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Key Points

• EC-targeted FVIII
expression is more im-
munogenic than platelet-
target expression.

• ECs can present anti-
gen FVIII to Tfh cells,
promoting cell
proliferation.

Factor VIII (FVIII) replacement therapy for hemophilia A is complicated by development of

inhibitory antibodies (inhibitors) in;30% of patients. Because endothelial cells (ECs) are the

primary physiologic expression site, we probed the therapeutic potential of genetically

restoring FVIII expression selectively in ECs in hemophilia A mice (FVIIInull). Expression of

FVIII was driven by the Tie2 promoter in the context of lentivirus (LV)-mediated in situ

transduction (T2F8LV) or embryonic stem cell–mediated transgenesis (T2F8Tg). Both

endothelial expression approaches were associated with a strikingly robust immune

response. Following in situ T2F8LV-mediated EC transduction, all FVIIInull mice developed

inhibitors but had no detectable plasma FVIII. In the transgenic approach, the T2F8Tg mice

had normalized plasma FVIII levels, but showed strong sensitivity to developing an FVIII

immune response upon FVIII immunization. A single injection of FVIII with incomplete

Freund adjuvant led to high titers of inhibitors and reduction of plasma FVIII to

undetectable levels. Because ECs are putative major histocompatibility complex class II

(MHCII)-expressing nonhematopoietic, “semiprofessional” antigen-presenting cells (APCs),

we asked whether they might directly influence the FVIII immune responses. Imaging and

flow cytometric studies confirmed that both murine and human ECs express MHCII and

efficiently bind and take up FVIII protein in vitro. Moreover, microvascular ECs

preconditioned ex vivo with inflammatory cytokines could functionally present

exogenously taken-up FVIII to previously primed CD41/CXCR51 T follicular helper (Tfh) cells

to drive FVIII-specific proliferation. Our results show an unanticipated immunogenicity of

EC-expressed FVIII and suggest a context-dependent role for ECs in the regulation of

inhibitors as auxiliary APCs for Tfh cells.

Introduction

Hemophilia A (HA) is a genetic bleeding disorder, resulting from a deficiency of factor VIII (FVIII).
Although FVIII protein-replacement therapy is effective, 30% of severe HA patients will develop anti-FVIII
inhibitory antibodies (inhibitors), rendering routine FVIII protein-replacement therapy useless. In such
patients, immune-tolerance induction, infusing high quantities of FVIII, is the standard care. However, this
approach costs over $1 million per patient-year and remains incompletely effective for 30% of inhibitor
patients.1-5
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Gene therapy is an attractive alternative for the treatment of HA.
However, the potential to develop inhibitors to the neoprotein
remains.6-15 Though not a natural site for FVIII expression,
hepatocyte-targeted FVIII gene therapy has shown promising
efficacy.16-18 Because platelets naturally expressed the FVIII carrier
protein von Willebrand Factor (VWF), we previously engineered
a lentiviral platelet-specific gene-therapy approach for on-demand
delivery of FVIII at the site of injury.19 This partially restored
hemostasis in HA mice and was associated with a degree of
immunologic tolerance to infused FVIII protein.20-24 Recent studies
confirm that the major physiologic site for FVIII synthesis is
endothelial cells (ECs).25-30 Thus, we explored the potential for
use of ECs as a target for gene therapy of HA.

Here, we investigated the efficacy of a lentivirus-based vector
controlled by the EC-specific Tie2 promoter (T2F8) to restore FVIII
expression in HA mice. We compared results of EC-targeted vs
platelet-targeted FVIII expression using transgenic models. In both
systems, we found endothelial-expressed FVIII to be surprisingly
immunogenic. Our in vivo and ex vivo studies suggest that ECs can
serve as auxiliary major histocompatibility complex class II (MHCII)–
expressing antigen (Ag)-presenting cells (APCs) that mediate FVIII-
specific stimulation of CD41/CXCR51 follicular T helper (Tfh) cells.
These somewhat counterintuitive findings, together with previous
studies, provide cautionary insight about endothelial-targeted gene
therapy and support a putative site- and context-specific role for
ECs as modulators of FVIII immunogenicity.

Materials and methods

Additional details on the reagents, methods, and statistics used in
this study are provided in supplemental Material and methods.

Mice

Animal studies were approved by the institutional animal care and
use committee of Medical College of Wisconsin or Harvard. Mouse
models, as summarized in Table 1, included: (1) an FVIII-deficient
(FVIIInull) model; (2) a platelet-specific FVIII expression model, 2bF8
transgenic (2bF8Tg) mice, in which human B-domain–deleted FVIII
(hBDDFVIII) was expressed via the platelet-specific aIIb promotor31;
(3) an EC-specific expression model, T2F8 transgenic (T2F8Tg) mice,
in which hBDDFVIII was driven by the EC-specific Tie2 promoter32;
(4) a CIITA2/2 (MHCIInull) model; and (5) wild-type (WT) C57BL/
6J mice.

