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Targeting CD38 is lethal to Breg-like chronic lymphocytic leukemia cells
and Tregs, but restores CD81 T-cell responses
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Key Points

•CD38hi Breg-like CLL
cells promote conver-
sion of naive T cells into
Tregs in an IL-10/TGF-
b–dependent manner.

•CD38 targeting drugs
are lethal to both
IL-10–producing Breg-
like CLL cells and
Tregs, but lead to im-
proved CD81 T-cell
cytolytic responses.

Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal

expansion of CD51CD231CD271CD191k/l1 B lymphocytes and are clinically noted to have

profound immune suppression. In these patients, it has been recently shown that a subset of

B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our

investigation identified that CLL cells with a CD191CD241CD38hi immunophenotype (B

regulatory cell [Breg]–like CLL cells) produce high amounts of IL-10 and transforming

growth factor b (TGF-b) and are capable of transforming naive T helper cells into CD41

CD251FoxP31 T regulatory cells (Tregs) in an IL-10/TGF-b-dependent manner. A strong

correlation between the percentage of CD381 CLL cells and Tregs was observed. CD38hi

Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in

patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and

Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was

associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in

interferon-g and proliferation of cytotoxic CD81 T cells with an activated phenotype, which

showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38

mAb therapy were validated in a CLL–patient-derived xenograft model in vivo, which

showed decreased percentage of Bregs, Tregs, and PD11CD38hiCD81 T cells, but increased

Th17 and CD81 T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in

CLL can modulate the tumor microenvironment; skewing T-cell populations from an

immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for

enhanced anti-CLL response.

Introduction

Chronic lymphocytic leukemia (CLL) is a B-cell cancer in which there is a concomitant dysregulation
of the nonmalignant T-cell compartment and immune cytokine milieu.1-5 T cells from patients with
CLL are often impaired, with a notable increase in T regulatory cells (Tregs) and compromised
CD81 cytotoxic T-cell (cTL) functionality.6,7 These cellular deviations are accompanied with
dysregulation of immunosuppressive cytokines such as interleukin 10 (IL-10) and transforming
growth factor b (TGF-b) secretion.2,8 Together, these changes contribute to clinical progression of
disease.9
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Abnormalities in the T-cell population are present at early stages of
disease in patients with CLL, suggesting the ability of malignant
B-CLL clones (even in low numbers) to exert a dominant effect
on their microenvironment.10,11 It has recently been shown that
within the overall CLL cell compartment, a subset of B-CLL
cells phenotypically resemble and function as B regulatory cells
(Bregs).12 Bregs constitute a newly designated group of B cells
that have the capability to exert suppressive effects on a variety
of immune cell types,13 mediated in part by IL-10 secretion.
Several types of Bregs have been identified,14 with 1 subset having
a CD191CD241CD38hi immunophenotype and an enhanced
capacity to secrete IL-10 (termed B10 Bregs). B10 Bregs are
highly immunosuppressive and can dampen effector CD41 T
helper cells, specifically Th1 and Th17 cell responses,15,16 and
also impair cTL activity.

Patients with CLL with at least 30% CD381 B-CLL cells are
designated as having CD381 disease, which is associated with
an unfavorable clinical prognosis.17 We have recently demon-
strated that targeting CD38 with the anti-CD38 human monoclonal
antibody (mAb) daratumumab downregulates B-cell receptor
signaling and enhances the antitumor activity of ibrutinib in CLL
cells andWaldenstrom macroglobulinemia tumor cells.18,19 These
investigations revealed that daratumumab induces antibody-
dependent cell-mediated cytotoxicity, complement-dependent
cytotoxicity, antibody-dependent cellular phagocytosis, and direct
apoptosis of CLL cells in vitro, and together these undergird its
anti-CLL activity in vivo.

As CLL cells are highly dependent on their interaction with
neighboring immune cells,20,21 we investigated the effects of
CD38-targeting agents on Breg-like CLL cells, T-cell subsets,
their associated immune cytokine environment, and the down-
stream effect on functionality of cTLs from patients with CLL.

