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Abstract

This paper uses Monte Carlo methods and regression analysis to assess the role of uncertainty in 

yield function and land supply elasticity parameters on land use, carbon, and market outcomes in a 

long-term dynamic model of the global forest sector. The results suggest that parametric 

uncertainty has little influence on projected future timber prices and global output, but it does have 

important implications for regional projections of outputs. A wide range of outcomes are possible 

for timber outputs, depending on growth and elasticity parameters. Timber output in the U.S., for 

instance, could change by −67 to +98 million m3 per year by 2060. Despite uncertainty in the 

parameters, our analysis suggests that the temperate zone may sequester +30 to +79 Pg C by 2060 

and +58 to +114 Pg C by 2090 while the tropics are projected to store −35 to +70 Pg C and −33 to 

+73 Pg C for the same time periods, respectively. Attributional analysis shows that uncertainty in 

the parameters regulating forest growth has a more important impact on projections of future 

carbon storage than uncertainty in the land supply elasticity parameters. Moreover, the results 

suggest that understanding growth parameters in regions with large current carbon stocks is most 

important for making future projections of carbon storage.

1 Introduction

Dynamic optimization modeling has emerged in literature as a key analytical tool to project 

future resource conditions, management changes, or economic outcomes (e.g., prices) in 

forestry systems. For example, Sedjo and Lyon (1990), Adams et al. (1996), Adams et al. 
(1999), Sohngen and Mendelsohn (1998 and 2003), and Sohngen et al. (1999) developed 

dynamic optimization approaches to project future forest stocks in the U.S. or globally. 

These approaches all assumed that the parameters in the underlying model are deterministic, 

even though there may be important underlying uncertainty. Forestry models, for instance, 

parameterize the biological growth of forests over time, but many factors make these 

parameters uncertain, including the methods by which the original data was collected, and 

the application of values estimated for specific sites to cover entire regions.

sohngen.1@osu.edu. 

EPA Public Access
Author manuscript
J For Econ. Author manuscript; available in PMC 2020 May 27.

About author manuscripts | Submit a manuscript
Published in final edited form as:

J For Econ. 2019 August 7; 34: 129–158. doi:10.1561/112.00000445.E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



While forestry models have become more sophisticated and widely used to project future 

forest conditions and carbon outcomes under assumed baseline economic, policy, and 

environmental conditions, there is still a great deal of variation in future projections for key 

regions, including the U.S. (Latta et al., 2018; Tian et al., 2018; Wear and Coulston, 2015). 

The variations may arise from methodological differences in the models, but they may also 

arise from differences in assumptions about key parameters, such as forest growth and land 

supply. Historically, carbon outcomes across the world have been influenced by two 

important drivers most affected by these parametric assumptions: land use change and forest 

regrowth (Smith et al., 2014). It is natural to anticipate that these factors will continue to be 

important for future carbon outcomes; therefore, it is useful to examine the extent to which 

uncertainty in underlying forest yield growth or land supply parameters can affect the 

variation in future forest sector projections.

To address questions about the effect of parameter uncertainty on timber market and forest 

stock projections, we conduct a Monte Carlo analysis with a global dynamic optimization 

model of timber markets, the Global Timber Model (see Tian et al., 2018; Daigneault et al., 
2008; Sohngen et al., 1999). Monte Carlo analysis is well suited to our question, which 

focuses on the role of uncertainty in key model parameters on important model outcomes. 

Many dynamic forestry models have a large set of parameters that describe forest yields in 

different regions. These parameters are typically estimated or collected directly through 

forest inventories and thus are subject to uncertainty, particularly when estimates from field 

studies are aggregated and used across larger regions. While sensitivity analysis can provide 

important insights, it may ignore potential interactions between underlying parameters, 

making it difficult for attributional analysis that seeks to evaluate the relative influence of a 

given model parameter on uncertainty ranges for key model outputs. Furthermore, partial 

factorial experimental designs and response surface regressions are often not feasible with 

large-scale optimization models in which there are hundreds or thousands of spatially-

varying parameters that would need to be varied and interacted.

Monte Carlo techniques provide a way to test the effects of uncertainty in the underlying 

parameters on the model outcomes by evaluating different parameters drawn from a 

distribution of each yield function and running the model multiple times with different sets 

of randomly drawn parameters. Monte Carlo techniques have been widely applied by static 

land use and management models (Hertel et al., 2010; Plevin, 2010; Laborde and Valin, 

2012; Valin, 2015). However, few studies have published results from parametric uncertainty 

analysis using intertemporal optimization methods and models of land use sectors. This 

limited literature is due, in part, to the computational complexity of intertemporal 

optimization models. Dynamic models of land use systems are typically large, 

computationally complex, and require relatively long solve times, thus limiting the ability to 

run hundreds or thousands of simulations using random parameter draws, as is typically 

required for a Monte Carlo simulation analysis. With computational processing advances, 

emerging grid computing techniques, and increasing access to super computers, such 

techniques will be easier to employ in the future.

Monte Carlo methods may be useful for characterizing the influence of parameter 

uncertainty on several key variables. Forest yields, for instance, are among the most 
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important components of dynamic forestry models, determining timber volume and growth 

rates, as well as influencing harvesting and investment decisions made by land managers. 

Because forest management involves supervising large capital assets over time, under- or 

over-estimating the growth in these capital assets can have potentially large effects on future 

projections of timber prices, regional harvesting rates, managed forest area, and carbon 

fluxes.