In situ transduction of ECs in FVIIInull mice

We engineered a T2F8 lentiviral (LV) expression vector–harboring
hBDDFVIII expression cassette under control of the Tie2 promoter
(T2F8LV). T2F8LV was administered into FVIIInull mouse via tail-vein
injection. Blood was collected for assessment of plasma FVIII levels
and inhibitor titers.

Mouse immunization to human FVIII

FVIII immunization protocols were implemented as described.31-33

Briefly, for the T2F8Tg and 2bF8Tg groups, mice were immunized
with recombinant hBDDFVIII (rhF8) at a dose of 600 U/kg plus
incomplete Freund adjuvant (IFA) by intraperitoneal injection. WT
mice were immunized with recombinant human full-length FVIII
(rhfF8) at a dose of 600 U/kg with IFA via intraperitoneal injection.
For FVIIInull mouse immunization, rhF8 was administered at a dose of
200 U/kg without IFA via IV injection.

Assays for measuring plasma CXCL13 in mice

WT C57BL/6 mice were immunized as in the previous section.
Blood from immunized and unimmunized controls was collected
7 days after the last immunization and plasma CXCL13 was
measured by enzyme-linked immunosorbent assay (ELISA).

Analysis of constitutive MHCII expression on ECs

in vivo

Organs were harvested from untreated WT and CIITA2/2

mice, minced, and collagenase digested. Cells were stained for
CD31, CD105, CD11b, CD45, and MHCII and analyzed by flow
cytometry as described.34,35 ECs were identified by gating on the
CD311/CD1051/CD11b2/CD452 cell population. Comparison of
MHCII signal on CIITA2/2 strain vs WT C57BL/6 was used to
determine the specific MHCII signal.

In vitro study of CXCL13 expression and Tfh cell

binding to ECs

Human dermal microvascular ECs (MVECs; DMVECs; hDMVECs)
were cultured in the absence or presence of tumor necrosis factor
a (TNF-a), interferon-g (IFN-g), interleukin 1b (IL1b), lipopolysac-
charide (LPS), or recombinant human CXCL13 (rhCXCL13)
and then washed and stained with anti-CXCL13 antibody. To
study T-cell adhesion, LPS-pretreated hDMVECs were incu-
bated with equal numbers of flow-sorted, human peripheral blood
CD41/CXCR52 or CD41/CXCR51 T cells for 1 hour in the
absence and presence of function-blocking anti-CXCL13 antibody,
followed by staining for CD4.

In vitro EC Ag-uptake and -processing studies

hDMVECs and murine DMVECs (mDMVECs) were treated with
IFN-g and TNF-a as described.36 To assess FVIII uptake, ECs
incubated with rhfF8–Alexa 488 (10 U/mL) with human VWF
(1 U/mL) and fibrinogen (FIB; 150 mg/mL) for 12 hours and with
LysotrackerRed for 1 hour. To assess Ag processing by ECs, cells
were incubated with the model Ag/APC-processing reporter DQ-
OVA (full-length ovalbumin that exhibits proteolysis-dependent 488
nm37) and Lysotracker Red. Cells were washed and imaged live. As
a more sensitive FVIII detection, rhfF8 was coated onto GMA-8021
(anti-FVIII monoclonal antibody [MAb])–conjugated carboxylate-
modified fluorescent nanoparticles. Such “rhfF8 fluorospheres”
were incubated with 150 mg/mL FIB (61 U/mL VWF) and ECs for
1.5 hours followed by washing and imaging.

In vivo EC Ag-uptake and -processing studies

To investigate the ability of ECs to proteolytically process whole
proteins in vivo, we immunized C57BL/6 mice subcutaneously in
both flanks with 10 mg of DQ-OVA with complete Freund adjuvant.
Four days later, ECs isolated from the skins around the
immunization sites were analyzed for DQ-OVA.

ECs as APCs for T-cell proliferation

To test whether ECs can functionally present FVIII Ag, we
performed a T-cell proliferation assay. Primary mDMVECs were
cultured under conditions that recapitulate in vivo APC properties
as established.36 Briefly, IFN-g– and TNF-a–pretreated mDMVECs
were cultured with CellTrace Violet–labeled CD41 T cells isolated
from rhF8-primed FVIIInull mouse spleens in media containing
rhCXCL13 and rhF8 for 7 days. Cells were stained with anti-CD4,
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anti–T-cell receptor b (TCRb), and anti-CXCR5 antibodies, and
analyzed by flow cytometry.