Materials and methods

Human samples, T-cell assays, mouse model, and

statistical analysis

Peripheral blood mononuclear cells (PBMCs) from patients with
CLL (n522 with $90% tumor B cells; clinical/biological data in
Table 1) and healthy donors were isolated under a protocol
approved by the Mayo Clinic Institutional Review Board. CD191

CD51CD38hi/lo CLL cells and CD41CD251CD127lo Tregs were
sorted out using magnetic beads/flow-sorter (sorting and gating
strategy in supplemental Materials and methods).18 A CLL–patient-
derived xenograft (PDX) model was established,22 using PBMCs
isolated from a patient with CLL with CD381 disease, injected into
NSG mice (The Jackson Laboratory). iTreg formation assays
were carried out using naive Th cells prestimulated with anti-CD3
(5 mg/mL)/CD28 (5 mg/mL) antibodies followed by coculture with
either autologous Breg-like (CD191CD241CD381) or non-Breg
(CD191CD241CD382) CLL cells. cTL proliferation was de-
termined using CellTrace carboxyfluorescein succinimidyl ester
(Thermo Scientific) on a flow cytometer. cTL cytolytic activity was
measured by co-culturing cTLs with calcein-AM–labeled autolo-
gous/allogeneic CLL cells for 6 hours. For experiments in which
CD38 expression was assessed in cells treated with daratumu-
mab or kuromanin, a multiepitope fluorescein isothiocyanate-
conjugated anti-CD38 antibody (Cytognos, Salamanca, Spain)
was used as previously described by us.18 Daratumumab was

acquired through clinical sources; small molecule CD38 inhibitors,
kuromanin23 and 78c,24,25 were purchased from Selleckem and
provided as a gift from Eduardo Chini (Mayo Clinic, Rochester, MN),
respectively. All resulting values are expressed as mean6 standard
error of the mean (SEM). Data were analyzed for significance in
GraphPad Prism by paired Student t test, Mann-Whitney U test, or
1-way analysis of variance with Bonferroni adjustment as specified.
Correlation coefficients and their significance were calculated by
2-tailed Spearman’s rank correlation. A confidence interval of 95%
or P, .05 was considered statistically significant.

Detailed descriptions of the materials and methods are provided in
the supplemental Materials and methods.

Results

CD38-targeting agents decrease IL-10 and increase

IFN-g in the CLL-immune milieu

The immune system of patients with CLL is highly dysfunctional and
poised toward an immunosuppressive disposition, which leads to
compromised antitumor immune-effector activity and poor clinical
outcome.26 Increased IL-10 and TGF-b (anti-inflammatory), along
with decreased IL-2 and interferon-g (IFN-g) (proinflammatory),
are known to promote tumor growth and dampen immune
functionality.12,13 Cytokine analysis from the plasma of patients
with CLL revealed IFN-g and IL-2 levels to be 3.6- and 1.5-fold
lower vs healthy donors (P5 .0022 and P5 .0065, respectively;
Figure 1A-B). Conversely, plasma levels of IL-10 and TGF-b were
two- and 6.4-fold higher in patients with CLL vs healthy donors
(P5 .001 and P5 .0012, respectively; Figure 1C-D). As in-
creased expression of CD38 on leukemic cells is a well-
established parameter that confers poor clinical prognosis,17 we
performed subset analysis of cytokine levels in CD381 or CD382

patients with CLL. Expression of IFN-g (Figure 1E; P5 .0281),
IL-2 (Figure 1F; P5 .0006), IL-10 (Figure 1G; P5 .0003), and
TGF-b (Figure 1E; P5 .0002) in the plasma of CD381 patients
was significantly higher than in CD382 patients. It has been
previously reported that CD38 activation can increase IL-10 levels
in monocytes.27 Conversely, inhibition of cADPR, a substrate that
is biosynthesized by CD38 NADase activity, results in decreased
expression of TGF-b.28 We hypothesized that targeting CD38 on
CLL cells would decrease IL-10 and TGF-b while raising IFN-g
and IL-2 levels. Exposure of PBMCs from patients with CLL to
daratumumab raised the extracellular concentration of IFN-g
(Figure 1I; P5 .022), as well as intracellular expression of IL-10,
in gated CLL cells (Figure 1J; P5 .0286) by nearly twofold
compared with untreated cells. With kuromanin, a significant
increase in intracellular IFN-g was noted in gated CLL cells
(P5 .018); however, this was not evident in the extracellular
fraction. Examination of extracellular IL-10 in daratumumab-
treated (P5 .0274) or kuromanin-treated PBMCs from patients
with CLL (P5 .032) was significantly lower than in their untreated
counterparts (Figure 1K). A similar decrease in intracellular IL-10
(and IL-10 mean fluorescence intensity [MFI]; supplemental
Figure 1) was noted in the CD191 gated fraction of daratumumab
(P5 .0125) or kuromanin-treated PBMCs (P5 .0158; Figure 1L).
Altogether, these results demonstrate that targeting CD38 (by
either therapeutic mAb or small molecule) can alter cytokines
(IL-10, IFN-g) involved in regulating the interaction between CLL
cells and neighboring immune cells.
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A subset of CLL cells resembles B10 Bregs, produces