This paper presents an analysis of parametric uncertainty on projected land use and market-

related output from a baseline simulation of a model of the global forest sector, the Global 

Timber Model, with recent updates described in Kim et al. (2018). We assess uncertainty 

over parameters of the yield functions and the land rental function (i.e., land supply 

elasticity) and employ regression methods to run an attributional stochastic analysis with the 

purpose of investigating the relative importance of these parameters on key projected 

outcomes of carbon and timber harvests. Yield growth parameters are a key component of 

any representation of forest resource systems and represent both the rate of growth over time 

that a particular forest type in a particular region will experience, as well as the system’s 

stocking density (or carrying capacity) per-unit area. Land rental functions play an important 

role in our modeling framework because they control the amount of land used by the forestry 

sector in competition with agriculture. Specifically, land rental functions recognize the 

opportunity cost of shifting land into forestry in terms of lost agricultural rents. As more 

land is brought into forestry in response to changing market conditions, land rental functions 

ensure higher marginal costs of further afforestation. This analysis provides baseline 

uncertainty ranges in key model outputs, including projected forest area, prices, production, 

carbon stocks, and factors explaining intensive margin investments. Furthermore, we present 

a detailed discussion on how specific parameter sets relate to the magnitude of uncertainty 

implied by model outputs.

This paper makes several contributions to the literature by offering an assessment of the 

relative influence of parameters that drive forest land supply and productivity in structural 

economic models on projections of forest markets and associated environmental outputs 

(carbon stocks). There is a growing literature that projects forest carbon stocks across a wide 

range of socioeconomic, policy, and environmental change scenarios. This literature reports 

a range of possible forest carbon futures using different modeling frameworks that represent 

forest resources at different spatial and temporal scales (Wear and Coulston, 2015; Nepal et 
al., 2015; Tian et al., 2018; Latta et al., 2018; Kim et al., 2018; Forsell et al., 2016). 

However, these studies focus on the variability in forest carbon projections across discrete 

alternative future scenarios in which policy, environmental, or macroeconomic inputs are 

varied.

The sensitivity analysis approach differs from the goals of this paper, which seeks to 

evaluate the influence of specific data and parameter inputs on modeled projections. In a 

similar recent analysis, Buongiorno and Johnston. (2018) analyze parameter uncertainty 

using the Global Forest Products Model (GFPM), a detailed recursive dynamic and partial 

equilibrium model covering multiple forest product markets. The Buongiorno study focuses 

on economic parameters such as demand elasticities in driving future projections and finds 

wide variation in future forest market conditions. Our study, in contrast, focuses on 
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parameters related to forest productivity and land supply/costs using an intertemporal model 

of the global forest sector with a large set of simulation scenarios.

In this manuscript we first present an assessment of uncertainty in future baseline market 

and land use trends driven by uncertainty in important physical and market parameters. 

Using a Monte Carlo analysis, we show that future market and land use results are sensitive 

to these parameter assumptions. Globally, timber prices are not substantially influenced by 

parametric uncertainty, but timber outputs for several species can be heavily affected, as can 

global carbon storage. Thus, while timber outputs and forest carbon stock projections remain 

relatively stable and do not vary substantially across our simulations, we find large regional 

variation in projected forest carbon stocks. This result hints at a difficulty individual 

countries may have in developing robust baseline projections of forest carbon stocks without 

considering systematic feedback across the global market system.

Second, we conduct an attributional analysis that suggests that results are more sensitive to 

uncertainty in the parameters influencing the timber yield compared to uncertainty in land 

supply elasticity. This is particularly true for measuring carbon stocks, with uncertainty in 

the carrying capacity and growth rates of trees having implications for the size of carbon 

stocks. This finding has important implications for the value of inventory-based forest yield 

growth used in projections modeling contexts; since uncertainty in stocking density is a 

primary driver of the variability in projected forest carbon outcomes, this supports additional 

measurement and field sampling to reduce the uncertainty around physical forest yield 

attributes. This attributional analysis provides important information to policy makers that 

can help them better allocate resources to research on the more influential parameters.

2 Methods

In this section, we describe the methodological background of the analysis. First we provide 

a brief description of the Global Timber Model (GTM), including key assumptions and 

components, and references to recent model documentation. Then, we present a description 

of the attributional regression analysis, which we use to assess the relative importance of 

model parameters on variables of interest.

2.1 The Global Timber Model (GTM)

The Global Timber Model (GTM) has been widely used for policy analysis in forestry, 

addressing conservation policy (Sohngen et al., 1999), climate change (Sohngen et al., 2001; 

Tian et al., 2016; Sohngen and Tian, 2016), carbon sequestration (Sohngen and Mendelsohn, 

2003; Tavoni et al., 2007), exchange rates (Daigneault et al., 2008), and biomass energy 

(Daigneault et al., 2012). The model is a dynamic optimization model that maximizes the 

present value of consumers’ plus producers’ surplus by harvesting forests and determining 

optimal levels of timber investments and regeneration, subject to a set of constraints that 

describe the growth of forests over time. Foresters in the model are assumed to be forward-

looking, taking future prices into account when they determine both when to harvest trees 

and how intensively to regenerate forests.
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The version of GTM applied in this analysis includes heterogeneous forest product demand, 

consistent with the versions of the model applied in Baker et al. (2017 and 2018), Kim et al. 
(2018), and Tian et al. (2018). Demand for pulpwood and sawtimber are represented 

separately, building on the single-product demand structure presented in Daigneault et al. 
(2012). This disaggregated demand structure recognizes that forest resources are often 

managed differently to supply pulpwood and sawtimber, thus GTM allocates harvests 

endogenously to pulpwood and sawtimber markets. As market, policy, or environmental 

factors evolve, the relative proportion of harvests allocated to pulpwood and sawtimber 

markets can change (that is, we do not assume a fixed proportion of harvests allocated to 

separate end uses). We also allow a portion of forest biomass (pulpwood or sawtimber) to be 

allocated to bioenergy use, but this proportion must be exogenously defined. Additional 

information on the version of the GTM applied for this analysis, including a technical 

appendix that lists structural equations, parameters, variables, and key assumptions, can be 

found in Kim et al. (2018).