Results

FVIIInull mice developed inhibitory antibodies after

in situ lentivirus-mediated EC-specific transduction

Our previous studies showed that lentivirus-mediated platelet-
specific gene delivery of FVIII (via aIIb promotor; 2bF8) can
introduce sustained therapeutic levels of platelet FVIII expression
and induce FVIII-specific immune tolerance in FVIIInull mice.20-22

However, levels of platelet FVIII in transduced recipients are low
(;5% to 10%) compared with healthy plasma.23 As an alternate
approach, we performed lentivirus-mediated FVIII gene transfer
with targeted expression in ECs via the panendothelial Tie2
promotor (T2F8LV). We confirmed that T2F8LV could introduce
FVIII expression in ECs in vitro (supplemental Figure 1). Next, we
introduced FVIII expression into ECs in vivo/in situ through
systemic transduction of ECs in FVIIInull mice (Figure 1A). To our
disappointment, no plasma FVIII was detected in T2F8LV-
transduced animals (Figure 1B). However, all animals developed
anti-FVIII inhibitors (Figure 1C), indicating that FVIII was
expressed, but undetectable because of these antibodies. Total
anti-FVIII immunoglobulin G (IgG) detected by ELISA was
substantial and increased over 8 weeks (Figure 1D). These
results suggest that in situ panendothelial transduction by
T2F8LV with FVIII triggers strong anti-FVIII immune responses
that sharply contrast the tolerance produced by lentivirus-
mediated transduction of platelets,22-24 hepatocytes,16-18 and
specific EC subsets.38,39

Immune responses are influenced by endothelial

transgenic FVIII expression

To further evaluate the influence of EC-FVIII expression in immune
responses, we prepared transgenic mice. Three groups of T2F8Tg

mice from 2 lines generated by embryonic stem (ES) cell–mediated

transgenesis32 were used for the FVIII immune response study
(Table 1). One was the T2F8tg1/1 (ES#5) group, in which animals
were homozygous T2F8Tg from line #5, with 100% normal levels of
plasma FVIII (1.356 0.12 U/mL). The second group of T2F8Tg mice
was composed of heterozygous animals from line #5 (T2F8tg1/2;
ES#5) with plasma FVIII coagulant activity (FVIII:C) of 0.58 6 0.06
U/mL. In the third group of T2F8Tg mice were homozygous animals
from another line (#65) (T2F8tg1/1; ES#65), with a FVIII:C level of
0.34 6 0.14 U/mL.

We used an active immunization protocol31,32 to evaluate whether
FVIII immunogenicity is diminished by endothelial expression.
Surprisingly, we found that FVIII:C in the plasma dropped to
undetectable levels in all 3 groups of T2F8Tg mice after a single
immunization dose of rhF8 and IFA (Figure 2A-B). The plasma FVIII
remained undetectable 4 weeks after this single immunization (not
shown). In contrast, control WT C57BL/6 mice retained 69% of
plasma FVIII after 1 immunization and still had detectable plasma
FVIII even after a second immunization at week 4 (Figure 2A-B).
These data suggest that targeted endothelial FVIII expression
promotes strong immunogenicity, even if the expression is via germ
line genetic modification.

After a single rhF8/IFA immunization, there were no statistically
significant differences in inhibitor titers between the different
groups of T2F8 mice in the FVIIInull background (supplemental
Figure 2A). This indicates that FVIII-inhibitor formation in mice
with endothelial expression is not substantially influenced by the
level of FVIII expression over this range. We asked whether VWF
might influence inhibitor development (supplemental Figure 2B).
The inhibitor titer in the T2F8tg1/1VWF2/2 group (252 6 144
BU/mL) was significantly lower than the T2F8tg1/1 group (8106
508 BU/mL; supplemental Figure 2B), although plasma FVIII:C
in the T2F8tg1/1VWF2/2 group was not detectable (not shown).
After the second FVIII immunization, the inhibitor titers in the
T2F8tg1/1 group (8560 6 7074 BU/mL) were significantly higher

Table 1. Expression models/strains used in this study

Model/strain name Description Deletions Lentiviral expression Transgenic expression Genetic background

