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Abstract

We describe simulations using an updated version of the Community Multiscale Air Quality model 

version 5.3 (CMAQ v5.3) to investigate the contribution of intermediate-volatility organic 

compounds (IVOCs) to secondary organic aerosol (SOA) formation in southern California during 

the CalNex study. We first derive a model-ready parameterization for SOA formation from IVOC 

emissions from mobile sources. To account for SOA formation from both diesel and gasoline 

sources, the parameterization has six lumped precursor species that resolve both volatility and 

molecular structure (aromatic versus aliphatic). We also implement new mobile-source emission 
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profiles that quantify all IVOCs based on direct measurements. The profiles have been released in 

SPECIATE 5.0. By incorporating both comprehensive mobile-source emission profiles for 

semivolatile organic compounds (SVOCs) and IVOCs and experimentally constrained SOA yields, 

this CMAQ configuration best represents the contribution of mobile sources to urban and regional 

ambient organic aerosol (OA). In the Los Angeles region, gasoline sources emit 4 times more non-

methane organic gases (NMOGs) than diesel sources, but diesel emits roughly 3 times more 

IVOCs on an absolute basis. The revised model predicts all mobile sources (including on- and off-

road gasoline, aircraft, and on- and off-road diesel) contribute ~ 1 μgm−3 to the daily peak SOA 

concentration in Pasadena. This represents a ~ 70% increase in predicted daily peak SOA 

formation compared to the base version of CMAQ. Therefore, IVOCs in mobile-source emissions 

contribute almost as much SOA as traditional precursors such as single-ring aromatics. However, 

accounting for these emissions in CMAQ does not reproduce measurements of either ambient 

SOA or IVOCs. To investigate the potential contribution of other IVOC sources, we performed two 

exploratory simulations with varying amounts of IVOC emissions from nonmobile sources. To 

close the mass balance of primary hydrocarbon IVOCs, IVOCs would need to account for 12% of 

NMOG emissions from nonmobile sources (or equivalently 30.7 t d−1 in the Los Angeles-

Pasadena region), a value that is well within the reported range of IVOC content from volatile 

chemical products. To close the SOA mass balance and also explain the mildly oxygenated IVOCs 

in Pasadena, an additional 14.8% of nonmobile-source NMOG emissions would need to be IVOCs 

(assuming SOA yields from the mobile IVOCs apply to nonmobile IVOCs). However, an IVOC-

to-NMOG ratio of 26.8% (or equivalently 68.5 t d−1 in the Los Angeles-Pasadena region) for 

nonmobile sources is likely unrealistically high. Our results highlight the important contribution of 

IVOCs to SOA production in the Los Angeles region but underscore that other uncertainties must 

be addressed (multigenerational aging, aqueous chemistry and vapor wall losses) to close the SOA 

mass balance. This research also highlights the effectiveness of regulations to reduce mobile-

source emissions, which have in turn increased the relative importance of other sources, such as 

volatile chemical products.

1 Introduction

Exposure to fine particulate matter (PM2.5 and PM1) has been associated with increased 

mortality, lung cancer and cardiovascular diseases (Apte et al., 2018; Di et al., 2017). 

Organic aerosol (OA) is a major component of ambient fine particulate matter (Jimenez et 

al., 2009; Zhang et al., 2015). The majority of OA, even in most urban areas, is secondary 

organic aerosol (SOA), formed from the atmospheric oxidation of gas-phase species. Over 

the past several decades, primary emissions have been greatly reduced in the United States, 

which has led to significant improvement in air quality, especially in the Los Angeles Basin 

in California (Warneke et al., 2012; Zhang et al., 2018). However, SOA remains an 

important component of fine particulate matter, but its sources are uncertain (Ensberg et al., 

2014; McDonald et al., 2018).

Intermediate-volatility organic compounds (IVOCs) are an important class of SOA 

precursors (Chan et al., 2009; Liggio et al., 2016; Presto et al., 2009; Zhao et al., 2014). 

IVOCs, for example, C12 to C17 n-alkanes and polycyclic aromatic hydrocarbons, are 

efficient SOA precursors (Chan et al., 2009; Presto et al., 2010a). In addition, chamber 
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experiments using unburned fuel and diluted exhaust have demonstrated the importance of 

IVOCs to SOA production from mobile-source emissions (Gordon et al., 2014; Jathar et al., 

2013; Miracolo et al., 2011; Platt et al., 2017).

Despite this evidence, IVOCs are not routinely or consistently accounted for in chemical 

transport models (CTMs). A major challenge has been the lack of emissions data due to a 

combination of sampling challenges and the fact that the vast majority of IVOC emissions 

have not been speciated on a molecular basis. In addition, chemical mechanisms (e.g., 

SAPRC and carbon bond) often do not explicitly account for IVOCs, instead lumping them 

with VOCs or non-reactive gases (Lu et al., 2018). Several recent studies report total 

(speciated and unspeciated) IVOC emissions from a variety of mobile sources, including on- 

and off-road gasoline, diesel, aircraft, and vessel engines (Cross et al., 2013; Huang et al., 

2018; Kroll et al., 2014; Pereira et al., 2018; Presto et al., 2011; Qi et al., 2019; Wang et al., 

2012; Zhao et al., 2015, 2016). While these studies have not been able to speciate all of the 

IVOCs emissions at the molecular level, some provide insight into the molecular structure of 

the unspeciated IVOCs (Drozd et al., 2019; Hatch et al., 2017; Hunter et al., 2017; Worton et 

al., 2014; Zhao et al., 2015, 2016). For example, IVOCs in diesel exhaust are primarily 

comprised of aliphatic compounds, while IVOCs in gasoline exhaust are primarily aromatics 

with higher OH reaction rates and SOA yields. Zhao et al. (2015, 2017) used these new 

emissions data to explain the SOA formation in smog chamber experiments with diluted 

vehicle emissions. The SOA mechanism proposed by Zhao et al. (2015, 2017) accounts for 

all of the IVOC emissions. It represents them using 79 different compounds, some of which 

are individual species and others lumped groups assigned based on gas chromatography and 

mass spectrometry data. However, this model is too computationally expensive for 

implementation in current operational CTMs.

Because of the high levels of both ozone and PM exposure in the Los Angeles Basin over 

the last several decades, extensive ambient measurement campaigns have explored the 

sources of poor air quality in the region, including the CalNex campaign in 2010 (Ryerson et 

al., 2013). During the CalNex campaign, average OA at the Pasadena supersite was 7 μgm−3, 

of which SOA, defined as the sum of semivolatile and low-volatility oxygenated OA (SV-

OOA and LV-OOA) factors from AMS analysis, contributed 66% to total OA mass (Hayes et 

al., 2013). Zhao et al. (2014) measured the ambient IVOC concentration at the Pasadena site 

and estimated that photooxidation of IVOCs contributed up to 57% of SV-OOA during 

CalNex.

A number of chemical transport model (CTM) studies have examined SOA formation in the 

Los Angeles Basin during the CalNex campaign (Baker et al., 2015; Fast et al., 2014; Jathar 

et al., 2017; Murphy et al., 2017; Woody et al., 2016). However, these studies used very 

different assumptions for IVOC emissions and their SOA yields. IVOC emissions are 

commonly estimated by applying a scaling factor to some other species (generally primary 

organic aerosol, POA). These scaling factors have been based on little experimental data, 

and typically the same factor is applied to all sources. For example, Fast et al. (2014) 

assumed additional SOA precursor (IVOC and/or SVOC, semivolatile organic compound) 

mass of 6.5 × POA and Woody et al. (2016) assumed 7.5 × POA based on previous 

estimations (Hodzic et al., 2010; Koo et al., 2014), applied to all emission source categories. 
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Jathar et al. (2017) assumed mobile IVOC emission as 25% of diesel non-methane organic 

gas (NMOG) emissions and 20% of gasoline NMOG emissions. Finally, Baker et al. (2015) 

did not explicitly account for IVOCs but increased the SOA yields from VOCs by a factor of 

4 compared to the base version of the Community Multiscale Air Quality (CMAQ) model. 