IL-10, and can be eradicated by CD38-targeting agents

A subset of CLL cells resembles Bregs and shares IL-10
competence.12,15 We noted that IL-10 was significantly higher
within the CD191CD51CD241CD38hi fraction of CLL cells (Breg-
like CLL cells) relative to the CD191CD51CD241CD38lo fraction
(non-Breg CLL cells) by nearly twofold (P5 .006 and 0.0012;
Figure 2A-C). We hypothesized that pharmacologic interference
of CD38 would decrease the percentage of IL-101 Breg-like
CLL cells. Compared with vehicle, intracellular IL-10 in Breg-like
CLL cells was significantly decreased by daratumumab (from
31.58% to 17.79%; P5 .019), but not with either kuromanin or 78c
(Figure 2D). In parallel experiments and in line with our recently
published data,18 we noted significant apoptosis of Breg-like CLL
cells (Figure 2E). Taken together, we show that Breg-like CLL
cells are a source of IL-10 production, but are eradicated by
daratumumab, which is associated with an overall decrease in IL-10
levels.

CLL cells promote conversion of naive T-helper cells

into Tregs in an IL-10/TGF-b-dependent manner

Tregs can dampen antitumor CD41 or CD81 T-cell responses and
promote neoplastic B-cell growth.6,29 We noted a significantly
higher proportion of Tregs present within PBMCs from patients with

CLL vs healthy donors (11.86%62.03% vs 1.94%60.32%;
P5 .026; Figure 3A) and which was significantly higher in CD381

(16.10%62.17%) vs CD382 patients with CLL (9.92%61.38%;
P5 .04; supplemental Figure 2A-B). Absolute cell counts and
percentage Tregs assessed from 19 patients with CLL are provided
in supplemental Table 1. We hypothesized that Tregs in patients
with CLL may be increased because of the influence of CLL cells on
naive T helper cells. In a coculture of CD191CD51 CLL cells with
patient-autologous CD3/CD28-stimulated naive T helper cells or
those independently isolated from healthy donors, we noted a 7.5-
fold induction of FoxP31 Tregs (iTregs) in the coculture containing
naive T helper cells from healthy donors (P5 .0014). Coculture
between CLL cells and autologous naive T helper cells did not
induce increased iTreg formation (Figure 3B). Next, in a transwell
assay, we placed magnetically isolated CLL Bregs or, separately,
non-Breg CLL cells (upper chamber) in proximity with patient-
autologous naive T helper cells (lower chamber), and observed
significantly more induction of iTregs (23.65%61.15%) in the
transwell containing CLL Bregs relative to the transwell containing
non-Breg CLL cells (9.91%61.61%; P5 .011; Figure 3C, top and
bottom red dot plots). We reasoned that increased iTreg formation
may be a result of soluble IL-10 and/or TGF-b secreted mainly from
Breg-like CLL cells, inferred from the proportion of IL-101 or TGF-
b1 cells being higher in CD381 patients with CLL (Figure 1G;
supplemental Figure 3). Indeed, in the transwell containing Breg-like

Table 1. Clinical characteristics of patients with CLL

Pt # Sex Age, y Rai stage Tx status IgVH ZAP701 Del 17P1 Complex karyotype Cytogenetics