WT Wild type C57BL/6

FVIIInull Total mF8 deletion mF8 C57BL/6

2bF8LV Total mF8 deletion, platelet-specific
LV hF8 expression

mF8 2bF8LV via the aIIb promotor B6/129S

T2F8LV Total mF8 deletion, endothelial-specific
LV hF8 expression

mF8 T2F8LV via the Tie-2 promotor B6/129S

2bF8tg1/2 Total mF8 deletion, platelet-specific
Tg hF8 expression

mF8 hF8 via aIIb promotor B6/129S

T2F8tg1/2 (line: ES#5) Total mF8 deletion, EC-specific
Tg hF8 expression (1 copy)

mF8 hF8 via Tie-2 promotor B6/129S

T2F8tg1/1 (line: ES#5) Total mF8 deletion, EC-specific
Tg hF8 expression (2 copies)

mF8 hF8 via Tie-2 promotor B6/129S

T2F8tg1/1 (line: ES #65) Total mF8 deletion, EC-specific
Tg hF8 expression (5 copies)

mF8 hF8 via Tie-2 promotor B6/129S

T2F8TgF82/2VWF2/2 Total mF8 and VWF deletions,
EC-specific Tg hF8 expression

mF8, mVWF hF8 via Tie-2 promotor B6/129S

CIITA2/2 Total CIITA deletion (MHCII null) CIITA (MHCII transactivator) C57BL/6

.
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than in the WT control group (2576 6 4224 BU/mL) (supple-
mental Figure 2C).

We then compared FVIII immune responses in the endothelial-
expressed, T2F8Tg, and platelet-expressed 2bF8Tg models
(Figure 2C). The 2bF8Tg mice used in this study were also
generated by ES cell–mediated transgenesis.31 In 2bF8Tg mice,
FVIII expression is targeted to platelet a-granules with a level of
;0.75 mU/108 platelets, which corresponds to 1.2% of FVIII in
WT mouse whole blood (though no plasma FVIII:C was detect-
able31). When the same immunization protocol was applied
to our platelet-specific FVIII (2bF8Tg) transgenic mice, 15 of
18 2bF8Tg1/2 mice developed inhibitors with a titer of 54 6 49
BU/mL. All T2F8Tg mice developed inhibitors with the aver-
age titer of 1811 6 1953 BU/mL, which was significantly higher
than obtained in 2bF8Tg mice (Figure 2C). Thus, expression
in ECs greatly enhances immunogenicity of FVIII, whereas

expression in megakaryocytes/platelets induces a degree of
immune tolerance.

ECs exhibit functional properties of APCs

B-cell and antibody responses are tightly regulated by the
CD41/CXCR51 lymph node Tfh cell subset, which in turn is
regulated by MHCII-expressing APCs.40-46 Because ECs have
emerged as auxiliary MHCII-expressing APCs,47,48 we hypoth-
esized that they might directly influence FVIII immunogenicity
by presenting MHCII/Ag to Tfh cells. Human ECs are well
established to constitutively express MHCII in a response to
tonic levels of IFN-g.47,49 In mice the situation remains less
studied and less clear.50,51 Therefore, we first examined whether
murine ECs express MHCII at steady state. We conducted flow
cytometric analysis of ECs freshly isolated from a range of tissues in
healthy C57BL/6WT or CIITA2/2 (MHCIInull) mice. EC-specific MHCII
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Figure 1. T2F8 LV-mediated in situ transduction of ECs in FVIII
null

mice. (A) Schematic diagram of EC-specific FVIII transduction. Approximately 1 3 108 IU of T2F8LV

in 300 mL of X-VIVO 10 media were administered into each 6-week-old FVIIInull mouse via tail-vein injection to transduce ECs in situ. Blood samples were collected following

transduction, and plasmas were isolated for assays. Blood plasma from nontransduced WT C57BL/6 and naive FVIIInull mice served as controls. (B) Functional FVIII activity

(FVIII:C) in plasma. Plasma FVIII:C levels in T2F8LV-transduced mice as determined by chromogenic assay. (C) Anti-FVIII inhibitor titers. Anti-FVIII inhibitor titers in WT, FVIIInull,

and FVIIInull T2F8LV-transduced mice were determined by Bethesda assay. (D) Anti-FVIII total IgG in plasmas from T2F8LV-transduced mice as determined by ELISA. Data

were analyzed using the 1-way analysis of variance followed by the Tukey test.
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was measured by gating on the CD311/CD1051/CD11b2/CD452

cell population (supplemental Figure 3A). As shown in supplemental
Figure 3B, ECs of heart, lung, kidney, liver, and skin all showed
strong constitutive levels of MHCII in WT mice as compared with
CIITA2/2 mice. These results suggest that, like human ECs, murine
ECs exhibit broad constitutive IFN-g–/CIITA-dependent MHCII
expression and have potential to function as auxiliary class II APCs
in vivo. Of note, all cultured ECs require addition of exogenous IFN-
g to support in vitro MHCII expression36,47,51 (as we confirm in
supplemental Figure 4A-B).