Despite these efforts, these studies still underpredicted the measured OA by a factor of 2 to 6 

(Hayes et al., 2013). Murphy et al. (2017) largely closed the OA mass balance by defining a 

new lumped SOA precursor called potential combustion volatile organic compounds 

(pcVOCs) with emissions equal to 9.6 × POA and an SOA yield of 1. However, all the 

abovementioned models used scaling factors that are not based on actual emission data. 

They also only use a single IVOC surrogate, which does not account for differences in IVOC 

chemical composition. Lu et al. (2018) showed that a single scaling factor does not represent 

the magnitude of actual IVOC emissions across all mobile sources. Finally, none of these 

models account for the effects of differences in molecular structure in IVOC emissions on 

SOA yield.

Mobile sources are major sources of NMOG emissions and therefore important sources of 

SOA precursors in urban environments (Gentner et al., 2017). Historically, mobile sources 

have been the dominant source of NMOGs in many urban areas, but their contribution has 

been reduced due to increasingly stringent emission regulations. The 2014 EPA National 

Emission Inventory (NEI) estimates that mobile sources contribute 32% of the 

anthropogenic VOC emissions nationally (and 43% in Los Angeles County). In Los Angeles 

County, on- and off-road gasoline and diesel sources account for more than 96% of mobile-

source emissions.

Lu et al. (2018) recently compiled mobile-source emission data, including on- and off-road 

gasoline, aircraft and diesel engines, to create updated model-ready emission profiles that 

include explicit treatment of IVOCs. They found that mobile-source NMOG emissions can 

be explained by trimodal distributions of by-product, fuel and oil modes. IVOC emissions 

originate from fuel components, and similar distributions are observed across sources that 

use the same fuel (Cross et al., 2015; Lu et al., 2018; Presto et al., 2011). This applies to 

both low-emitting heavily controlled sources (e.g., LEV-II-certified gasoline vehicle) and 

uncontrolled high-emitting sources (e.g., two-stroke gasoline off-road sources) (Lu et al., 

2018). Therefore, in this work, mobile IVOC emissions are modeled and grouped based on 

fuel type.

In this paper, we use an updated version of CMAQ v5.3 (US EPA Office of Research and 

Development, 2019) to investigate the sources and contribution of SVOCs and IVOCs to 

SOA formation in the Los Angeles region during the CalNex campaign. We updated CMAQ 

v5.3 with a new set of mobile-source NMOG and SVOC emission profiles that include six 

classes of IVOCs and a new parameterization of SOA formation from IVOC precursors 

designed for implementation into chemical transport models. The new emission profiles are 

based on direct measurement of IVOCs from on- and off-road mobile sources (Gordon et al., 

2013; Lu et al., 2018; May et al., 2014; Presto et al., 2011; Zhao et al., 2015, 2016). These 

profiles (100VBS to 103VBS) are now available in SPECATE 5.0 (US EPA, 2019). The new 

SOA parameterization is derived from a comprehensive parameterization that explains the 

SOA formation from dilute mobile-source exhaust in smog chamber studies (Zhao et al., 
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2015, 2017). We evaluate the resulting model, now the most-up-to-date representation of 

mobile-source organic compound emissions, using data collected during the CalNex 

campaign, including direct measurements of ambient IVOCs. Finally, we explore the 

potential contribution of nonmobile sources to IVOC and OA concentrations.

2 Parameterizing SOA formation from mobile-source IVOCs

Mobile sources are comprised of a complex mixture of on- and off-road sources, including 

gasoline, aircraft and diesel engines. However, they are predominantly gasoline- and diesel-

powered, with a small fraction of aircraft emissions. In this work we apply the source 

profiles of Lu et al. (2018) to estimate the amount and composition of the IVOC emissions 

for different mobile sources. The IVOCs are normalized to total NMOG emissions, which 

only include the organics in the volatility range from C* = 103 to 1011 μgm−3. Table 1 

summarizes the IVOC-to-NMOG ratios for different mobile sources. The ratios (and 

associated emission profiles) vary widely depending on the underlying fuel. For gasoline, 

aircraft and diesel sources, IVOCs comprise 4.6%, 28.5% and 55.5% of the NMOG 

emissions, respectively. IVOC emissions from gasoline sources include high fractions of 

aromatics (Drozd et al., 2019; Zhao et al., 2016).

We developed a simplified parameterization to simulate first-generation SOA formation 

from IVOCs under high-NOx conditions. By first generation we mean the amount of SOA 

that forms within a couple of hours in a smog chamber experiment with dilute exhaust at 

typical atmospheric oxidant levels. The parameterization is derived from the model of Zhao 

et al. (2015, 2016), which explicitly accounts for 79 different classes of IVOCs. The 

chemistry and transport associated with 79 additional species in the gas and particle phases 

would be too computationally expensive in a CTM which normally has about 50 or fewer 

organic aerosol species. Our aim is to develop a model for IVOC SOA production that can 

be used in off-the-shelf regulatory and routine chemical transport modeling applications. For 

other applications, a more-explicit approach with multiple thousands of species may be more 

powerful for modeling reaction path-ways (Ying and Li, 2011). From the IVOC 

measurement perspective, lumping similar IVOCs together based on their volatility and 

functionality is also more interpretable and compatible with data provided by most 

instruments.

The Zhao et al. (2015, 2016) model accounts for 57 individual IVOCs and 22 lumped 

IVOCs. The 22 lumped IVOCs are comprised of unspeciated IVOCs grouped based on gas 

chromatography (GC) retention time and an assigned chemical class based on its mass 

spectra. This model explains the SOA formation from dilute exhaust of gasoline and diesel 

vehicles measured in chamber experiments (Zhao et al., 2015, 2017). Our simplified SOA 

parameterization accounts for the key differences in chemical composition of the IVOC 

emissions from different mobile sources. This is important because the composition of the 

IVOC emissions varies by source class (e.g., gasoline versus diesel), and SOA yield depends 

on both molecular weight (volatility) and chemical structure (aromatics versus alkanes) 

(Chan et al., 2009; Jathar et al., 2013; Lim and Ziemann, 2005, 2009; Presto et al., 2010a). 

For example, diesels emit more lower-volatility IVOCs than gasoline engines, but diesel 

IVOC emissions are mainly comprised of aliphatic compounds versus aromatics for 
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gasoline. These differences matter because, for a given chemical class, SOA yields generally 

increase with increasing molecular weight, which increases the effective SOA yield of diesel 

exhaust relative to gasoline exhaust. However, for a given carbon number, the SOA yield for 

hydrocarbon IVOCs generally follows aromatics > cyclic > linear > branched alkanes (Lim 

and Ziemann, 2009; Tkacik et al., 2012); thus gasoline IVOC yields increase when their 

structure is considered. Finally, aromatic IVOCs have higher OH reaction rates than alkanes 

(Chan et al., 2009; Zhao et al., 2017). In this study, we only account for IVOC-OH reactions 

because mobile-source IVOCs are mostly alkanes or aromatics, which will react slower with 

O3. NO3 oxidation can be important in nighttime SOA formation (Fry et al., 2014; Hoyle et 

al., 2011), and this will be important to consider in the future, but experimental studies on 

SOA formation from anthropogenic IVOC reactions with NO3 radical are limited at this 

time.

To illustrate the complexity of the IVOC mechanisms of Zhao et al. (2015, 2016), Fig. 1 

plots the SOA yield (expressed as SOA mass divided by mass of precursor) as a function of 

volatility for the 79 different IVOCs in the model at a typical atmospheric OA concentration 

of 10 μgm−3. This model likely provides a conservative estimate for SOA yields of lower-

volatility IVOCs, as C18–22 n-alkanes are assumed to have the same SOA yields as C17 n-

alkanes. The scatter in the data highlights the complex relationship between molecular 

structure and SOA yield.