CD38

% MFI sAbc

1* F 74 I TN Unmutated NA N N NA 38.01 313 3528

2* M 68 IV R/R Unmutated N N N del 11q, del 13q 32.31 253 3548

3* M 66 III TN Unmutated Y N N del 13q 36.46 270 3801

4 M 65 III R/R NA Y Y Y del 13q, del 2q, loss of 11p 20.98 109 1445

5 M 64 II TN NA N N N del 13q 24.55 208 2818

6* M 66 I R/R Unmutated Y N N del 13q 98 1184 12558

7* F 43 0 TN Unmutated Y N N del 13q 37.43 180 3489

8 F 78 0 TN Mutated N N N Normal 6.3 59 776

9 F 68 NA R/R NA Y Y Y Normal 10.54 132 954

10* F 69 I TN Unmutated N Y Y del 11q, del 13q 46.71 568 8317

11 M 42 I TN Unmutated Y Y Y del 13q, del 6q, del 11q 13.39 180 2454

12 M 64 0 TN Mutated Y N N del 13q 13.12 182 2511

13 M 53 I PT Unmutated Y N N Normal 28.81 243 3388

14 M 59 I TN Mutated Y N N del 11q 18.11 144 3025

15* M 71 IV PT Unmutated Y N N del 13q 36.1 270 3801

16* F 69 I TN Unmutated Y N N del 13q 38.54 347 4142

17* F 50 I TN NA N N N Normal 45.95 401 5498

18 F 74 0 R/R Unmutated NA N N Normal 7.58 127 1011

19 M 66 0 TN Mutated NA N N del 13q 15.98 137 2544

20 F 58 0 TN Mutated N N N Normal 18.3 50 630

21 M 60 I TN NA N N N trisomy 12 13.99 172 2358

2211 M 65 III R/R Mutated NA N N del 13q 37.49 431 NA

Patient 22: cells used in establishment of CLL-PDX model.
F, female; M, male; NA, not available; PT, previously treated; Pt, patient; R/R, relapsed/refractory; sAbc, surface antibody bound per cell; TN, treatment naive; Tx, treatment.
*Patients who were designated as CD38 positive using the standardized clinical definition in which more than 30% of CD191CD51 CLL clones express CD38.
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CLL cells and naive T helper cells, an anti-IL-10 or anti-TGF-b
neutralizing Ab significantly reduced iTreg formation by nearly five-
or 4.3-fold, respectively (compare top red scatter dot plot points

with adjacent blue and brown points; P5 .0068). The combination
of the 2 neutralizing antibodies did not result in a greater decrease
of iTreg formation than that noted with singular use of anti-IL-10 or
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anti-TGF-b neutralizing Abs. Contrastingly, in the transwell with
non-Breg CLL cells, insignificant reductions in iTreg formation were
noted with anti-IL-101/2 anti-TGF-b neutralizing Abs (Figure 3C).

These novel findings prompted us to conclude that Breg-like CLL
cells are capable of promoting iTreg formation in an IL-10- and
TGF-b-dependent manner.
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10 within the PBMC fraction from healthy donors (B) and patients with CLL (C). (D) PBMCs from patients with CLL (n5 5) were treated with vehicle, daratumumab

(1 mg/mL), kuromanin (30 mM), or 78c (0.5 mM), followed by quantification of Breg-like CLL cells. (E) PBMCs from patients with CLL (n5 5) were sorted to enrich for
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twice in duplicate. *P, .05; **P, .001. NS, not significant.
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Anti-CD38 agents are lethal to Tregs

CD38hi Tregs have impressive immunosuppressive capabilities.30,31

We observed a significantly higher proportion of CD381 Tregs
in patients with CLL (54.27%63.91%; MFI, 616.8636.27)
compared with healthy donors (9.07%61.12%; P, .011; MFI,
234.0610.73;P5 .012; Figure 4A). Moreover, a positive correlation
between the percentage of CD381 Tregs and CD381 B-CLL cells
was also observed (r50.1; P5 .0042; supplemental Figure 2C). As
blocking CD38 induces apoptosis in Bregs, we assessed whether

Tregs were equally sensitive to CD38-targeting agents. In PBMCs
from patients with CLL, ex vivo treatment with daratumumab reduced
Tregs by approximately 49% (P5 .0286; Figure 4B). To determine
whether CD38-targeting agents decreased the formation of iTregs,
cocultures containing CLL cells and naive T helper cells from healthy
donors were treated with daratumumab or kuromanin. A significant
reduction in iTreg formation after exposure to daratumumab (;50%
decrease) or kuromanin (30% decrease; P5 .022, Figure 4C) was
observed. We also tested whether anti-CD38 agents reduced iTreg
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of Tregs was subsequently analyzed by flow cytometry. Contour or density plots are representative, and compiled data are presented as mean 6 SEM, with individual data

points overlaid. Each experiment was performed at least twice in duplicate. *P, .05; **P, .001.
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formation independent of CLL cells by incubating naive T helper cells
from healthy donors with a cytokine cocktail that induces Treg
formation. Although daratumumab significantly decreased cytokine-
induced iTregs (P5 .0115), kuromanin did not (Figure 4D). We
questioned whether iTreg depletion was a result of a direct cytotoxic
effect of anti-CD38 agents and observed that ex vivo exposure of
PBMCs from patients with CLL to daratumumab induced cell death
in 38.36%66.06% of FoxP3-gated Tregs (P5 .011; Figure 4E).
Treg cell death was also confirmed in flow-sorted CD41CD251

T cells from PBMCs of patients with CLL, in which daratumumab or
kuromanin induced apoptosis in 33.14%61.73% (P5 .0009) or
18.04%61.94% (P5 .0041) of cells, respectively (Figure 4F).
Collectively viewed, our results demonstrate that Tregs from patients
with CLL have high CD38 expression and are depleted from the
PBMCs of patients with CLL on exposure to daratumumab.