CXCL13 supports interaction of ECs with circulating

Tfh cells

A defining feature of Tfh is expression of the CXCL13-selective
chemokine receptor CXCR5, which orchestrates its functions
within lymphoid organs.40-46 Circulating CD41/CXCR51 Tfh
cells with memory-like properties (cTfh cells), as well as
CXCL13, are also found in the blood with elevated levels seen
during humoral and inflammatory responses.52-60 We hypothe-
sized that cTfh cells might interact with vascular ECs in
a CXCL13-promoted manner. We first examined blood plasma
levels of CXCL13 in mice following rhfF8/IFA immunization
during inhibitor formation, and found a substantial, approximately
fivefold, increase in the immunized vs control mice. (Figure 3A).
Because ECs can bind chemokines via cell-surface heparan

sulfates,61,62 we tested whether exogenous CXCL13 could
be “captured” by ECs. Brief incubation of resting ECs with
rhCXCL13 followed by staining and imaging revealed robust
levels of cell-surface–captured CXCL13 (Figure 3B-C). ECs also
have potential to express CXCL13 under inflammatory conditions,63-67

and LPS is known to promote CXCL13 expression by professional
APCs.68,69 Thus, we treated hDMVECs with LPS or several
inflammatory cytokines (ie, TNF-a, IFN-g, IL1b). We found that the
former induced substantial expression and surface presentation of
endogenous CXCL13 (Figure 3B-C). In parallel studies, we also
confirmed previous studies indicating that LPS, TNF-a, and IL1b
(but not IFN-g) upregulated ICAM-1, a representative proinflam-
matory immune-adhesion molecule (supplemental Figure 4C-D).

To assess the function of EC-presented CXCL13 on cTfh cell
adhesion, we incubated LPS-pretreated hDMVECs with sorted
human peripheral blood mononuclear cell (PBMC)–derived
CD41/CXCR52 (conventional) and CD41/CXCR51 (cTfh) T cells
in the absence and presence of a CXCL13 function-blocking
antibody (Figure 4A). Under these conditions, the level of
CD41/CXCR51 cTfh binding to ECs was approximately threefold
greater than that of the conventional CD41/CXCR52 T cells
(Figure 4B). Anti-CXCL13 antibody largely blocked binding of
CXCR51CD41, but not the CD41/CXCR52, T cells. These data
indicate that binding of CD41/CXCR51 cTfh cells to ECs can be
promoted by CXCL13.
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ECs take up and process protein Ag, including FVIII,

in vitro and in vivo

ECs might process endogenously expressed FVIII that is diverted
from the secretory pathway as well as exogenous FVIII that is
actively taken up by endocytosis.70-77 To evaluate the latter, we
incubated rhfF8–Alexa 488 with conditioned human DMVECs in
the presence of VWF and FIB. rhfF8–Alexa 488 was readily taken

up into perinuclear clusters that colocalized with late endosomes
and lysosomes, features consistent with class II processing
(Figure 5A). Similar observations were made with conditioned
mDMVECs (not shown). Complementary experiments were per-
formed using rhfF8-labeled with 40-nm fluorospheres that provide
an enhanced signal-to-noise ratio. Upon incubation with condi-
tioned mDMVECs in the presence or absence of VWF, these
“rhfF8 fluorospheres” bound to membrane surface patches and
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Alexa488 antibody, shown in green. Scale bar, 20 mm. (C) Quantitation of average number of cells per field of view (10 images per condition for 2 separate experiments).
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accumulated in putative intracellular perinuclear puncta (presump-
tive endosomes/lysosomes; Figure 5B left panel). VWF did not alter
the pattern of binding or uptake (not shown). Little binding or uptake
was visible on ECs incubated with control, non–rhfF8-coupled
fluorospheres (Figure 5B right panel). Both methods indicated
that FVIII is taken up by a majority of ECs into a perinuclear
compartment.

Several studies support the ability of ECs to mediate functional
class II Ag processing.70-74 To extend this idea, we implement DQ-
OVA, a common Ag-processing reporter.37,78 We incubated
hDMVECs (supplemental Figure 5A) and mouse heart MVECs
(not shown) with DQ-OVA together with a LysoTracker Red. DQ-
OVA was readily taken up into ECs and converted to fluorescent
peptides that partially colocalized with late endosomes/lysosomes
(supplemental Figure 5A). We extended these studies into the
in vivo setting by subcutaneous immunization of DQ-OVA in
C57BL/6. Injection-site skin was later harvested and analyzed
by flow cytometry. This showed substantial levels of processed
DQ-OVA signal in ECs (supplemental Figure 5B). Together, these
studies show that whole protein Ag is readily taken up and

proteolytically processed by human and murine ECs both in vitro
and in vivo.