Our goal is to derive a semi-empirical SOA parameterization with the minimum number of 

surrogate species that reproduces the mechanism of Zhao et al. (2015, 2016). The simplified 

parameterization must account for the differences in SOA formation from IVOC emissions 

from different mobile-source categories (gasoline, diesel and aircraft). We developed the 

simplified parameterization using the volatility basis set (VBS) framework of Donahue et al. 

(2006) following the approach of Presto et al. (2010b). The parameterization accounts for all 

IVOC emissions, which are lumped into surrogates based on gas chromatography retention 

time (related to volatility) and mass spectral (composition information) data (Lu et al., 

2018). Like the work of Zhao et al. (2015, 2016), the parameterization accounts for all IVOC 

mass, not just the mass that can be speciated at the molecular level (Lu et al., 2018). Briefly, 

to simulate SOA formation, each lumped IVOC group reacts with OH to form a set of 

semivolatile products in Eq. (1):

IVOCi + OH αi, 1PC* = 0.1 + αi, 2PC* = 1 + αi, 3PC* = 10
+ αi, 4PC* = 100 for group i = 1 to 6, (1)

where αi,1 to αi,4 are mass-based stoichiometric coefficients for IVOCi distributing the 

reaction products across a second volatility basis set from C* = 0.1 to 100 μgm−3 (Presto et 

al., 2010b). For each lumped IVOC species there are five unknowns: four stoichiometric 

coefficients (αi,1 to αi,4) and the OH reaction rate kOH,i. These coefficients and reaction 

rates are derived by fitting the mechanism of Zhao et al. (2015, 2016). All SOA parameters 

are set at a fixed temperature of 298 K. Details of the fitting procedure are in the 

Supplement.
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We initially tried using four lumped-IVOC-species distributed across the volatility basis set 

(C* = 103 to 106 μgm−3) to account for the influence of precursor volatility based on gas 

chromatography retention time but not molecular structure on SOA yield. However, that 

model poorly reproduced the SOA formation from gasoline vehicle emissions, especially at 

shorter timescales (Fig. S1 in the Supplement). The problem is that IVOCs in diesel exhaust 

are dominated by aliphatic compounds, while IVOCs in gasoline exhaust are dominated by 

aromatics (Drozd et al., 2019; Zhao et al., 2016); as previously discussed, aromatic 

compounds have different OH reaction rates and SOA yields (Fig. 1) (Lim and Ziemann, 

2009; Tkacik et al., 2012).

We therefore defined two additional lumped IVOC species with C* = 105 and 106 μgm−3 to 

account for the aromatic IVOCs in gasoline engine exhaust (Table 1). The IVOCs in these 

two bins were split based on mass spectral data (Zhao et al., 2015, 2016). Mobile-source 

IVOC emissions in the lower-volatility bins of C* = 103 and 104 μgm−3 are primarily 

alkanes from unburned fuel or lubricant oil (Lu et al., 2018; Worton et al., 2014); therefore, 

the simplified mechanism only includes one lumped aliphatic IVOC species in each of those 

bins. IVOC emissions are assigned to these surrogate species using the source profiles listed 

in Table 1.

To illustrate the performance of the new parameterization, Fig. 2a compares the predicted 

SOA using our six-IVOC-group parameterization to the original mechanism of Zhao et al. 

(2015, 2016). It shows that the two models agree with an absolute error for the mass-based 

SOA yield of less than 0.01 for all mobile sources at an OA concentration of 5 μgm−3. 

Across a wide range of atmospherically relevant concentrations (OA of 1 to 50 μgm−3), 

Figure 2(b) shows that the relative error is less than 6% between our new parameterization 

and the original mechanisms of Zhao et al. (2015, 2016).

The yields derived by the fitting make physical sense. The yields increase with decreasing 

volatility (Table 2). The fitting procedure assigns higher yields and faster reaction to the 

lumped aromatics compared to aliphatics in the same volatility bin (Drozd et al., 2019; Zhao 

et al., 2016). This explains the higher SOA production in the first 10 h from gasoline exhaust 

compared to aircraft and diesel IVOC emissions. It also predicts that diesel IVOC emissions 

have the overall highest SOA yield due to their high fraction of lower-volatility compounds 

compared to emission from gasoline engines and aircraft (Lu et al., 2018; Zhao et al., 2015).

Table 2 lists the set of kOH and αi for the simplified six-IVOC-group parameterization for 

mobile-source emissions. Molecular weights (MWs) are determined as the average MWs of 

n-alkanes or speciated aromatics in each volatility bin. The IVOC MWs are used to convert 

mass-based SOA yields to molar units and calculate parameters needed to simulate dry 

deposition processes. Enthalpies of vaporization (Hvap) are determined using the fitted 

parameterization in Ranjan et al. (2012). In this work, we implement this six-lumped-IVOC-

group parameterization to model the IVOC SOA formation in CMAQ v5.3. The first-

generation products represented in Eq. (1) undergo multigenerational aging following the 

mechanism of Murphy et al. (2017) described in Sect. 3.4.
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3 CMAQ model

To evaluate the contribution of mobile-source IVOC emissions to ambient SOA, we 

implemented our new six-lumped-IVOC-group SOA parameterization and emission profiles 

into CMAQ v5.3. We used the model to simulate the air quality in California from 1 May to 

30 June 2010, which includes the entire CalNex campaign (May and July 2010). Except as 

noted below, the simulations described here have essentially the same modeling domain and 

input parameters as previous modeling studies on CalNex (Baker et al., 2015; Murphy et al., 

2017; Woody et al., 2016). We have extended this previous work by updating the emissions 

and SOA formation from IVOCs.

3.1 Model configuration

The model domain covered California and Nevada with a 4 km (325 × 225) grid resolution 

and 35 vertical layers. The input meteorology and NEI emission inventory are very similar 

to those used by Baker et al. (2015), Woody et al. (2016), and Murphy et al. (2017) and are 

identical to Qin et al. (2020). Meteorological inputs were generated using the Weather 

Research and Forecasting Model (WRF) Advanced Research WRF core version 3.8.1 

(Skamarock et al., 2008) with one additional model layer at the surface compared to 

previous studies (i.e., the lowest layer of approximately 40 m depth has been split into two 

20 m deep layers to better resolve surface gradients). The emission inputs are based on the 

2011 NEI version 2 with mobile, wildfire and electric-generating point source emissions 

calculated for 2010. Mobile on-road and off-road emissions are calculated by MOVES 

2014a, except that on-road emissions for California are estimated by EMFAC and allocated 

using MOVES 2014a. Biogenic emissions are calculated online with BEIS v3.61 and 

improved land use cover from BELD4 (Bash et al., 2016). Sea-spray aerosols are calculated 

online and incorporate dynamic prediction of particle population size and standard deviation. 

Windblown dust emissions are neglected and should not impact comparisons with the data 

collected by the AMS, which detects non-refractory particulate compounds. Moreover, 

previous studies (Cazorla et al., 2013) found little evidence of dust impacts during CalNex 

using both in situ aircraft measurements and inference from AERONET retrievals. Gas-

phase chemistry is simulated with the SAPRC07T chemical mechanism (Carter, 2010; 

Hutzell et al., 2012; Xie et al., 2013). Aerosols are simulated using the Aero7 module 

(CMAQ-AE7) with monoterpene photooxidation updates (Xu et al., 2018) and organic water 

up-take (Pye et al., 2017). Boundary conditions were generated from a 12 km continental 

United States simulation of April to June 2010. We use the first 14 d of the simulation as a 

spin-up to minimize the influence of initial conditions.

Previous studies (Baker et al., 2015; Woody et al., 2016) have extensively evaluated different 

versions of CMAQ using CalNex data. These evaluations show good to excellent 

performance for many pollutants, with a notable exception of organic aerosols and SOA - 

the focus of this paper. We evaluated our model predictions with measurements of gas-phase 

pollutants such as CO, O3 and NOx as they are typical indicators for model performance. 

