

rder in which an individual completes trips and activities is an in-

egral component of the structure in their travel routines [16] . We

an also find that daily-scale, and weekly-scale long-term depen-

encies commonly exist in individual location sequence prediction.
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Fig. 7. Individual frequently visited locations. (a) global visited grids and Origin-Destination (OD) arcs, (b) network of the individual visited grids, and (c) Highlight of the 

most frequently visited grids and their interactions through OD arcs. The arcs in (b) and (c) are OD pairs whose frequency is greater than two. 

Fig. 8. Frequent traveling patterns and hierarchical attention weights associated with the target No.37 location on Sunday. Each row of the subfigures represents the location 

sequence where an individual orderly visited per day of last week in the form of Origin-Destination location ID pairs. 
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hrough such an attention mechanism, we may more intuitively

nderstand how a location matters in each day, and how each day

ffects the location prediction of an individual. 

To further explore the travel patterns captured by the model,

e take an individual as an example, and analyze the travel pat-

erns associated with traveling locations in physical space. The

raveling activities and locations that the individual frequently vis-

ted are shown in Fig. 7 (a). The interactions and their frequency

etween locations in traveling are visualized in Fig. 7 (b). The trips

ith frequency lower than two are removed to make the fre-

uently visited locations and their associations represented more

learly. From Fig. 7 (b), we can find that the locations, including

o.31, No.38, and No.41, are the most correlated locations with the

o. 37 location. The most frequently visited grids and their inter-
ction are highlighted in Fig. 7 (c). From Fig. 8 , we can find that our

odel captures such overall and generalized mobility patterns. In

ig. 8 (b), all these locations are highlighted by the hierarchical at-

ention weights, while locations that are not highly relevant to the

o.37 location are weakened. 

In addition, we use FP-growth [19] , one of the mostly used

requent-pattern-mining algorithm, to explore the ability of the

roposed model for obtaining frequently time-periodic mobility

atterns. For example, when the individual goes to the No. 41 lo-

ation and No. 31 location on last Sunday, the individual will go to

he No.37 location with a 90% probability in next Sunday. We count

he number of frequent patterns that each location is associated

ith the target No.37 location on Sunday. The statistics of frequent

atterns is shown in Fig. 8 (a). In the figure, the value of pink color
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indicates the total number of frequent patterns of each day, and

the value of blue color indicates the number of frequent patterns

involved by each location. We can find that most of frequent pat-

terns occur on Sunday, and the corresponding global weight value

in Fig. 8 (b) is also the highest. Most of the blue-highlighted loca-

tions in Fig. 8 (a) are also highlighted in Fig. 8 (b). However, differ-

ences do exist in these two figures. The reason is that the latter

one considers the order of each location, and captures varying de-

pendencies within a week, while the former one not. Overall, the

temporal attention mechanism helps us explore and understand

complex travel regularities underlying in individual travel histories.

5.3. Importance and limitations of hierarchical temporal attention 

The reason why hierarchical temporal attention matters is

that it incorporates structural knowledge into individual location

sequence prediction, and alleviates performance degradation for

sequences with long-term dependencies. Our hierarchical temporal

attention includes daily-level, and weekly-level attention net-

works. The two levels are the most conventional calendar cycles

that regular travel events repeat [16] . We integrate the background

knowledge of calendar cycle regularity into model structure, which

actually tells the model more spatiotemporal boundary and hierar-

chy information [26 , 33 , 43] . As shown in Fig. 8 , frequently periodic

mobility patterns do exist in physical space, and our model is ca-

pable to highlight such structural mobility patterns. In addition to

structure knowledge, the temporal attention also improves the per-

formance of location sequence prediction with long-term depen-

dencies. For individual mobility prediction, most used MC-based

methods only rely on limited number of previous locations for the

next location. However, daily and weekly long-term dependencies

are an integral part of individual mobility regularities. Our model

adaptively selects highly relevant hidden state of the encoder

during decoding, improving the performance of encoder-decoder

architecture for long-term sequence prediction. Dual-staged atten-

tion learns structured individual mobility patterns, and as a result,

we may more intuitively understand how a traveling location

matters in each day, and how traveling regularities occur over a

week. 

In spite of the advantages, our model is just in its infancy

for individual mobility prediction in real world, and there are

several limitations as well as remaining challenges. Firstly, the

current model requires long-term trajectory records to learn trav-

eling regularities of each individual. Data sparsity problem may

be encountered for individuals with short historical trajectories.

Secondly, we follow previously numerous studies in individual

mobility [12 , 37 , 45] , and also treat the model as a multi-class clas-

sification problem. Therefore, the targets are limited in individual

historically visited places. The model needs to be extended if an

individual visits a historically unvisited place. For example, an indi-

vidual changes his or her job, and moves to another place. Thirdly,

our model only involves limited external factors for individual

mobility prediction. Other factors, such as weather [27] , spatial

factors (e.g., land use and road network) [25] , specific events, and

the interactions between individuals, may also affect individual

traveling. For example, the outbreak of COVID-19 significantly

changes individual mobility patterns [7] . Fourthly, our model only

focuses on location sequence prediction. While, human activities

along with time-stamped location sequences may be more generic

and logical for human decision-making as well as prediction, such

as lunching out at a restaurant at 12:30 pm., going back to the

company for working at 1:30 pm. Finally, the proposed model is

based on LSTM that inherently precludes parallelization because

of its recurrent computation process. Advanced sequential models

could be adopted to reduce computation complexity. 
. Conclusion and future work 

We propose a novel hierarchical temporal attention-based LSTM

ncoder-decoder model for individual location sequence prediction.

he hierarchical temporal attention networks consist of location

emporal attention, and global temporal attention, to respectively

apture travel regularities with daily, and weekly long-time de-

endencies. We evaluate our model on three levels of predictable

atasets, and experiments show that the proposed model achieves

he best performance against four baseline methods (one com-

only used next-location prediction method, and three advanced

equence prediction methods) in terms of three evaluation metrics.

e find that (1) the proposed method largely enhances the per-

ormance of location sequence prediction, both on variant length

nput sequences, as well as generation of different length output

equences; (2) the temporal attention mechanism can more inter-

retably uncover, and illustrate the daily and weekly underlying

ravel regularities compared with basic L STM or L STM encoder-

ecoder model. 

Further investigations can be conducted from the following as-

ects. To reduce data sparsity problem and make the model appli-

able for predicting unvisited locations, we will extend our model

o a group of people with similar travel patterns [4 , 45] , and in-

egrate multiple data sources such as point of interest (POI) and

vent dataset, to achieve semantic-level human activities predic-

ion along with durations and locations at different spatiotempo-

al resolutions [16 , 23] . To improve computational efficiency, we

ill leverage more advanced sequential models, e.g., self-attention

39] and convolutional Seq2Seq models [14] , to capture short-term

nd long-term dependencies while remaining interpretability. 
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Fig. A. Visualization of local and global attention weights in prediction of two locations at different calendar days of random selected weeks. Each row of the subfigures 

represents the location sequence where an individual orderly visited per day of last week in the form of Origin-Destination location ID pairs. 
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