One important set of model inputs are the forest biomass yield functions, which are used 

directly in the uncertainty analysis. Yield is assumed in the model to have the following 

functional form:

Y a, t
i = e δi − πi/a (1)

The yield function in (1) measures the volume of timber available for markets in land class i 
and age class a at time t. For the United States, for instance, the U.S. Forest Service collects 

data on forested plots throughout the country at regular intervals. The term δi measures the 

carrying capacity of the site, and πi accounts for forest growth. Both are parameters of the 

yield function, which can be estimated with data on age classes and biomass per hectare.

Yield functions estimated this way contain some uncertainty in the parameters based on a 

number of factors, such as differences in the quality of sites, historical disturbance regimes 

on those sites (which have influenced biomass levels when measured), and climate factors. 

As yield functions are based on aggregate forest inventory data and empirical yield 

functions, there is uncertainty in growth estimates and projections as yield functions are 

represented at the mean and do not capture heterogeneity that exists within the inventory 

data. In models that are forward-looking, uncertainty over yield parameters can have large 

potential consequences for a range of management decisions, including harvests, timberland 

area managed, and regeneration intensity.

There is even greater uncertainty on yield function parameters in regions outside of the U.S. 

where the quality of data is not as substantial as in the U.S. In these cases, yield function 

data in the GTM is obtained using data from relatively few sites, or from studies done in 

similar forests. Thus, in most regions of the world, there is considerable uncertainty about 

both the rate of growth of trees and the maximum amount of biomass that can be stored on a 

site.

To account for uncertainty in the forest growth function parameters, we assume the 

parameters of the yield function, δi and πi, are stochastic and follow triangular distributions 

Sohngen et al. Page 5

J For Econ. Author manuscript; available in PMC 2020 May 27.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



(Equations 2a and 2b). Triangular distributions are popular empirical distributions when 

observational data are limited since parameters can be estimated from a small sample. There 

are several published studies in the forest modeling literature that have used triangular 

distributions to represent forest yield growth assumptions or various demand-side 

parameters in Monte Carlo studies, including McKenney et al. (2004) and Buongiorno and 

Johnston. (2018). Furthermore, triangular distributions have been applied to other large-scale 

modeling studies, including Valin (2015) and Plevin (2010). Given this precedent and the 

limited amount of forest inventory data available in certain regions, the use of triangular 

distributions is justified in this analysis.

δi ∼ r and Triangle (low, mid, ℎigℎ) (2a)

πi ∼ r and Triangle (low, mid, ℎigℎ) (2b)

The δi parameter controls the overall size of the stock of biomass on a site, with larger δ 
implying larger overall levels of biomass. The πi parameter accounts for the rate of growth 

of forests over time. In a triangular distribution, the low value is the inverse of the normal 

cumulative distribution at probability 2%, and the high value is the inverse of the normal 

cumulative distribution at probability 98%. The mean value for the triangular distribution is 

taken from the yield functions that are used in the GTM (many of which were estimated 

using data from the underlying regions) and the standard deviation from estimates in Kim 

and Sohngen (2009). Thus, the underlying GTM yield function parameters represent the 

mid-point of the triangular distribution.

The land supply function for each timber type, i, is shown in equation (3):

∑
a = 1

A
Xa, t

i = At
i Lt

(1/γ) Rt
i ηi

(3)

Equation (3) is a constant elasticity function that sets the total area of land in forests in each 

timber type i, calculated as the sum of the area of land in each age class, Xa, t
i , as a function 

of the rental rate, Rt
i. At

i is a slope parameter that changes over time to reflect shifts in the 

demand for land in the agricultural sector. As At
i increases, so do forestry rents, or the 

opportunity costs of bringing a marginal unit of land into forestry at the expense of 

alternative uses such as cropland. Lt is the ratio of the current aggregate area of global 

forests to the initial aggregate area of forests globally. The parameter ηi is the own-price 

elasticity of supply, and γ is the price elasticity of global forestland supply. In the 

deterministic model, ηi is 0.3 in each region, meaning that if rents increase by 10%, the area 

of forestland will increase by 3%. We also set γ to 0.3 in the deterministic model, so that if 

the area of forests globally increases by 10%, it takes about a 30% increase in rents in any 

given region to maintain the same forestland area. Thus, if the aggregate area of forests 

globally is increasing (i.e., Lt > 1), it becomes costlier to maintain forestland in all regions. 

Although we do not directly model agricultural markets, this is consistent with the effects of 
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rising output prices in the agricultural sector and rising opportunity costs associated with 

scarcity in that sector.

Given differences in productivity levels in forests and agriculture across regions, one might 

expect that the elasticity parameter, ηi, would vary from region to region. Unfortunately, 

information is not available from enough regions around the world to know what the 

elasticity parameter is with high statistical confidence. For the baseline model, we have 

assumed that it is the same in all regions as it is in the U.S., 0.3. Standard errors for all 

regions are also based on the U.S. due to data shortcomings on forests in many parts of the 

world. While having regionally specific data and standard errors would be ideal, the use of 

distributions based on U.S. data across other regions in the model is reasonable if 

heterogeneity in regions outside the U.S. is similar.

The parameter draws for the Monte Carlo analysis for the land supply elasticity parameters 

were assumed to follow a triangular distribution, using data from Kim and Sohngen (2009). 

As above, the low value is the inverse of the normal cumulative distribution at probability 

2%; the high value is the inverse of the normal cumulative distribution at probability 

98%.We assumed that environmental risks are uncorrelated, so increases or decreases in 

forest growth are randomly distributed across our forest types, which are distributed across 

different regions covered in the model. If these risks were correlated—that is, entire 

continents experienced the same set of shocks—then one might expect larger uncertainty 

bounds for global prices with shifts in productivity in one direction for important forest 

product exporting regions. We acknowledge that a potential consequence of this approach is 

that random draws could result in a range of positive and negative deviations from the mean 

for yield growth parameters that would essentially cancel each other out at a global scale. 

However, GTM represents a large number of distinct forest types, with heterogeneity in 

regional age class distributions and harvest/management costs. This combined with the large 

market shares of global pulpwood and sawtimber held by a relatively small number of forest 

types globally, minimizes the potential bias that could result from simultaneous random 

parameter draws across different forest types.