Consistent with the previous applications of CMAQ to CalNex (Baker et al., 2015; Murphy 

et al., 2017; Woody et al., 2016), Fig. S2a shows very good agreement between modeled and 

measured CO diurnal patterns in Pasadena, and the normalized mean bias (NMB) is 4.2%. 
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Figure S3 compares the O3, NO and NO2 diurnal patterns with measurements in Pasadena, 

where the NMB is 10.7%, −6.7% and 5.4%, respectively. Figure S4 compares the CO, O3 

and NO diurnal patterns for three other sites: Bakersfield, Sacramento and Cool. The model 

NMB is within ±25% for all comparisons, except for O3 and NO in Bakersfield. Thus, we 

can conclude that the CMAQ model performs reasonably well at all four sites for traditional 

gas-phase pollutants.

3.2 POA emissions

CMAQ v5.3 treats POA emissions as semivolatile with variable gas-particle partitioning and 

multigenerational aging (Fig. S5). The POA model, similar to the 1.5-dimensional VBS of 

Koo et al. (2014), contains five pairs of hydrocarbon-like vapor/particle species (one LVOC, 

three SVOCs and one IVOC) distributed across a volatility basis set with C* from 10−1 to 

103 μgm−3, with O : C increasing slightly with decreasing volatility. POA emissions are then 

assigned to each of these species using the source-specific volatility profiles in Table 3, and 

CMAQ calculates gas-particle partitioning assuming equilibrium partitioning and treating 

the entire organic phase as a single, pseudo-ideal solution. For nonmobile sources, POA 

emissions are distributed into all five bins with C* from 10−1 to 103 μgm−3, while the 

mobile-source POA profiles only map to the 10−1 to 102 μgm−3 bins.

Comprehensive emission profiles for semivolatile POA include both SVOCs and lower-

volatility organics (Lu et al., 2018). In the base version of CMAQ v5.3, the volatility profile 

of Robinson et al. (2007) is used to represent all combustion sources. Here, we update the 

volatility distributions for mobile POA using the new mobile-source emission profiles in Lu 

et al. (2018). The profiles (8873VBS and 8992VBS to 8996VBS) are available in 

SPECIATE 5.0 (US EPA, 2019). For nonmobile combustion sources, we use the biomass-

burning POA volatility distribution from May et al. (2013b) for wood-burning sources, the 

cooking POA volatility distribution from Woody et al. (2016) for cooking sources and the 

diesel POA volatility distribution from May et al. (2013a) as a surrogate for all other 

combustion sources. According to our emission inventory, mobile, wood-burning and 

cooking sources combined emit more than 80% of total POA in the Los Angeles region 

during the modeled period, where other combustion sources only emit 16.4% of the POA. 

We acknowledge that the diesel POA surrogate is modestly more volatile than biomass-

burning POA profiles. Thus, using diesel POA volatility as the surrogate for other 

combustion sources will possibly increase the regional SOA formation compared to if a 

different profile was used, but the potential bias is small. Table 3 summarizes the volatility 

distributions and scaling factors used in this work. The same POA emissions were used for 

all model runs.

A challenge is that most existing POA emission factors used to inform inventories such as 

NEI are based on filter measurements, which do not quantitatively collect all SVOCs. For 

example, filters collect only a portion of SVOC vapors. Estimating this error is complex 

because there are competing biases. First, source testing is often performed at low levels of 

dilution, which creates high concentrations (relative to the more dilute atmosphere) that shift 

gas-particle partitioning of SVOCs to the particle phase. In these situations, filters collect a 

larger fraction of SVOCs than more dilute conditions (of course, at high enough 
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concentrations, filters will also collect some IVOC vapors). Second, during mobile-source 

testing, filters are commonly collected at elevated temperatures (e.g., 47°C) to avoid water 

condensation, which shifts gas-particle partitioning towards the gas phase, reducing the 

fraction of SVOCs collected by a filter. Finally, filters collect some vapors as sampling 

artifacts, which depends on many factors, including filter material, filter face velocity and 

filter pretreatment (Subramanian et al., 2004). Therefore, the fraction of SVOCs collected by 

filters depends on these competing effects, which are difficult to quantify. As expected, data 

from Zhao et al. (2015, 2016) and Lu et al. (2018) indicate that the fraction of SVOCs 

collected depends on the OA concentration inside the sampling system.

To estimate potential biases in the amount of SVOC vapors in the filter-based POA emission 

factor measurements, we compared the mass of lower-volatility organics (SVOC + LVOC + 

NV) collected on filters and Tenax tubes versus the mass collected on filters (regular POA 

measurement) (Lu et al., 2018). The two estimates for diesel and gas-turbine tests were 

within 10%, which is within experimental uncertainty. Therefore, we did not add any SVOC 

mass to these emissions. For gasoline sources, the data indicate an average bias of 40%, 

which means that lower-volatility organics were only partially collected by the filter. This is 

consistent with the relatively low particle emissions of gasoline sources, which create lower 

concentration conditions inside of the dilution sampler, and therefore gas-particle 

partitioning shifted more to the vapor phase. We therefore applied a filter artifact correction 

factor of 1.4 to gasoline POA emissions, as shown in Table 3. We add these SVOC vapors to 

address the bias in emission measurements and to best estimate the potential local/regional 

SOA formation from mobile-source SVOCs.

3.3 IVOC emissions

An important difference from previous implementations of CMAQ to simulate the CalNex 

campaign (Baker et al., 2015; Murphy et al., 2017; Woody et al., 2016) is the new mobile 

IVOC emission data and the application of the new six-lumped-IVOC-species SOA 

parameterization. Mobile sources contribute more than 40% of anthropogenic NMOG 

emissions in the South Coast Air Basin in the CalNex emission inventory (Baker et al., 

2015). Given the consistency of the speciation and IVOC-to-NMOG ratio for sources using 

same type of fuel (Lu et al., 2018), we assign mobile-source emission profiles based on fuel 

type (gasoline, diesel or jet fuel). NMOG emissions from all on and off-road gasoline 

sources are represented using the same average gasoline exhaust profile (100VBS). NMOG 

emissions from all on-road and off-road diesel sources (including rail) are represented using 

the same average non-DPF (diesel particulate filter) diesel exhaust profile (103VBS). 

Studies have noted there can be significant differences in IVOC emissions between DPF-

equipped and non-DPF vehicles (Dunmore et al., 2015; Lu et al., 2018; Platt et al., 2017). 

However, the total NMOG emissions from diesel sources in southern California in 2010 

were dominated (> 99%) by non-DPF vehicles (due to a combination of the fleet 

composition and the fact that non-DPF vehicles have much lower emission factors). 

Therefore, we use the IVOC emission profile for non-DPF vehicles for all diesel sources. 

Although only limited data are available for off-road diesel engine emissions (Qi et al., 

2019), it suggests the emissions are similar to on-road diesel vehicles. NMOG emissions for 

all jet-fueled sources are represented using the same gas-turbine exhaust profile (102VBS). 
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The IVOC components of these profiles are summarized in Table 1, and complete profiles 

are given in SPECIATE 5.0 (US EPA, 2019). Total IVOC emissions are determined using 

the IVOC-to-NMOG ratios, which are more consistent across source types than IVOC-to-

POA ratios (Lu et al., 2018).

For this work, IVOC emissions are added to existing NMOG emissions. This was done to 

keep the VOC emissions across the different model runs constant in order to better isolate 

the contribution of IVOCs to SOA. In addition, OH oxidation of IVOCs is assumed to 

regenerate OH radicals and thus have minimal impact on the oxidant budget and the 

production of O3. However, Lu et al. (2018) argued that existing NMOG inventories largely 

include IVOCs, just that they are misattributed to VOCs. Therefore, future work should 

proportionally reduce the VOC emissions to keep the overall NMOG emissions (VOC + 

IVOC) constant. This assumption minimally effects the OA model evaluation, because the 

base version of CMAQ predicts that traditional VOCs only contribute 7% of measured OA 

in Pasadena during the Cal Nex campaign (Baker et al., 2015).