Daratumumab increases the proportion of Th17 cells

and promotes expansion of activated cTLs that shows

patient tumor-specific cytolytic activity

As anti-CD38 agents depleted Tregs and Breg-like CLL cells, we
deduced that changes in the proportion of other T-cell subsets may
also be evident (workflow/methodology shown in supplemental
Figure 4). Assessment of basal T effector levels were found to be
lower in PBMCs from patients with CLL (50.05%65.41%) vs
healthy donors (86.94%611.19%; P5 .014; Figure 5A). After
treatment of PBMCs from patients with CLL with daratumumab,

a significant increase was noted in the proportion of T effector cells
(64.53%62.12%; P5 .012; Figure 5B). Notably, significant T
effector proliferation was also seen in CD41 T cells isolated from
the PBMCs of patients with CLL and treated ex vivo with
daratumumab, but not in isolated CD41 T cells that were depleted
of Tregs (supplemental Figure 5). We also profiled Th1, Th2, and
Th17 subsets and found the percentage of Th17 cells to be 11-fold
higher in patients with CLL vs healthy donors (P5 .004). On
treatment with daratumumab, the proportion of Th17 cells from
patients with CLL further increased (P5 .015), with no changes in
Th1 and Th2 subsets seen (Figure 5C-D). In PBMCs depleted of
CLL cells and treated with daratumumab, the proportion of Th17
cells remained unchanged, suggesting that daratumumab did not
directly increase Th17 cells, but perhaps indirectly through acting
on (and killing) CLL cells in the PBMC mixture (supplemental
Figure 6). Overall, exposure to daratumumab also increased the
proportion of CD41IL171 and CD41IFN-g1 T cells (supplemental
Figure 7). As such, we reasoned that depletion of Tregs and tandem
increases in the proportion of Th17 and CD41IL171 cells by
daratumumab may lead to enhanced cTL antitumor function.32-35

CD38 expression on sorted cTLs from patients with CLL did not
differ drastically from that of healthy donors (11.29%61.36% vs
8.27%60.56%; Figure 6A-B), and thus we tested what direct
effect daratumumab would have on these cells. Intriguingly, sorted
and carboxyfluorescein succinimidyl ester-labeled cTLs from
healthy donors treated with daratumumab ex vivo showed a twofold
increase in proliferation (P5 .026) that was not observed in cTLs
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Figure 4. (Continued). daratumumab (Dara) or kuromanin (Kuro) on CLL cell-mediated conversion of CD41CD252 T cells to iTregs was tested. CD191CD51-sorted CLL

cells were cocultured with CD41 T cells from healthy donors with or without daratumumab (1 mg/mL) or kuromanin (30 mM) for 72 hours, followed by measurement of iTregs.

(D) In a similar manner, the effect of daratumumab (D) or kuromanin (K) was assessed on cytokine induced iTregs (without any CLL cells). (E) The direct cytotoxic effects of

daratumumab (D, 1 mg/mL, 24 hours) or kuromanin (K, 30 mM, 24 hours) were measured on Tregs from patients with CLL (n5 6 patients), using a fixable live dead assay. (F)

Separately, CD41CD251CD127lo sorted cells from 6 patients with CLL were treated with anti-CD38 agents (same concentrations and time as in panel H) and dual-stained

with annexin V/PI followed by flow cytometry analysis. Contour plots are representative, and compiled data are presented as mean 6 SEM with individual data points overlaid.