We also have not accounted for the effects of climate change in this analysis. Other studies 

have considered climate change impacts (e.g., Tian et al., 2016, 2018). It is also important to 

note that we have not accounted for demand shocks in this assessment, and demand shocks 

could cause prices to shift outside the ranges projected. However, other recent studies have 

evaluated market and forest management changes under alternative demand scenarios using 

the GTM, including Kim et al. (in press), Tian et al. (2018), and Baker et al. (2017).

Within the model, there are 211 land classes with individual yield functions (i.e., i = 211); 

thus, there are 211 α’s and β’s. Land supply functions only apply to accessible forest types 

and various accessible, semi-accessible, and inaccessible forests in the tropics where semi-

accessible lands are more fungible with accessible areas. Thus, there are fewer σ’s in the 

model (111).

For the analysis, we ran 300 independent draws of each of these parameters from the 

triangular distributions using the Ohio Supercomputer Center. Some stochastic parameter 
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combinations induced infeasible model solutions, so we ended up with 273 unique optimal 

solutions over the 300 simulations.

2.2 Attributional Analysis of Stochastic Parameters

In this analysis, a spatial weighting procedure is applied to assess the relative importance of 

the GTM’s stochastic parameters on projections of cumulative stored carbon, as well as 

sawtimber and pulpwood harvests under different baseline simulations. As will be shown 

below, there is relatively large uncertainty in carbon outcomes in carbon-intensive regions 

like Brazil, but it is not clear if the uncertainty is derived from the parameters of the growth 

function (i.e., Equation 1) or the parameters of the land supply function (i.e., Equation 3). 

Understanding which set of parameters has the largest impact on timber output or carbon 

may be most important in regions with potentially large land use changes. For the 

attributional analysis, we use regression analysis to assess the influence of parameter choice 

on market and carbon outputs by region.

We start by estimating regression equations for each forest land class in the model. The 

dependent variables in the regression equations are cumulative projected sawtimber harvests, 

pulpwood harvests, and carbon stocks in the 2050 and 2090 simulation periods, all 

represented at the land class level. Explanatory variables in the regression models include a 

constant term, plus estimated coefficient values for δi and πi, the own-price elasticity in the 

rental function for each land class, and the global land supply elasticity. For the sawtimber 

and pulpwood equations, we include observations for each decade up to 2050 in one set of 

regressions and up to 2090 in another. We average the output across the decades, and we 

include decadal fixed effects to account for time-varying cumulative changes in management 

and harvest not explained by the variation in stochastic parameters. The carbon stock 

regressions use only data for the two specific time periods since carbon is cumulative. 

Regression results for all land classes, for the 2050 and 2090 periods are provided in Online 

Appendix A.

These land class specific regressions provide useful information, but for interpretation we 

aggregate the results to the regional level using a spatial weighting procedure. Using the land 

class specific parameters, we compute the average regional effect of a given stochastic 

parameter as:

Regional−Effectn = ∑
m = 1

L
wm ∗ βmn

where m = 1, …, L are forest types for a given region, as noted before

n = stochastic parameters as previously defined

wm = forest land class m weight and is computed as wm =
∑t = 1

T Amt
∑t = 1

T ∑m = 1
L Amt

,

where Amt is the area of forest land class m in time t

Sohngen et al. Page 8

J For Econ. Author manuscript; available in PMC 2020 May 27.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



βmn = estimated coefficient value for forest type m and stochastic parameter n

This aggregation allows us to differentiate net regional implications of a change in the 

stochastic parameters without placing too much emphasis on a given forest type. We start by 

assessing the weighted regression results for sawtimber and pulpwood outputs for 2090. The 

δm parameter, as noted above, accounts for the overall size of the stock of biomass on a site, 

with larger δm implying larger overall levels of biomass. It is expected that this parameter 

will be positive, such that increases in δm will increase sawtimber outputs by increasing 

supply.

3 Results

This section provides an overview of key results from the analysis, including baseline 

projections generated by the GTM framework of relevant market and environmental 

variables. Following this are the results of the attributional analysis, which shed light on the 

relative influence of stochastic parameters on regional pulpwood and sawtimber harvests and 

forest carbon sequestration.

3.1 Results of the GTM Framework

Results from this analysis show the effects of input parameter uncertainty on a number of 

model outcomes by examining the sample averages and the 95% uncertainty intervals from 

the Monte Carlo simulations. The baseline income and population projections assume 

demand growth of 2%–3% early in the century, followed by slower growth later in the 

century. This results in relatively modest overall price growth in the model (Figure 1). Prices 

for sawtimber are around three times those of pulpwood, which is consistent with observed 

price differentials (Howard and Kwameka, 2016). Sawtimber prices rise more rapidly over 

the century, as expected, given that sawtimber is used for more valuable outputs and the 

marginal costs of extracting additional sawtimber are higher than the marginal costs of 

extracting additional pulpwood. Pulpwood is undifferentiated and thus can be used for a 

wider range of products, including pulp or bioenergy. The uncertainty bounds on prices are 

small, especially with regards to sawtimber prices where the bounds represent less than 

3.5% of mean sawtimber price through 2100. The uncertainty bounds are higher for 

pulpwood prices where the corresponding figure is 12% of mean pulpwood prices in 2100. 

This relatively modest variation is also expected. Wood outputs from various regions are 

highly substitutable in the demand function, meaning that different regions compete based 

on relative costs and timber availability to meet forest product demand globally. Thus, 

parametric deviations in supply through the yield functions or rental functions will have little 

impact on aggregate quantity supplied.