SOA is produced from IVOC oxidation using the parameterization described in Sect. 2. The 

SOA mass is determined by CMAQ based on the gas-particle partitioning of the SVOC 

products created from IVOC oxidation. CMAQ v5.3 calculates partitioning assuming 

thermodynamic equilibrium and that all organics form a single pseudo-ideal solution. The 

SVOC products also undergo multigenerational aging following the approach of Murphy et 

al. (2017) (see Sect. 3.4).

3.4 Multigenerational aging and gas-particle partitioning

The semivolatile POA emissions and semivolatile products formed from oxidation of SOA 

precursors undergo multigenerational aging as described in Murphy et al. (2017). Figure S5 

shows the schematic diagram for modeling OH oxidation first-generation and 

multigenerational aging. Briefly, the approach simulates the reaction of L/S/IVOC vapors 

with hydroxyl radical and distributes the product mass to a second set of five vapor-particle 

pairs of species at moderate O : C values. The stoichiometric ratios used to distribute the 

product mass were derived to match the SOA enhancement predicted by a full 2D-VBS 

simulation of the functionalization and fragmentation of SVOCs during three days of 

atmospheric oxidation. This model, unlike that of Koo et al. (2014), does transfer some of 

the aged products to higher-volatility bins and thus reduces SOA over multiple generations 

of OH reaction. The probability for fragmentation increases as a function of O : C in 

agreement with theory (Donahue et al., 2011). Although the competing effects of 

fragmentation and functionalization at long timescales are represented in this model, the 

simplified framework is likely limited when trying to capture the full complexity of 

multigenerational aging. For this work, no changes were made to the chemical properties 

(e.g., carbon number and O : C) or reaction stoichiometry of the multigenerational aging 

mechanism of Murphy et al. (2017). Because IVOC products likely have lower carbon 

numbers than products of primary SVOC oxidation, our approach may represent an upper 

bound on the potential for IVOC SOA aging to further enhance particle mass downwind of 

sources.
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3.5 Simulation cases

To systematically explore the effects of adding IVOC emissions from mobile and nonmobile 

sectors, we performed four simulation cases, summarized in Table 4. All cases use the same 

emission inputs as described earlier with differences in IVOC emissions. In the base case 

(Case 1), mobile SOA is only formed through the oxidation of traditional VOC emissions 

and SVOCs from evaporated semivolatile POA.

Figure 3a compares the anthropogenic NMOG emissions in the Los Angeles Basin region 

for the four simulation cases (geographical boundaries are defined by simulation grid cells 

shown in Fig. S6). In the base case (Case 1), mobile sources contribute 43% of 

anthropogenic NMOG emissions, of which gasoline sources contribute 35%, diesel sources 

8% and aircraft less than 1%. Nonmobile sources contribute the remainder of the 

anthropogenic NMOG emissions (57%), of which volatile chemical product (VCP) usage 

contributes 39%, followed by 17% from other sources. The emission inventory contains 

minimal cooking and biomass-burning NMOG emissions during CalNex (1.5%).

Cases 2 to 4 incrementally add mobile IVOC emissions to the model. Table 4 shows that 

Case 2 adds on average 27.6 t d−1 mobile-source IVOC emissions, which is our best estimate 

of the mobile-source IVOC emission based on the compilation of measurement data and 

source profiles in Lu et al. (2018) as described in Sect. 3.3. The difference in SOA 

concentrations between Case 2 and Case 1 is the SOA contribution from mobile emitted 

IVOCs. In Case 3 and 4, we incrementally add IVOC emissions from nonmobile sources to 

the inventory to explore the contribution of nonmobile sources of IVOCs as discussed in 

Sect. 4.2.

4 CMAQ simulation results

To evaluate model performance, we compared predictions to measured data from the CalNex 

campaign in Pasadena, CA, as well as the organic carbon (OC) measured at Chemical 

Speciation Network (CSN) sites in California. The CalNex campaign characterized 

atmospheric composition at two sites in southern California, Pasadena and Bakersfield, from 

15 May to 29 June 2010 (Ryerson et al., 2013). We focus on the Pasadena site, which is 

located 18 km northeast and generally downwind of downtown Los Angeles, because there 

were direct measurements of IVOCs (Zhao et al., 2014). We also evaluate model predictions 

at the Pasadena site for OA, BC, CO, select speciated VOCs and planetary boundary layer 

(PBL) height.

4.1 Base case and mobile IVOC case

4.1.1 IVOC mass concentrations—Figure 3b compares the model-predicted and 

measured campaign-average IVOC mass concentration at the Pasadena site. Zhao et al. 

(2014) reported data for two classes of IVOCs differentiated based on mass spectral 

signature: hydrocarbon IVOCs and mildly oxygenated IVOCs. Zhao et al. (2014) attributes 

hydrocarbon IVOCs to primary emissions; the mildly oxygenated IVOC could either be 

primary emissions or formed via atmospheric oxidation. The CalNex campaign-averaged 

measured hydrocarbon IVOCs at the Pasadena site were 6.3 μgm−3; the measured mildly 
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oxygenated IVOC concentration was 4.2 μgm−3. The analytical techniques of Zhao et al. 

(2014) are not optimized for measuring oxygenated organics; therefore, their data provide a 

lower-bound estimate of the total and oxygenated IVOCs.

The base case (Case 1) predicts essentially no IVOC concentrations as they are not explicitly 

included in the base inventory or model (though could be implicitly included as 

misclassified VOC species). Case 2 (mobile IVOC case) predicts 2.7 μgm−3 of IVOCs at the 

Pasadena site, which corresponds to 43% of measured hydrocarbon IVOCs. This indicates 

that mobile sources are an important source of IVOCs in the Los Angeles region but that 

more than half of the hydrocarbon IVOCs measured in Pasadena are likely emitted by 

nonmobile sources. In addition to hydrocarbon IVOCs, Zhao et al. (2014) measured 4.2 μgm
−3 of mildly oxygenated IVOCs, which are also not explained by mobile-source emissions.

While the comparison in Fig. 3b suggests that nonmobile sources may be important 

contributors to ambient IVOC concentrations, there are a number of potential uncertainties, 

including (1) uncertainty in mobile-source activity, (2) uncertainty in mobile-source NMOG 

emission factors, and (3) uncertainty in mobile-source IVOC-to-NMOG emission ratios. The 

first potential uncertainty is mobile-source activities. BC and CO are commonly used as 

indicators of gasoline and diesel source activity. The mobile-source CO emission inventory 

used here (EMFAC) agrees with another fuel-based CO inventory (Kim et al., 2016), both of 

which reproduce the observed weekly patterns. This suggests the mobile-source CO 

emission inventory in the Los Angeles Basin during CalNex is correctly modeled. While the 

model performs well for CO (Fig. S2), it overestimates BC concentrations by a factor of 2. 

These comparisons suggest that gasoline activity (the major of source of CO) is modeled 

correctly, but there may be a potential overestimation of either diesel activity and/or the 

diesel BC emission factor (the major source of BC). If the diesel activity is overestimated, 

then diesel IVOC are likely overestimated, which only strengthens our conclusion that there 

are important nonmobile sources of IVOCs.

The second potential uncertainty is mobile-source NMOG emission factors. Comparisons in 

May et al. (2014) suggest that the EMFAC emission factors (which are used to create the 

mobile-source emission inventory for these simulations) are robust, except for LEV-II 

vehicles. During the 2010 CalNex period, EMFAC estimates LEV-II vehicles (considering 

model year after 2004) only emit 8.5% of total gasoline NMOG emissions in California and 

therefore are not major contributors in mobile emissions. Therefore this uncertainty also 

does not appear to alter our conclusion that there are important nonmobile sources of 

IVOCs.