Each experiment was performed at least twice in duplicate. *P, .05.
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isolated from patients with CLL (Figure 6C). Despite lack of
proliferation, it remained plausible that cTLs may be activated as
a result of daratumumab-mediated reduction in the proportion of
Bregs and Tregs, decreased IL-10 and TGF-b, and increased
extracellular IFN-g. Thus, we treated PBMCs from patients with CLL
with daratumumab, and noted a modest but significant increase
in the proportion of cTLs in the PBMC mixture exposed to
daratumumab (28% cTLs) vs control Ab (17% cTLs; P5 .03;
Figure 6D). In line with this observation, a significant increase in
CD1371 cTLs (P5 .022; Figure 6E) and decrease in PD-11 cTL
subsets (P5 .011; Figure 6F) was also evident in PBMCs from
patients with CLL exposed to anti-CD38 agents, indicating an
activated cTL phenotype. It has recently been shown that PD11

CD38hiCD81 T cells are immunosuppressive and mediate re-
sistance to immune checkpoint therapy.36 Assessment of PD11

CD38hi cTLs in PBMCs from patients with CLL treated with
daratumumab or kuromanin ex vivo showed a significant de-
crease in this cTL subtype (P5 .001 relative to control;
Figure 6G). We also noted that daratumumab exposure resulted
in an increased proportion of IL171 and IFN-g1 cTLs (supple-
mental Figure 8), which prompted us to test the hypothesis
that these activated/daratumumab-primed cTLs would be highly
effective in lysing CLL cells (schema of experiment in Figure 6H).
As expected, daratumumab-primed cTLs had greater cytolytic
activity toward autologous sorted CLL cells as compared with
cTLs that were exposed to an immunoglobin G1 (IgG1) control
Ab (P5 .019; Figure 6I, compare left side blue dots with left side

red squares). To further understand whether these effects were
patient-tumor–specific, we exposed daratumumab-primed or
IgG1 Ab-exposed cTLs from patients with CLL to either
autologous or allogeneic (different patient) CLL cells. Although
significant cytolysis was observed in the autologous cocultures
that contained daratumumab-primed cTLs vs the IgG-exposed
cTLs (P5 .026; Figure 6J, compare left side blue dots with
left side red squares), nearly equivalent specific lysis be-
tween daratumumab-primed cTLs or the IgG-exposed cTLs
was observed in the allogeneic coculture (supplemental Figure 6J,
compare right side black dots with right side red dots). Altogether,
these results indicate to us that daratumumab, through an
undefined mechanism, influences the activation state of cTLs
and enhances their cytolytic activity toward CLL cells (in a patient
tumor-specific manner).

Anti-CD38–targeted therapy alters Breg, Treg, and cTL

levels in vivo in a CLL-PDX model

ACLL-PDXmouse model22 was established to determine the effect
of daratumumab or kuromanin on B- and T-cell subsets. Compared
with mice that received only vehicle, a significant reduction in the
absolute number of CD191CD51 CLL cells was noted in mice
treated with daratumumab or kuromanin (Figure 7A). Notably, Breg-
like CLL cells in both daratumumab-treated (P5 .00078) and
kuromanin-treated mice (P5 .00045) were reduced (Figure 7B).
Contrastingly, total Tregs were decreased in daratumumab-treated
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mice (P5 .0008), but not in mice treated with kuromanin (Figure 7C).
CD381 Tregs were significantly lower in mice treated with either
CD38-targeting agent, but more remarkably so in daratumumab-
treated mice (Figure 7D). Examination of T-helper subsets showed
that both daratumumab and kuromanin decreased Th1 popula-
tions in vivo (Figure 7E); however, changes in Th2 and Th17
subsets were more variable. The proportional change in the
percentage of Tregs, Th1, Th2, and Th17 cells and cTLs in
spleens isolated from mice treated with CD38-targeted agents
was mostly mirrored in the absolute cell count/spleen for these
cell types (supplemental Table 1). Although minimal in change,
a statistically significant (P5 .022) increase in cTLs was noted in
mice treated with daratumumab, but not kuromanin (Figure 7F).
Notably, PD11 cTLs and PD11CD38hi cTLs were significantly
lower in mice treated with either CD38-targeting agent compared
with vehicle-treated mice (Figure 7G), but it was only in the
daratumumab-treated cohort that we also observed an increase in
Granzyme B1 or LAMP11 cTLs, suggesting increased cytolytic

capacity of these cells (P5 .03 or P5 .012, respectively, vs
vehicle; Figure 7H-I).