ECs can mediate functional FVIII-dependent

stimulation of Tfh

To determine whether murine ECs can promote Ag-specific
immune responses in CD41/CXRC51 Tfh cells, we performed
a T-cell proliferation assay (Figure 6B). CD41 T cells isolated from
FVIII-primed mice were cocultured ex vivo with ECs and CXCL13,
with or without rhF8. Proliferating T-cell clusters/clones were seen
only in cocultures that contained rhF8 Ag (not shown). Flow
cytometry showed that;7% of the FVIII-primed CD41 T cells were
proliferating (daughter) when restimulated with ECs with either
0.2 mg/mL or 2 mg/mL rhF8 (Figure 6B). In contrast, only 1% of
T cells proliferated when cocultured in the absence of rhF8 or
cocultured with an unrelated Ag rhF9 (2 mg/mL; Figure 6B). When
the CD41/CD51 Tfh cells were selectively analyzed, there were
18% and 12.7% Tfh proliferating daughter cells in cocultures
containing 0.2 and 2 mg/mL rhF8, respectively. In contrast, there
were only 5% Tfh daughter cells when cocultured without rhF8 or

rhfF8-Alexa488 Late Endo/Lyso Merge Costas’ Mask

human DMVEC

A

rhfF8-Fluorospheres Control-Fluorospheres

murine DMVEC

B

Figure 5. Binding and uptake of FVIII by conditioned DMVECs. (A) Confluent hDMVECs were pretreated with 100 nM IFN-g (48 hours) and 100 nM TNF-a (24 hours)

prior to incubation for 12 hours rhfF8–Alexa 488 (10 U/mL; in the presence of 1 U/mL VWF and 150 mg/mL FIB) together with Lysotracker Red (late endosome/lysosome

marker; 50 nM). Cells were then rinsed and imaged live. Fluorescence microscopy showed significant rhfF8–Alexa 488 (green) accumulated into perinuclear punctae, which

partially colocalized with late endosomes/lysosomes (red) as seen by the yellow signal in the merged image. This was validated by computational image analysis, which also

identified substantial areas of rhfF8-488 and Lysotracker Red coincidence, as depicted by white pixels in the Costes mask (right panel) and reflected in an average Pearson

correlation coefficient of 0.680 6 0.033 (r2 . 0.98; Costes P 5 100%). Scale bar, 25 mm. (B) As a complementary and more sensitive approach to detect FVIII binding

and uptake, rhfF8 was coated onto GMA-8021 (anti-FVIII MAb)-conjugated carboxylate-modified red fluorescent nanoparticles (rhfF8 fluorospheres). The same fluorescent

particles were subjected to blocking of the carboxylate modification with 2% BSA to demonstrate the level of nonspecific binding and cellular uptake (Control fluoro-

spheres). Fluorospheres were then incubated together with 150 mg/mL fibrinogen in the presence (not shown) or absence of 1 U/mL VWF for 1.5 hours on IFN-g– and

TNF-a–conditioned mDMVECs. Differential interference contrast (DIC) and confocal fluorescence images were superimposed. Arrowheads indicate patches of putative

membrane-bound rhfF8. Arrows indicate putatively internalized perinuclear clusters of rhfF8 that presumably represent endosomes and lysosomes (left panel). The same

pattern was observed in the presence of VWF. In the absence of rhfF8 coating, control fluorospheres showed very little EC binding or uptake (right panel, arrows). Scale

bar, 20 mm.
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with 2 mg/mL rhF9 control Ag (Figure 6B). To confirm that the
isolated FVIII-primed CD41 T-cell population did not contain APCs,
we cultured isolated CD41 T cells with rhF8 in the absence of ECs
and saw no detectable proliferation in either the total CD41 T or Tfh
cell populations (supplemental Figure 6). These data confirm that
ECs can take up FVIII and functionally present FVIII Ag to FVIII-
primed CD41 T cells, leading to Ag-selective Tfh cell proliferation.

Discussion

Our experiments demonstrate that ECs have an unexpected
capacity to enhance anti-FVIII antibody formation in HA mice. This
was true whether FVIII gene expression was via LV-mediated gene
therapy or by germ line expression in transgenic mice. Our
supporting ex vivo/in vitro studies led us to hypothesize a direct
pathway through which inflammatory-conditioned ECs can act as
auxiliary APCs in FVIII immune responses. These findings have
relevance for gene therapy and possibly for understanding more
generally the unusual immunogenicity of FVIII.