The final potential uncertainty is the IVOC-to-NMOG ratios. Zhao et al. (2016) and Lu et al. 

(2018) show that IVOC-to-NMOG ratios of cold-start UC (unified cycle) emissions from 

gasoline sources are consistent across a large number of vehicles spanning a range of 

emission certification standards. Although IVOC emissions from hot-running gasoline 

vehicle exhaust are enriched by as much as a factor of 4 compared to the cold-start UC cycle 

(Lu et al., 2018; Zhao et al., 2016), EMFAC2017 estimates that running exhaust only 

contributes 34% of total gasoline summertime NMOG emissions in California in 2010. A 

simple weighted average of 66% of emissions using the cold-start UC emission profile and 
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34% of emissions using the hot-running emission profile increases the IVOC-to-NMOG 

fraction for gasoline vehicles by a factor of 2, from 4.5% to 9.1%. The IVOC-to-NMOG 

ratio for diesel sources is already high (55%), and thus it cannot be increased as much as the 

gasoline emissions (less than a factor of 2). Therefore, the largest uncertainty in modeled 

mobile IVOCs is the gasoline source IVOC-to-NMOG ratio, which could be underestimated 

by as much as a factor of 2. This means that the overall uncertainty in modeled mobile IVOC 

emissions is less than a factor of 2. Increasing the gasoline IVOC emissions to better account 

for hot-running operations would explain a larger fraction of the measured hydrocarbon 

IVOC concentrations, but it seems unlikely that it would close the mass balance given that 

gasoline vehicles contribute less than half of the mobile IVOCs. Therefore, even 

acknowledging the existing uncertainty we still conclude that nonmobile sources are likely 

important contributors to ambient IVOC concentrations in Pasadena.

Jathar et al. (2017) also updated CMAQ with mobile-source IVOC emission estimates. They 

assumed that IVOCs contribute 25% and 20% of the NMOG emissions from gasoline and 

diesel sources, respectively. However, these ratios are not based on direct measurements but 

instead inferred from SOA closure studies for chamber experiments. The model of Jathar et 

al. (2017) predicted mobile sources contribute 3.9 μgm−3 of IVOCs, which is about factor of 

1.5 higher than the IVOC concentrations predicted here (and about 65% of measured 

ambient hydrocarbon IVOC concentrations). The better closure is due to the very high 

IVOC-to-NMOG ratio assumed for gasoline vehicles, which is not supported by direct 

measurements (Drozd et al., 2019; Zhao et al., 2016).

4.1.2 Primary VOC/IVOC diurnal patterns—Figure 4 compares the measured and 

modeled campaign-average diurnal patterns of important anthropogenic VOCs (benzene, 

toluene, m-/p-/o-xylenes) and hydrocarbon IVOCs. Measured concentrations of benzene, 

toluene and hydrocarbon IVOCs are highest in the early afternoon (12:00–14:00, in Fig. 4a, 

b and d). This has been attributed to the transport of morning emissions from downtown Los 

Angeles to Pasadena (Borbon et al., 2013). Measured xylene concentrations show a slight 

decrease in daytime, which is attributed to their relatively high OH reaction rate and thus 

faster oxidation during the daytime (de Gouw et al., 2018).

Figure 4 indicates that the model reproduces the measured benzene diurnal pattern but not 

the toluene, xylene and hydrocarbon IVOC diurnal patterns. Figure 4b and c show that 

during nighttime the model overpredicts toluene and xylene concentrations by a factor of 2 

and 1.4, respectively. Modeled hydrocarbon IVOC mass concentrations (Case 2) are 

underestimated throughout the day (Figs. 4d and 3b).

Figure 4 also shows modeled species concentrations peak around 06:00 and then steadily 

decrease from 06:00 to 14:00, in contrast to the early-afternoon peaks (12:00 to 14:00) in the 

measured data. A potential explanation for this difference is that the model is incorrectly 

simulating the PBL height. On average, the measured PBL height ranges from ~ 200 m at 

night to ~ 900 m at noon (Fig. S7), while modeled PBL height ranges from ~ 60 m at night 

up to 1500 m at noon. However, changing the predicted PBL height would degrade model 

performance for some species which are already predicted well (Figs. S3 and S4). Another 

possible explanation is that additional unknown sources of IVOCs have large NMOG 
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emissions that peak at noon, for example some type of evaporative emissions. Additional 

research is needed to resolve the discrepancy between model and measured diurnal profiles 

shown in Fig. 4.

4.1.3 OA mass concentrations and diurnal patterns—Figure 5a plots the AMS-

observed and CMAQ-modeled hourly-averaged PM1-OA time series at the Pasadena site 

during CalNex. We consider the Pearson correlation coefficient (r) and root-mean-square 

error (RMSE) as the evaluation metrics between measured and model OA time series. The 

definitions of r and RMSE are shown in Eqs. (S1) and (S2) in the Supplement.

Our base model (Case 1) significantly underpredicts the OA concentration, often by more 

than a factor of 3, over the entire time period. Case 1 has a large RMSE = 5.3 μgm−3, which 

is comparable to the average measured OA (6.9 μgm−3), and moderate positive correlation (r 
= 0.69). To understand the source of this discrepancy, Fig. 5b and c compare the modeled 

average diurnal patterns for SOA and POA to positive matrix factorization (PMF) factors 

derived from aerosol mass spectrometer data for OOA (SV-OOA plus LV-OOA) and POA 

(hydrocarbon organic aerosol (HOA) plus cooking organic aerosol (COA)) (Hayes et al., 

2013). The observed OOA factor in Fig. 6b has a strong peak in the early afternoon, similar 

to the OH radical concentration (de Gouw et al., 2018) and photochemical age (Hayes et al., 

2015).

Figure 5c shows that the model correctly predicts average POA concentrations (modeled: 

1.73 μgm−3 vs. measured: 2.01 μgm−3). It also reasonably reproduces the observed POA 

diurnal pattern. This applies to all four cases and suggests that our inventory (Table 3) has a 

reasonable representation for the POA emissions, volatility distributions and correction for 

filter artifacts for gasoline sources. The mobile volatility profile predicts that a bit more than 

half of the semivolatile POA evaporates; therefore, if it treated POA as nonvolatile then the 

model would have overpredicted the observed POA concentrations by about a factor of 2.

Figure 5b shows that Case 1 produces very little SOA, similar to previous CMAQ 

simulations (Baker et al., 2015; Woody et al., 2016). In this study, we emphasize the peak in 

the diurnal SOA concentration because this enhancement is reflective of the strength of 

prompt SOA formation in both the observations and the model. In Case 1, the predicted peak 

SOA concentration is 1.65 μgm−3 at the Pasadena site, which is 5 times lower than the 

AMS-observed value (8.63 μgm−3). Both modeled LV-OOA and SV-OOA are much lower 

than AMS-observed factors.

Figure 2 indicates that mobile-source IVOC emissions contribute significantly to SOA 

formation, especially to the daytime SOA formation due to their high SOA yield and OH 

reaction rates. In Case 2, the addition of mobile IVOC emissions increases the peak SOA 

concentration by 67%, from 1.65 to 2.75 μgm−3, and daytime SOA increases (peak SOA 

minus nighttime SOA) by 110% from 0.82 to 1.73 μgm−3. The increase in nighttime SOA 

from IVOC oxidation was about a factor of 4 smaller than the daytime increase. Adding 

mobile-source IVOC improves model performance, but Case 2 still only explained 32% of 

AMS-observed daytime peak SOA.
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Our comparison demonstrates that mobile-source IVOC emissions need to be explicitly 

included in models and inventories. However, they do not close the mass balance for 

hydrocarbon IVOCs or SOA in Pasadena. In the next section, we explore the potential 

contribution of IVOC emissions from nonmobile sources (McDonald et al., 2018).