Global sawtimber and pulpwood production increases over the century, with pulpwood 

output increasing slightly more rapidly over time. Figure 2 shows projected pulpwood 

production, 95% uncertainty bounds for the projections presented in the top figure of the 

panel and histograms representing the distribution of outcomes across the Monte Carlo 

simulations for the 2050 and 2090 simulation periods. The 95% uncertainty bounds for 

pulpwood outputs are larger than the uncertainty bounds for sawtimber. Pulpwood is the 

lower value output, and some pulpwood cannot substitute into sawtimber markets. Hence, 
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smaller deviations in parametric assumptions about forest growth will have larger effects on 

production and prices of pulpwood. The distribution of outcomes does not change much 

over time other than an outward shift in the mean.

On average, outputs increase in both the temperate and tropical zones, although the largest 

projected increases in pulpwood outputs occur in the tropics by 2050 and 2090 (Table 1). 

The analysis suggests some potential for a reduction in pulpwood production in the 

temperate zone over the century, with the largest reductions in Canada, where the 95% 

uncertainty interval encompasses lower pulpwood outputs in the future. These results 

suggest that the projected decline in comparative advantage for producing pulpwood in 

Canada over the century is fairly robust to uncertainty in forest growth rates and land supply 

elasticity. By 2090, the tropics experience a potentially large increase in pulpwood output, 

driven mostly by increased output in Brazil. Much of this expansion in Brazil is driven by 

increased productivity and harvest outputs from intensive margin investment in fast-growing 

plantations in Brazil.

Sawtimber output is projected to increase in much of the temperate region, except for 

Canada and Russia (Table 2). A key reason for lower projected harvest levels in Canada and 

Russia is the relatively high cost of accessing land in those regions, combined with the 

relatively low productivity of forests. Investments in other regions with faster growth rates 

have greater net impact on markets. This result is robust across the uncertainty ranges in 

growth parameters and land supply elasticity, suggesting high potential for declining 

comparative advantage in timber production in boreal regions. In contrast, temperate regions 

in the U.S., China, and Europe are projected to experience increased sawtimber output over 

the century. Tropical regions also see gains in outputs, but the increases are relatively modest 

in comparison.

Global forest area is projected to increase initially in the Monte Carlo analysis, albeit 

modestly (Figure 2). Over the projection period to 2100, the total forest area declines by 

around 100 million ha. The 95% uncertainty interval is about 1.5% of the total forest area, 

suggesting that yield and land supply elasticity have little effect on global land area in 

forests. Globally, the aggregate change in forestland area is influenced mostly by 

assumptions about the underlying factors driving land use change, such as the demand for 

land to be used in the agricultural sector.

Examining carbon, total carbon storage increases in the baseline (Figure 3). Total forest 

carbon includes aboveground carbon, market carbon, carbon stored in slash, and soil carbon. 

While the bulk of carbon in forests is stored in soil components belowground (regional 

percentage ranges from 40% to 83% with an average of 66%), the largest change in carbon 

occurs in the aboveground portion. The 95% uncertainty range (bounded by the 2.5 and 97.5 

percentile value) for above ground C represents around 8% of the average above ground 

carbon. The 95% range for total carbon storage is relatively small (+/− 2.5%), in part 

because the soil component is assumed to be fixed across regions and forest types, 

sawtimber harvests do not vary extensively (thus market carbon remains consistent), and we 

do not assign uncertainty to the parameters determining the soil component (a large portion 

relative to the total). Although not obvious in the figure, the lower bound on the 95% 
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uncertainty range is slightly closer to the mean than the upper bound, suggesting that 

outliers, or large deviations from the mean, are more likely to occur in the positive direction 

(i.e., more carbon in the system, not less).

Total carbon gains over the long-term projection period range from −5.0 to 149.1 Pg C by 

2050 and 24.8 to 186.6 Pg C by 2090 (Table 3). The potential carbon gains range from 

+3.3% to nearly +23% by 2090 relative to 2010 levels. The gains are largest in Brazil and 

Russia. In Brazil, the increase amounts to a 16% increase by 2090, and in Russia it amounts 

to a 24% increase. However, in these two regions, uncertainty over parameters leads to fairly 

large uncertainty bounds on potential future carbon in 2050 and 2090. In our model, Brazil 

increases carbon storage on average while at the same time losing land to deforestation 

because regeneration and growth on existing forests outweighs the losses due to 

deforestation. This outcome, however, is heavily influenced by uncertainty in parameters in 

Brazil, given the relatively large potential for carbon losses shown by the 95% uncertainty 

range. Interestingly, in other tropical regions in our model, namely Rest of South America 

and SE Asia, deforestation occurs rapidly enough to negate any carbon benefits associated 

with regrowth.

The large increase in forest carbon stocks in Russia largely occurs in forests remaining 

forests in eastern Russia (i.e., Siberia). In this region, carbon stocks increase substantially 

over time, mainly as currently young forests increase in age. Importantly, we do not include 

land rents for many of these forests, so the uncertainty analysis has no effect on land use in 

this region (that is, land use is constant over time in many Russian forests in the far East). 

One factor that could influence forest stocks in this region that we have not explicitly 

modeled is forest fires. We do incorporate forest fires through the net yield functions used in 

the model, but this may understate the effects of fire on the carbon cycle.

3.2 Results of the Attributional Analysis

For the most part, the parameter δm, or total potential biomass on a given site, is positive for 

sawtimber and pulpwood (Tables 4a and 4b). For sawtimber there is one exception, SE Asia. 

To determine why SE Asia appears to differ, we look at the regression results for the 

individual land classes (see Online Appendix A). For SE Asia, the parameter on δm for the 

fast-growing tropical forests, and the two plantation types, is negative. This result is 

primarily driven by a shift in the distribution of outputs in these types from sawtimber to 

pulpwood as δm increases. Thus, as the stocking capacity increases for this forest type, the 

production portfolio shifts towards pulpwood. The δm parameter for these three forest land 

classes turns out to be positive in regressions where pulpwood harvest is the dependent 

variable. This result holds for most other individual forest types, particularly the fast-

growing plantation types: as δm increases, output shifts towards pulpwood types.