ECs are known as the major physiologic site of FVIII expression25-30

and anti-FVIII antibodies are rare in healthy subjects.79 As such,
our observation of strong anti-FVIII immunological responses to
EC-targeted therapeutic expression of FVIII seems rather counter-
intuitive. We view this as an apparent, rather than an actual,
conflict. Our data bear directly on engineered FVIII expression,
whereby synthesis was driven in all ECs via the panendothelial Tie2

promotor. Native FVIII production was recently shown to be
restricted to a smaller subset of ECs that primarily include liver
sinusoidal (LSEC), lymphatic (LEC), and possibly splenic sinusoi-
dal (SSEC) ECs.25,26,29,30 It follows that the ectopic expression of
FVIII within nonnative ECs (ie, ECs other than LSEC, LEC, and
SSEC) is responsible for the observed immunogenicity, and this
seems to be specific for ECs, as ectopic nonnative expression of
FVIII in hepatocytes16-18 and platelets20-24,80 are both tolerated.

Previous studies are consistent with this dichotomy among EC
types. We reported that transgenic panendothelial expression of
hFVIII (eg, confirmed in lung and heart ECs) in HA mice had
heightened responses to hFVIII immunization compared with mice
with platelet expression of FVIII.32 Similarly, use of the “sleeping
beauty transposon” to express FVIII specifically in lung ECs was
immunogenic,81 whereas use of the same FVIII transposon system
targeted to LSEC promoted tolerance.82 Finally, 2 recent reports
described transduction strategies that were similar to our T2F8LV,
but used either the native FVIII38 or the “vascular endothelial
cadherin”39 promoter. FVIII expression in both cases was restricted
largely to liver ECs (ie, LSEC) and was not found in ECs of the lung
or kidney.38,39 In these studies, FVIII was restored to ;25% and
;5%, respectively, of normal and was associated with degree of
immune tolerance.38,39 Taken together, these reports suggest that
ectopic expression of FVIII in hepatocytes and platelets seems
relatively nonimmunogenic and partially tolerogenic. In contrast,
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Figure 6. Ag-specific CD4 T-cell proliferation assay. (A) Schematic diagram of T-cell proliferation assay. CD41 T cells isolated from rhF8-primed FVIIInull mouse were

labeled with CellTrace Violet and cocultured with DMVECs that were pretreated with IFN-g/TNF-a in the presence of CXCL13 and the absence and presence of rhF8 at 37°C

in 5% CO2 for 1 week. rhF9 was used as an unrelated Ag control. CD4 T cells plated in the absence of endothelium served as an additional control (supplemental Figure 6).

(B) Flow cytometry analysis daughter (proliferated) cells. Cells were stained for CD4, TCRb, and CXCR5, and analyzed by flow cytometry. Dead cells were excluded by the

7-AAD staining. CD4 T-cell divisions were quantified as the dilution of CellTrace Violet signal in daughter cells away from the initially labeled peak. Results for both CD4 Tfh

(top row) and total CD4 (middle row) are shown. Bottom row shows expanded view of daughter cell in the red, boxed regions from the middle row. These data demonstrate

that ECs can present FVIII to Tfh cells, promoting Ag-specific cell proliferation.
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endothelial expression of FVIII leads to either enhanced immuno-
genicity or tolerance, depending on the specific endothelial location
or subsets that are targeted.

We hypothesized that the mechanism lies in the ability of ECs
to function directly as APCs with site- and context-specific
properties.47,48 Contrasting with hepatocytes and platelets, all
ECs in both humans and mice (eg, shown herein and in Choo et al50

and in Kreisel et al51) constitutively express MHCII and can mediate
class II presentation of both endogenous and exogenous
Ags.47-49,73 LSEC, LEC, where most FVIII is normally expressed,
exhibit unique constitutive protolerogenic properties (eg, expression
of programmed death ligand 1 [PD-L1], transforming growth factor
[TGF-b]), which would be expected to promote Ag-specific tolerance
to FVIII.83-89 Alternatively, the other nonnative ECs tend to stimulate
Ag-specific responses, particularly in inflammatory settings.48,72,90-93

Our findings with engineered panendothelial expression of FVIII in
both native and nonnative ECs suggest that the proimmunogenic
potential of the latter can exert a dominant stimulatory regulation on
FVIII inhibitors (ie, broken immunological tolerance).