Discussion

Physiologically, CD38 plays a central role in various immune
functions, such as T-cell activation, neutrophil chemotaxis, dendritic
cell migration, and monocyte chemokine production.37,38 In patients
with CLL, these immune processes are highly dysregulated and
underlie the immense degree of overall immune failure observed
clinically.1,39-42 In the current study, we investigated the immune
cytokine milieu as well as B- and T-cell subsets in patients with CLL,
within the context of targeting CD38. Subset analysis in CD381 vs
CD382 patients with CLL revealed not only higher levels of IL-10
and TGF-b but also IFN-g and IL-2 in plasma from CD381 patients.
IFN-g1 B cells have been described to promote the innate immune
response against intracellular infections by activating dendritic cells
via IFN-g secretion at levels nearly similar to those produced by NK
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cells.43 Although the significance of IFN-g1 CLL cells and their
increased levels postexposure to anti-CD38 agents is unclear, it is
possible that these cells are able to also activate various T-cell
subsets (including cTLs) via enhanced secretion of IFN-g and IL-2.

Studies into B cells with regulatory properties demonstrate that
a subset of CLL cells shares remarkable similarity with B10
Bregs.12 We observed that the CD191CD51CD241CD38hi

subset of Breg-like CLL cells has a distinct IL-10 secretion pattern
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Figure 7. Effects of anti-CD38 agents on Breg-like CLL cells, Tregs, T helper, and cTLs in a CLL PDX model. A short-term PDX-CLL clinical trial concept mouse

model was developed via injecting (IV) PBMCs isolated from a patient with CLL (clinical characteristics in Table 1, Pt. 22) into NSG mice. After 24 hours, mice were treated

with vehicle (V), daratumumab (D, 20 mg/mL loading dose followed by 10 mg/mL), or kuromanin (K, 20 mg/mL) by IV tail vein injection on postimplantation days 2, 5, and 8.

On day 9, mice were sacrificed, with the spleen and blood harvested, followed by human immune cell analysis carried out showing the absolute number of CD191CD51 CLL

cells (A); Breg-like CLL cells (CD191CD51CD241CD381) (B); Tregs (CD41CD251FoxP31) cells (C); CD381Tregs (CD41CD251CD127lo/FoxP3 gated cells) (D); T-helper

cells Th1, Th2, and Th17 subsets (E); CD81 cTLs (F); PD11CD38hiCD81 cTLs (G); Granzyme B1CD81 cTLs (H); and LAMP11CD81 cTLs (I) were probed and gated for

using human antibodies in mouse splenocytes cells. Absolute cell counts for Bregs, Tregs, Th1, Th2, Th17, and cTLs were also determined and are shown in supplemental

Table 2. Contour plots are representative and compiled data are presented as mean 6 SEM with individual data points overlaid. Each experiment was performed at least twice

in duplicate. *P, .05; **P, .001.
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compared with CD38lo/non-Breg CLL cells. Indeed, anti-CD38
agents induced apoptosis in Breg-like CLL cells, which was
associated with a decrease in IL-10 secretion. Mechanistically,
IL-10 and TGF-b secreted by CD38hi CLL-Bregs promotes the
expansion/outgrowth of Tregs, more so in comparison with CD38lo

CLL cells, which we demonstrated via co-culturing CD38hi or
CD38lo CLL cells with patient-autologous naive T cells, and used
neutralizing antibodies for IL-10/TGF-b. Jak et al have reported
a CD27-CD70-dependent mechanism for CLL-mediated iTreg
expansion44; however, our observation that iTreg formation is
dependent on IL-10/TGF-b is novel (Figure 3C). In line with this, we
observed that daratumumab (and to a lesser extent kuromanin)
significantly reduced iTreg levels. We questioned whether a re-
duction in Tregs was due to the direct effect of CD38-targeting
agents or because CD38-targeting agents deplete Bregs, reduce
IL-10/TGF-B levels, which in turn then decrease Tregs. During this
investigation, we made a novel observation that nearly 50% of Tregs
from patients with CLL have high CD38 expression compared with
Tregs from healthy donors. Furthermore, a significant correlation
between the percentage of Tregs and percentage of CD381 CLL
cells present in the PBMCs of patients with CLL was also noted
(r5 0.5; P5 .012; supplemental Figure 2B). Krejcik et al30 first
reported that treatment of patients with multiple myeloma with
daratumumab rapidly depletes CD381 Tregs, and subsequent
studies by Feng et al45 showed that blocking CD38 with isatuximab
induces Treg apoptosis. Our observations mirror these findings and
show that exposure of PBMCs from patients with CLL to
daratumumab, ex vivo, induces death of Tregs, a substantial number
of which express high levels of CD38.