The parameter π controls the rate of growth of timber, with an increase in π signifying a 

lower growth rate, all else equal. For an industrially managed forest, an increase in π will 

lead to an increase in the rotation age and vice-versa. More importantly, an increase in π will 

reduce the annual supply of timber (and vice-versa) from an industrially managed forest. If 

all stocks in a country were managed industrially, then one would expect that an increase in 

π would reduce supply from the country (and vice-versa). In general, higher π leads to a 
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reduced supply of sawtimber (Table 1), a result that makes sense given the effect that π is 

expected to have. In all regions, an increase in π leads to a reduction in pulpwood output 

(Table 2).

There are three exceptions for the sawtimber results—Brazil, Rest of South America, and SE 

Asia—where higher π leads to an increase in sawtimber output. This result for those regions 

is driven largely by the effects of changes in π on the fast-growing plantation types in those 

regions. For those types, an increase in π causes output to shift toward sawtimber and away 

from pulpwood. Thus, factors that slow growth in these fast-growing plantation types will 

encourage more output to be used in sawtimber and less in pulpwood within the specific 

types, and because these types are a relatively large proportion of pulpwood output within 

those regions, they affect the regional calculations. This effect is consistent across the 

parameter on π for many of the short-rotation nonindigenous species in the model, although 

it only affects the regional weighted parameter for the three regions mentioned above.

The own-price elasticity parameter (the parameter on land class-specific land supply 

elasticity) is positive in most regions in the weighted regressions for sawtimber (Table 4a) 

and pulpwood (Table 4b) outputs. In most cases, higher own-price elasticity on the land 

supply function shifts the land supply function out and allows more land to enter the forest 

type at any given rental value. The parameter on own-price elasticity is negative in the 

weighted sawtimber outputs for several regions. In Brazil, the negative parameter is driven 

by the results for the two plantation types (see Online Appendix). For many of the plantation 

types in various regions, higher own-price elasticity results in lower sawtimber output. As 

with δ and π discussed above, for many of the same forest types, the own-price elasticity 

parameter is positive in the pulpwood results. This suggests that higher land supply elasticity 

shifts harvesting towards pulpwood and away from sawtimber in the faster growing 

plantation types. The own-price elasticity parameter is also negative in the weighted results 

for Russia. As with the fast-growing types, the parameter has the opposite sign for 

pulpwood, implying an adjustment from sawtimber towards pulpwood in Russia as land 

supply elasticity increases.

The impact of the global land supply parameter (γ in Equation 3 above) is generally 

negative in the weighted sawtimber output results (Table 4a). The global land supply 

function shifts all rental functions in the model inward or outward, depending on whether 

total global forestland is greater or less than the initial forest area. In general, global 

forestland falls over time as agricultural demands drive more land out of forests and into 

agriculture, so the variable Lt in Equation 3 above is less than 1. As the global area of 

agricultural land expands and forestland declines, the global rental function shifts outward 

(the value Lt
(1/γ) decreases), meaning that it takes a lower forestland rent in any region to 

maintain any given land area in forests. When Lt < 1, an increase in γ means that Lt
(1/γ) is 

bigger, such that with greater elasticity (i.e., larger γ), it takes a larger rent to hold the same 

area of land in forests. In scenarios where global forestland area is declining over time, or an 

increase in the global land supply elasticity parameter, it will be costlier to hold land in 

forests; thus, one would expect that an increase in the global elasticity will lower timber 

outputs and carbon sequestration and vice versa.
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The weighted parameter estimates for total carbon change and land carbon change by 2090 

generally meet expectations (Tables 5a and 5b). The parameter estimates on δ are positive, 

as expected, with one exception in Japan. Thus, in general, higher δ leads to higher overall 

biomass and higher levels of carbon, all else equal. The parameter estimates on π are 

negative for all regions, as higher π is associated with slower growth and hence less carbon. 

The parameter on own-price elasticity is positive in most regions in the weighted 

regressions. In general, an increase in own-price elasticity will cause the rental function to 

decline, thus reducing rents and increasing the land in forests. Two exceptions occur in 

inaccessible types in the Rest of South America and Sub Saharan Africa. The parameter on 

global elasticity is negative. As noted above, this occurs because of the functional form used 

in Equation (3) and the fact that total forest area is declining over time. Hence, higher 

elasticity values will increase rents for any given land area in forests, and make land more 

expensive. This will cause the model to hold less land in forests if the elasticity value is 

higher, thus decreasing total carbon storage.

4 Discussion

This study uses Monte Carlo methods to assess how uncertainty in key parameters in the 

GTM potentially affects projected market outcomes, focusing on timber prices, outputs, and 

carbon. The parameters we include as uncertain are the yield function parameters and the 

land supply elasticity parameters, following other recent applications of this modeling 

framework and similar studies (Kim, 2010; Choi et al., 2011; Kim, 2016). The results 

suggest that timber prices, timber outputs, and carbon are all expected to increase over time, 

consistent with other recent studies that applied the same or similar versions of this 

modeling framework (Baker et al., 2017, 2018; Kim et al., 2018; Tian et al. (2018), 2016; 

Favero et al. 2017). Various ecosystem services from forests, namely timber outputs and 

carbon, are projected to change significantly in the future, and the aggregate changes are 

influenced by uncertainty in key underlying parameters.

The baseline projects that sawtimber prices increase at 0.4% per year through 2090 and 

pulpwood prices increase 0.2% per year. These increases suggest continuing scarcity for 

wood products in the future, although the rates of growth are slower than historical price 

increases of the past century (Haynes, 2009). Price growth is lowest for pulpwood given that 

a wider variety of forest types and tree sizes can be used to produce pulpwood. In contrast, 

sawtimber is a higher valued use and has fewer types that can be used to produce it. All 

Monte Carlo scenario projections imply rising prices both for sawtimber and pulpwood, and 

the range across the various scenarios is fairly narrow. This makes sense given our 

assumption that parameter draws are taken from a triangular distribution and that wood from 

various regions is relatively fungible within a global demand system. That is, while some 

regions enjoy faster forest growth due to the parameter draws, other regions have slower 

forest growth. These changes are all random, so that increases are offset by decreases 

elsewhere.