Development of FVIII inhibitors requires professional APCs, such
as lymphoid dendritic cells, to prime naive CD41 T cells and
initiate formation of Ag-specific memory CD41/CXCR51 Tfh
cells.94-104 Our data do not conflict with this model. Rather, they
indicate that ECs can act as complementary APCs that modulate
response of memory-like cTfh cells after they have been primed
by lymphoid dendritic cells entering the blood. Studies in other
contexts suggest that cTfh cells receive distinct regulatory cues
within the circulation.53,55-57,105-107 cTfh cells ultimately traffic
back to lymph nodes and spleen, with robust cytokine re-
sponsiveness and presumably altered capacity for directing
antibody formation.53,55-57 Thus, we propose that inflammatory-
conditioned, particularly nonnative, ECs displaying FVIII Ag can
promote the maturation and function of FVIII-specific cTfh cells.

Our experiments support this hypothesis by showing that pan-
endothelial, but not platelet, expression upregulates the immuno-
genicity of FVIII in mice under inflammatory settings. We show that
ECs express and bind CXCL13 in response to LPS and that this
promotes adhesion of Tfh cells. We show that inflammatory-
conditioned ECs take up and traffic FVIII consistently with class II
Ag processing. Finally, we show that CD41/CXCR51 Tfh cells from
FVIII-immunized mice proliferate in response to ex vivo presentation
of FVIII by ECs. These observations support the plausibility of our
hypothesis, though more work is needed to establish the extent
to which this pathway may influence development of anti-FVIII
antibodies.

In mice, immunogenicity was highest for the T2F8LV-mediated
in situ EC transduction. We speculate that ECs sense proin-
flammatory danger signals108 and/or endoplasmic reticulum stress
generated by the viral vector delivering of T2F8, which upregulates
their immunogenic APC functions and promotes FVIII humoral
response. Inhibitors were detected in T2F8LV-transduced FVIIInull

mice even when plasma FVIII:C was undetectable. Immune
responses in the transgenic and WT controls required an active
immunization with FVIII together with IFA. Response of WT control
mice to rhfF8/IFA is likely to be explained by species differences in
FVIII epitopes. However, this does not explain the response of
T2F8Tg mice, which are born with normal levels of rhF8 and should
be tolerized to rhF8. In vivo Ag presentation by ECs has been tested

using a Tie2-driven EC-specific b-gal transgenic mouse model.73

Studies with this model suggest that ECs can present intracellular
self-Ag to the immune system without completely deleting Ag-
specific T cells.73 Apparently, EC-expressed FVIII results in
immunological ignorance rather than tolerance, implying that EC
presentation during T-cell development allows escape of FVIII-
specific CD41 T cells in T2F8Tg mice.

Our data suggest the potential immunogenic roles of FVIII Ag
presentation by ECs in the context of engineered gene therapy. It is
attractive to speculate that ECs could also modulate FVIII immune
responses to exogenous FVIII (eg, HA therapy). LSEC, LEC, and
SSEC constitutively express FVIII/VWF-scavenging receptors/
activity. Under inflammatory conditions, many other ECs can
upregulate expression of MHCII and costimulatory molecules, as
well as scavenging properties such as stabilin-2.75-77,109-113

Moreover, in contrast to dendritic cells, ECs are exposed to
circulating VWF and are positioned to distinguish between multimer
size and conformation. Because these factors appear to influence
immunogenicity of FVIII, it is tempting to speculate that endothelial
Ag presentation plays a broader role in FVIII immunogenicity.114,115

Further investigation of the role of EC subsets in modulating FVIII
immune responses is warranted.

We report binding, uptake, and presentation of FVIII by inflammatory
conditioned DMVECs. Although binding of FVIII to ECs has
previously been reported, the mechanism(s) remain poorly charac-
terized. FVIII may bind directly to ECs, presumably binding through
exposed phosphatidylserine,116 enabling assembly of the intrinsic
FXa complex. FVIII may bind indirectly through VWF and possibly
fibrin(ogen)117 via stabilin-2.118 VWF also binds ECs via P-selectin
and avb3 integrin,119,120 as well as other scavenger receptors
aimed at molecular clearance and recycling.118 FVIII has been
shown to bind to lipoprotein-related protein and other scavenger
receptors shared by ECs and other cell types.121 In addition, there
are other candidate FVIII-binding molecules, particularly SREC-1,
a scavenger receptor that is partially restricted to ECs.122 Further
studies will be needed to identify the receptor and the uptake
pathway responsible for FVIII uptake in the MVECs.

In summary, our data demonstrate that panendothelial targeting of
FVIII is more immunogenic than expression by megakaryocytes
(or hepatocytes), implying a novel role of ECs in modulation of the
humoral immune response to FVIII. We showed for the first time the
FVIII uptake by MVECs and functional FVIII presentation by MVECs
to FVIII-primed Tfh cells, leading to cell proliferation. Together, our
results indicate that ECs may play an important role in FVIII immune
responses.
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