4.2 Nonmobile IVOC emissions

4.2.1 IVOC mass concentrations and diurnal pattern—Motivated by recent 

research on volatile chemical products (VCPs) (Khare and Gentner, 2018; McDonald et al., 

2018), we also investigated potential IVOC emission from nonmobile sources. For example, 

McDonald et al. (2018) estimated that 19.6% of total gas-phase VCP emissions are IVOCs. 

Khare and Gentner (2018) reported that the IVOC content in 12 commercially available 

VCPs ranges from 0% to 95%. However, many of these IVOCs in VCPs are heavily 

oxygenated.

Cases 3 and 4 explore different levels of IVOC emission for nonmobile sources. The IVOC-

to-NMOG ratios are not based on independent laboratory data but are set to close the gap 

between modeled and measured hydrocarbon IVOC concentration (Case 3) and SOA 

concentration (Case 4) in Pasadena, CA (Hayes et al., 2013; Zhao et al., 2014). Since there 

are limited data on nonmobile IVOC emissions, they are assumed to have the same 

properties as alkane-like IVOCs (IVOCP6-ALK to IVOCP3-ALK) with a uniform volatility 

distribution. Table 4 shows that Case 3 and 4 add an average of 30.7 and 68.5 t d−1 of 

nonmobile IVOC emissions scaled from NMOG emissions as described in Sect. 3.4.

For the low nonmobile IVOC case (Case 3), we added IVOC emissions to the inventory 

equivalent to 12% of nonmobile NMOG emissions. The scaling coefficient was determined 

to roughly match the campaign-average hydrocarbon IVOC mass concentrations measured 

in Pasadena, CA (Zhao et al., 2014). The only difference between Case 2 and 3 is the 

additional nonmobile hydrocarbon IVOC emissions.

For the high nonmobile IVOC case (Case 4), we added nonmobile IVOC emissions 

equivalent to 26.8% of nonmobile NMOG emissions. This value was chosen to roughly 

close the mildly oxygenated IVOC and SOA mass balance. It is obviously a very high 

estimate but only somewhat higher than the 20% estimates of total VCP emissions in 

McDonald et al. (2018). The only difference between Case 3 and 4 is the additional 

nonmobile IVOC emissions equivalent to 14.8% of nonmobile NMOG emissions.

Figure 3b shows that in Case 3 the model predicts 4.9 μgm−3 of nonmobile hydrocarbon 

IVOCs and 7.7 μgm−3 of total hydrocarbon IVOCs, which is only some-what higher than the 

measured value (6.3 μgm−3). Case 4 predicts an additional 6.3 μgm−3 of oxygenated IVOCs 

from nonmobile sources and 14 μgm−3 of total IVOCs (hydrocarbon + oxygenated), which 

exceeds the measured total IVOC (10.5 μgm−3) by 30%. Given this overprediction and the 

fact that mildly oxygenated IVOCs can also be formed through secondary chemistry, these 

results suggest that the IVOC-to-NMOG ratio for nonmobile sources is between Case 3 

(12%) and Case 4 (26.8%). In addition, recent research suggests that up to a factor of 3 

scale-up may be needed for VCP NMOG emissions (McDonald et al., 2018), which would 

drive down the IVOC-to-NMOG ratios to 4%–9%.
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4.2.2 OA time series and diurnal patterns—Adding nonmobile IVOC emissions 

increased the predicted afternoon peak SOA concentration to 5.0 and 8.6 μgm−3 for Case 3 

and 4, respectively. This highlights the potentially large contribution of nonmobile IVOC 

emissions to SOA formation. Figure 5a also shows that in Case 4 the modeled OA time 

series largely explains the observed SOA (RMSE = 2.5 μgm−3, r = 0.85), including 

explaining the observed peak values in the middle of the day. Since increasing OA 

concentrations also shifts the gas-particle partitioning of SVOCs to the particle phase 

(Donahue et al., 2006), there are also minor shifts in POA partitioning from Case 1 to Case 

4, but these changes are small and do not substantively alter the model-measurement POA 

comparison shown in Fig. 5c.

Adding nonmobile IVOC emissions also improves the model predictions of SOA 

contribution to OA in Pasadena. Hayes et al. (2013) apportioned 66% of the OA to OOA 

(SV-OOA plus LV-OOA) in Pasadena during the CalNex campaign. Hersey et al. (2011) 

apportioned an even higher fraction of 77% OA to OOA in Pasadena in 2009. As a 

comparison, if no IVOCs are included in the model, Case 1 only predicts that SOA only 

contributes 47% of the total OA. With additional mobile and nonmobile IVOC emissions, 

our model predicts 67% of OA as SOA in Case 3 and 74% in Case 4.

Although Case 4 largely reproduces the measured OA, we do not think that missing IVOC 

emissions are the only contributor to the poor performance of the base model. The 

assumption of Case 4 that IVOCs contribute 26.8% of nonmobile NMOG emissions is likely 

too high, and it overpredicts the total measured IVOC concentrations. Other important 

uncertainties include (1) the effect of vapor wall loss on SOA yield (Zhang et al., 2014), (2) 

PBL modeling, (3) multigenerational SOA aging and (4) SVOC emission uncertainties. 

First, SOA yields for VOCs and IVOCs need to be corrected (typically increased) for vapor 

wall losses (Akherati et al., 2019). Second, CMAQ likely overpredicts the afternoon PBL 

height in Pasadena, as discussed in Sect. 4.1. Correcting this will likely increase SOA 

formation and concentrations, reducing the amount of IVOC emissions needed to reach SOA 

mass closure. Finally, the effects of multigenerational aging on secondary products of SOA 

precursor oxidation are uncertain. We have represented this phenomenon with model 

parameters designed for aging of SVOC emissions (Murphy et al., 2017), but the ratio of 

functionalization versus fragmentation could be different for products of IVOC oxidation 

due to differences in carbon number and functionality. Figure 5c shows that simulated POA 

reproduces the measured concentrations, so we believe that the uncertainty in SVOC 

emissions is relatively small. We also acknowledge the model uncertainty in the oxidation 

and aging of SVOCs, and this can lead to the substantial changes in OA prediction.

Despite all of these potential uncertainties, the exploratory simulations (Case 3 and 4) 

indicate nonmobile IVOC emissions are likely an important source of SOA precursors, but 

their contributions should be between Case 3 and 4 (12% and 26.8% of nonmobile NMOG 

emissions). The lower value will close the hydrocarbon IVOC but not the SOA mass 

balance. Correcting the likely underestimate of VCP emissions (McDonald et al., 2018) in 

current inventories will drive down the needed nonmobile IVOC emissions from 4% to 9% 

of NMOG emissions.
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4.3 Regional SOA formation

IVOCs also contribute to regional SOA formation. This is shown in Fig. 6a and b, which 

present maps of campaign-average NMOG emissions and modeled SOA concentrations. 

Primary NMOG emissions are concentrated in densely populated urban areas such as Los 

Angeles, but due to the transport of SOA precursors, especially IVOCs, Fig. 6b shows that 

SOA concentrations are spread over a much larger spatial domain than the emissions. This is 

expected given the SOA production requires time for atmospheric oxidation.

To evaluate the spatial performance of the model, we compared model predictions of 

regional OA to CSN data at seven sites in California shown in Fig. 6c. Three of the sites are 

in southern California (Los Angeles, Riverside and El Cajon), while the others are in central 

or northern California. Figure 6d shows the comparison between modeled OA and CSN data 

(OC·1.8 to account for non-carbonaceous components of the organic aerosol collected on the 

filters) for all seven sites from Case 1 to Case 4. Table 5 summarizes the evaluation metrics 

for all cases in site-aggregated comparisons.