Although global harvests are projected to increase over time, not all regions share in the 

gains. Some regions, the north in particular, are projected to experience reductions in timber 

output. For example, sawtimber and pulpwood outputs are expected to decline in Canada by 
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2050, although sawtimber outputs are projected to rebound modestly by 2090. Sawtimber 

and pulpwood outputs decline in Russia over the entire century. These reductions in output 

are a result of the relatively high costs of accessing timber and harvesting it in these regions, 

and the slow growth in pulpwood and sawtimber prices. Rather than building road 

infrastructure to remote places, investors place resources in harvesting timber in more 

productive temperate and subtropical regions. This result is consistent across the range of 

parameter draws. Pulpwood outputs in the tropics also tend to fall, with the exception of 

Brazil, which experiences strong increases in pulpwood outputs by 2090. This growth is 

driven by rising stocks and harvests in second growth forests.

Total carbon stored in the world’s forests is projected to increase by 71.7 Pg C by 2050 and 

104.9 Pg C by 2090. The 95% uncertainty interval includes the possibility that global 

storage declines in 2050 relative to 2010 levels, but by 2100, the model indicates carbon 

storage increases with 95% confidence. Brazil and Russia experience the largest gains in 

absolute terms, although the 95% uncertainty interval in Brazil includes the likelihood of a 

reduction in total C storage by 2050 and 2090. For the most part, other temperate regions 

also experience growth in carbon storage, while a number of tropical regions experience 

reductions. The largest reductions are projected to occur in SE Asia as a result of 

deforestation losses.

The regression results provide insights into the specific factors affecting sawtimber, 

pulpwood and carbon outputs. As expected, factors that increase biomass on forest sites are 

expected to increase output of both sawtimber and pulpwood and vice-versa. There are some 

exceptions to this general rule in some of the regions because shifts in carrying capacity also 

encourage a shift in the proportion of timber allocated to pulpwood versus sawtimber. This 

effect is species specific. Similarly, an increase in the rate of growth of a species leads to an 

increase in both sawtimber and pulpwood output (the parameter π is negative). The result is 

reversed in some regions for sawtimber due to a reallocation of output towards pulpwood.

Changes in the parameters have less ambiguous impacts on carbon storage. Higher carrying 

capacity increases carbon storage, as does faster growth. Similarly, an increase in own-price 

land supply elasticity increases carbon storage, and an increase in the parameter for global 

land supply elasticity reduces carbon storage. Based on the individual parameter estimates 

for each forest type, we calculate the marginal impact of changes in carrying capacity (δm), 

growth rates (πm), and the elasticity parameter in the rental function (ηm) on carbon storage 

in each region (Table 6). Changes in carrying capacity have the largest effect on total carbon 

storage, followed by changes in the growth rate of forests. The effects of deviations in the 

carrying capacity parameter have their biggest impact in Brazil, followed by Russia. The 

effects of deviations in carrying capacity are large in Brazil and Russia because these regions 

also contain a large portion of the world’s existing carbon. Interestingly, the 10% increase in 

carrying capacity increases carbon by less than 10%. The largest changes in carbon occur in 

Brazil, SE Asia, and Sub-Saharan Africa. In contrast, changes in elasticity have a relatively 

modest effect on carbon.

The focus of this uncertainty analysis is on key model parameters related to forest yield 

growth, carrying capacity, and the relative costs of moving new land into forests, which are 
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all critical ingredients for projecting future biomass availability and carbon stocks. It is 

important to note, however, that other model parameters were held at their base value for this 

analysis and were not part of the Monte Carlo analysis, including demand elasticity 

parameters for pulpwood and sawtimber. Our justification for omitting key parameters from 

the Monte Carlo experiment is that introducing too many random parameters would 

confound the interpretation of the analysis. Restricting the random parameter sets to just 

those that are related to physical growth rates and the economic decision to expand or 

contract forest land supply offers a tractable set of parameters for conducting attributional 

analysis and exploring heterogeneity in the relative importance of specific parameters across 

regions and time.

However, to illustrate the relative importance of demand elasticities on projected forest 

market and management outcomes, we ran two additional sensitivity scenarios with 

alternative elasticity assumptions while holding all other parameter values at their mean 

levels. In the first case, demand elasticities are divided by one half (from an assumed value 

of −1 to −0.5). Less elastic demand results in approximately 6% more carbon storage 

globally by 2050 (relative to the mean parameter value baseline scenario). This elasticity 

change results in more investment and increased growing stocks, which increases carbon 

accumulation. In the second case, elasticities are more elastic (doubled from −1.0 to −2.0), 

which has the opposite effect and reduces projected carbon by approximately 4% in 2050.

We include an attributional analysis to assess relative importance of increased biomass and 

rates of growth of each species on sawtimber and pulpwood outputs. Results from this 

attributional analysis show that increased biomass and higher rates of growth on forest sites 

increase output of both sawtimber and pulpwood and vice-versa. However, there are some 

exceptions based on a tendency in some regions to reallocate output towards pulpwood with 

higher rates of growth or biomass capacity. We further gauge the relative importance of the 

biomass and growth rate parameters as well as land supply elasticities on carbon output. Our 

results are unambiguous: higher biomass carrying capacity increases carbon storage, as does 

faster growth. Similarly, an increase in own-price land supply elasticity increases carbon 

storage and an increase in the parameter for global land supply elasticity reduces carbon 

storage.