Among other T-cell subsets, we noted low T effector cell levels in
PBMCs from patients with CLL, which increased significantly after
exposure to daratumumab. We surmised that an increase in these
cells was a result of daratumumab-mediated death of Breg-like CLL
cells and Tregs (with concomitant changes in cytokine levels),
which act as a stimulus for effector T-cell proliferation,46 and was
not a direct stimulatory effect of the drugs itself on T effector cells.
Indeed, in PBMCs from patients with CLL, where CD41 T cells
were isolated and Treg depletion was performed, CD38-targeting
agents did not increase T effector cell proliferation. In contrast,
when all CD41 T cells (which included Tregs) isolated from
PBMCs from patients with CLL were treated with daratumumab
or kuromanin, a significant increase in T effector cell proliferation
was observed (supplemental Figure 5). Dissection of the various T
helper subsets revealed increased Th17 cells in patients with CLL
compared with healthy donors, which has previously been
reported.1 In CLL, Th17 cells have been suggested to play an
antitumor role and are garnering interest in cancer immunotherapy
as a whole.47 Chatterjee et al have described the similarities
between artificially generated hybrid Th1/Th17 cells and CD41

T cells from CD38 knockout mice. These 2 T-cell populations
display superior antitumor capabilities compared with standard Th1
and Th17 cells or CD41 T cells from CD38 wild-type mice.47 We
noted that daratumumab treatment of CLL PBMCs increased the
proportion of Th17 cells; however, the functional aspect of this
remain to be defined. Given the changes that were induced by
exposure to daratumumab in Tregs and Th17 cells, we also
examined cTLs. The functional capacity of cTLs in patients with
CLL is severely impaired as a result of defects in immune synapse
formation and dysregulated expression of activation or immune

checkpoint molecules.1,48 Direct exposure of sorted CLL patient-
derived cTLs treated ex vivo with daratumumab did not result in their
proliferation, but rather death, in ;11% (P5 .007; supplemental
Figure 9), an effect most likely manifested in CD381 or CD381

PD11 cTLs (Figure 6G). However, in the context of a PBMC
mixture, exposure to daratumumab resulted in the relative expan-
sion of activated cTLs, with increased cytolytic (and patient-tumor-
specific) activity.

Alterations of B- and T-cell subsets in patients with multiple myeloma
receiving treatment with daratumumab have been described, and our
ex vivo as well as in vivo observations in a short-term CLL-PDX model
echo these observations.30 As our goal was to study the effect of
anti-CD38 treatment on T-cell subsets, establishment of a long-term
PDX model was not optimal because of the possibility of xenograft vs
host-like disease known to occur in mice injected with CD41-naive
T cells.49,50 Results from our in vivo PDX model were similar to those
from our ex vivo CLL patient PBMC analyses, in which daratumumab
depleted Breg-like CLL cells and Tregs along with increasing
Th17 cells and cTLs with enhanced cytolytic capacity (increased
Granzyme B1 or LAMP11 cTLs).

It is noteworthy that in the majority of experiments, we used
kuromanin as a comparator to daratumumab, which inhibits CD38
enzymatic function. The effects of kuromanin were more variable
compared with daratumumab in both in vitro/ex vivo as well as
in vivo assays. In PBMCs from both CD381 and CD382 patients
with CLL, we observed that kuromanin treatment led to a significant
reduction in IL-101 CLL cells. However, when interrogation of IL-10
was specifically performed in Breg-like CLL cells, kuromanin and
even 78c (more potent CD38 enzymatic inhibitor) did not reduce
intracellular IL-10 (Figure 2D). This finding warrants further
investigation, but suggests that the link between IL-10 expression
and CD38 is not linear, and enzymatic blockage of CD38 in Breg-
like CLL cells specifically may not be sufficient to downregulate IL-
10. Aside from this observation, we noted in our PDX model that
kuromanin did not decrease the percentage of Tregs. We surmise
that in vivo, kuromanin is a weak CD38 enzymatic inhibitor, and
ongoing experiments with 78c will help resolve this.

Although the B-cell compartment is undoubtedly aberrant in
patients with CLL, a remarkable degree of dysfunction is also
noted in the various T-cell subsets. Our present investigation
establishes that therapies aimed at CD38 promote both direct
killing of Breg-like CLL cells along with Tregs, with a subsequent
enhancement of antitumor T-cell responses. Collectively our
observations demonstrate that anti-CD38 agents have an immuno-
modulatory effect, reprogramming the CLL microenvironment and
restoring antitumor immune functionality.
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