Case 1 grossly underestimated the OA at all sites except for Sacramento, with a fractional 

bias (FB, definition in the Supplement) of −0.59 and fractional error (FE, definition in the 

Supplement) of 0.67, of which much of the measured OA is SOA (Docherty et al., 2008; 

Hayes et al., 2013). Case 2 and Case 3 reduce the fractional bias to −0.52 and −0.33, 

respectively, and the fractional error to 0.62 and 0.49. Of the four cases considered here, Fig. 

6d shows that Case 3 predicted the OA concentrations at three of the southern California 

CSN sites but underpredicts at other sites such as Fresno, San Jose and Bakersfield. Case 4 

overpredicts the OA concentrations at the southern California CSN sites (coincident with the 

highest average SOA concentrations) but still underpredicts in Bakersfield, San Jose and 

Fresno. However, this case has the best overall metrics (FB = −0.10 and FE = 0.42).

Figure 6b shows that the amount of SOA formed from additional IVOC emissions is much 

less in northern and central California compared to southern California. This could be due to 

the different meteorological conditions, or source variations, and/or inaccuracies in the 

multigenerational aging model. More research is needed to better understand the 

competition between functionalization and fragmentation of organic gases at long 

atmospheric timescales. Case 3 and Case 4 were estimated to roughly explain the measured 

hydrocarbon IVOC and SOA concentration in Pasadena, but measured data of source-

specific IVOC-to-NMOG fractions are needed to correctly model the nonmobile emissions.

5 Conclusions

This paper presents new mobile-source emission profiles that explicitly account for IVOC 

emissions and a new SOA parameterization for mobile-source IVOCs designed for 

implementation in chemical transport models. We implemented these new profiles and 

parameterizations to investigate the contribution of mobile sources and IVOC emissions to 

SOA formation in California during the CalNex campaign. We have focused on mobile-

source emissions because of the availability of data, but the same basic approach can applied 

to other sectors of organic combustion in the future, such as wildfires, agricultural fires and 

meat cooking, as additional data become available. The main findings are as follows.
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We developed a new parameterization to model SOA formation from mobile-source IVOC 

emissions designed for implementation into CTMs. Explaining the SOA formation from 

both gasoline and diesel vehicles requires accounting for both the volatility and the chemical 

composition of the IVOC emissions. Our parameterization has six lumped IVOC species: 

two aromatic and four aliphatic.

We developed new source profiles for IVOC emissions from mobile sources that are 

available in SPECIATE 5.0 to facilitate their use in emission inventory preparation and 

future CTM simulations. Applying these profiles to the existing EPA inventories predicts 

that mobile sources contribute 2.7 μgm−3 of IVOCs at the Pasadena site during CalNex, 

which is 43% of measured concentrations of hydrocarbon IVOCs.

Mobile-source IVOC emissions are predicted to contribute ~ 1 μgm−3 daily peak SOA 

concentration, a 67% increase compared to the base case without IVOC emissions. 

Therefore, mobile-source IVOC emissions need to be included in CTM simulations. 

However, mobile-source emissions alone do not explain the measured IVOC or SOA 

concentrations. The growing importance of nonmobile sources underscores the effectiveness 

of the decades-long regulatory effort to reduce mobile-source emissions. Results from 

exploratory model runs suggest that between 12% and 26.8% (or 30.7 to 68.5 t d−1 in the 

Los Angeles-Pasadena region) of nonmobile NMOG emissions are likely IVOCs.

Future research needs the following.

• VCPs are likely a major source of IVOCs and future research is needed to 

constrain their emissions using ambient observations, bottom-up emission 

inventory methods and computational models (McDonald et al., 2018; Qin et al., 

2020). Measurements of both the volatility distribution and chemical 

composition of VCP emissions are needed. Modeling the SOA formation from 

these new IVOCs will likely require extension of existing chemical mechanisms 

to better represent more oxygenated IVOCs.

• More measurements of ambient IVOC concentrations across a range of field sites 

are needed to better evaluate model performance. Given the lack of data, regional 

evaluations of ambient IVOC and OA predictions still have large uncertainty.

• Improved understanding is needed on the effects of multigenerational aging on 

SOA formed from IVOC emissions (and other precursors). The impacts of 

polluted plumes on downwind receptors depend on the nature of aging processes 

and whether they result in the addition or reduction of particulate mass (e.g., 

fragmentation processes may enhance volatilization of OA downwind of 

sources).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scatter plot of first-generation mass-based SOA yields versus volatility (log C*, μgm−3) in 

the detailed parameterization (dots are colored by OH reaction rates).
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Figure 2. 
(a) Comparison of predicted SOA formation per unit of mass mobile IVOC emissions of 

new parameterizations and model of Zhao et al. (2015, 2016) at OA = 5 μgm−3 (average 

[OH] = 3 × 106 cm−3). (b) Relative error in SOA formed between new and Zhao et al. (2015, 

2016) parameterizations (solid line is the relative error at OA = 5 μgm−3; shaded area 

corresponds to OA from 1 to 50 μgm−3).
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Figure 3. 
(a) Modeled NMOG and IVOC emissions by source for the four simulation cases. (b) 
Measured and modeled IVOC mass concentrations in Pasadena, CA, during CalNex for the 

four simulation cases. Measured data in (b) from Zhao et al. (2014).
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Figure 4. 
Comparison of measured (boxplot: solid box denotes 25th to 75th percentiles and whiskers 

denote 10th to 90th percentiles) and modeled (line: shaded area denotes 25th to 75th 

percentiles) diurnal patterns in Pasadena, CA, during CalNex for the following species: (a) 
benzene, kOH = 1.22 × 10−12 cm3 molec−1 s−1; (b) toluene, kOH = 5.63 × 10−12 cm3 molec−1 

s−1; (c) xylene, kOH = 1.36 – 1.87 × 10−11 cm3 molec−1 s−1; and (d) hydrocarbon IVOCs 

(blue: Case 2, red: Case 3), kOH = 1.55 – 7.56 × 10−11 cm3 molec−1 s−1. Measured data from 

Borbon et al. (2013).
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Figure 5. 
(a) PM1-OA component hourly-averaged time series of measured data and model output in 

Pasadena, CA, during the CalNex campaign. (b, c) Diurnal pattern of measured and modeled 

SOA and POA mass concentration in Pasadena, CA, during CalNex. Measured data from 

Hayes et al. (2013).
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Figure 6. 
(a) Campaign-average NMOG emissions (td−1) in the emission inventory. (b) Modeled 

campaign-averaged SOA concentration in Case 4. (c) Location of CSN sites used for model 

evaluation. (d) Comparison of modeled OA to measured OA (OC·1.8) at CSN sites in 

California.
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Table 3.

POA volatility distributions and filter artifact scaling factors.

Source Volatility, C* (μg m−3, at 298 K) Filter artifact scaling factor

≤ 10−12 1 10 102

Gasoline 0.16 0.08 0.37 0.39 1.4

Diesel 0.21 0.11 0.33 0.36 1

Gas turbine 0.15 0.26 0.38 0.21 1
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Table 5.

Model OA performance metrics at all CSN sites (1.8·OC) for this study.

Case Fractional bias Fractional error

1 (baseline) −0.59 0.67

2 (mobile IVOC) −0.52 0.62

3 (low nonmobile IVOC) −0.33 0.49

4 (high nonmobile IVOC) −0.10 0.42

Atmos Chem Phys. Author manuscript; available in PMC 2021 April 14.


	Abstract
	Introduction
	Parameterizing SOA formation from mobile-source IVOCs
	CMAQ model
	Model configuration
	POA emissions
	IVOC emissions
	Multigenerational aging and gas-particle partitioning
	Simulation cases

	CMAQ simulation results
	Base case and mobile IVOC case
	IVOC mass concentrations
	Primary VOC/IVOC diurnal patterns
	OA mass concentrations and diurnal patterns

	Nonmobile IVOC emissions
	IVOC mass concentrations and diurnal pattern
	OA time series and diurnal patterns

	Regional SOA formation

	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