When considering the attributional analysis, we find that carbon storage is most sensitive to 

uncertainty in biological growth parameters. Perhaps surprisingly, uncertainty in land supply 

elasticity has a fairly small impact upon the carbon storage. One reason for this is that many 

forests, including a large portion of carbon storage, are far from the extensive frontier (e.g., 

the agriculture and forestry interface) and will not experience land use change over the 

projection period. Changes in the physical growth parameters have an important effect 

because they impact relatively large land areas simultaneously, and for some region and 

forest type combinations, modest increases in growth rates or stock density parameters can 

result in meaningful changes in carbon storage.

There are a few limitations of this analysis worth mentioning. First, given the lack of 

publicly available forest inventory data in most regions of the world, we apply triangular 

distribution assumptions to reflect uncertainty in forest growth parameters that are broadly 
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consistent with parameter distributions empirically estimated for U.S. forest types. This 

approach ignores regional heterogeneity in the underlying uncertainty of physical yield 

attributes but represents a reasonable alternative for developing regional parameter 

distributions in the absence of available inventory data. Second, as previously discussed, 

parameters are drawn randomly across regions and forest types, and thus we do not account 

for systemic risks or the possibility that forest yield growth changes (or general uncertainty) 

could be similar in direction across forest types within a large region such as the United 

States or Brazil. Finally, this analysis only includes a limited number of the GTM’s 

parameters in the Monte Carlo analysis, which could ignore important interactions between 

physical growth parameters and other economic inputs such as demand elasticities. To 

address this, results from a sensitivity analysis are provided that illustrate the importance of 

demand-side elements in projected forest carbon outcomes, but deviations in demand 

elasticities are not interacted with stochastic yield growth and land supply parameters for 

full attributional analysis.

Nevertheless, while the literature is full of sensitivity analyses that evaluate the impact of 

adjusting some set of model inputs or policy-related constraints, few studies have applied 

Monte Carlo techniques to evaluate the relative importance of stochastic model parameters 

on endogenous variable outputs using integrated intertemporal models of economic and 

resource management systems. This is partly due to computational complexity and the 

difficulty in addressing key scenario design issues (e.g., choosing which parameters to be 

stochastic). This analysis seeks to add to this literature by applying Monte Carlo techniques 

to a global intertemporal model of forest resources and markets. Our results show relatively 

modest uncertainty ranges for projected model outcomes, which suggests that the global 

forestry sector is relatively resilient to local deviations in physical growth or land supply 

assumptions. Finally, attributional analysis reveals that the relative influence of physical 

growth parameters is likely a more important determinant of future forest carbon stocks than 

economic parameters that influence the amount of forest land in the system.

5 Conclusion

Numerous models have now been used to project future market and biomass outcomes for 

forests. When confronted with uncertainty associated with the underlying parameters used in 

the models, the modelers have typically resorted to sensitivity analysis to assess how the 

results are influenced by shifts in important parameters. More recently, modelers have been 

using Monte Carlo techniques to more fully characterize the influence of parameter 

uncertainty on model outcomes. While Monte Carlo techniques can be applied in a 

straightforward way with static or recursive models, their application to dynamic models, 

particularly in forestry, has been limited because of the computational burdens. This paper 

addresses the computational issue by using a super computer to conduct a Monte Carlo 

analysis with a global dynamic optimization model of timber markets through 2020. Given 

the importance of forests in the global carbon cycle, it is useful to better understand the 

sensitivity of market outcomes (e.g., prices, outputs) and carbon, to important input 

parameters, such as the biomass yield functions and land supply.
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The results of the paper suggest that aggregate trends are not significantly affected by 

uncertainty in the underlying parameters for forest yield or land rents. Prices are expected to 

increase modestly both for sawtimber and pulpwood, consistent with results presented in 

Tian et al. (2018), another detailed baseline assessment, and Kim et al. (2018), but the 

uncertainty bounds for both prices are very small. The results also suggest that the 

distribution of timber outputs and carbon fluxes is sensitive to uncertainty in the underlying 

set of parameters. Projected sawtimber and pulpwood prices both trend upwards, with the 

fastest rate of increase in sawtimber (0.4% per year versus 0.2% per year). Nonetheless, 

future prices are projected to increase over the next century at only a fraction of the rate of 

the last century (e.g., Sohngen and Haynes, 1994; Haynes, 2009). The 95% uncertainty 

interval on global prices is relatively narrow for both sawtimber and pulpwood. Despite the 

modest price increases, we project that sawtimber and pulpwood outputs both increase by 

around 320–350 m3 per year. The increases in pulpwood are perhaps surprising given 

concerns about reductions in harvests due to declining pulpwood demands (e.g., Latta et al., 
2015), but we have maintained relatively robust demand growth in our model simulations to 

account for other similar demands, such as fuelwood and bioenergy.

Despite the potential increase in aggregate global output, the results suggest that timber 

harvests could decline in some regions in the future. Canada, for instance, is projected to 

experience a reduction in pulpwood and total timber harvests by 2050 and continuing 

through the end of the century. Similarly, Russia is expected to experience a reduction in 

timber harvests. Based on the uncertainty bounds, there is relatively high potential for 

pulpwood harvests to decline both by the middle of the century and the end of the century 

globally, although the average change is positive. The largest share of these reductions 

occurs in temperature and boreal regions. Others have suggested that pulpwood harvests 

could be declining due to demand side factors (Latta et al., 2015), and these results suggest 

that there is a concern about the competitiveness of pulpwood production in many regions 

even if demand remains somewhat strong over time.

Global carbon storage is expected to increase by 71.7 Pg C (−5.0 to 149.1) by 2050 and 

104.9 Pg C (24.8 to 186.6) by 2090. Most regions are expected to experience an increase in 

carbon storage, with the biggest increases on average occurring in Russia and Brazil. The 

lower bound in Russia remains well above 0 both in 2050 and 2090. In the tropics, there is 

more potential for carbon losses over time, due largely to continuing deforestation trends 

there and the interaction of deforestation with uncertainty in land supply elasticity.

Overall, our results provide evidence that future global forest carbon stock trends are robust 

to uncertainty surrounding yield growth assumptions and economic parameters related to 

land supply. However, we find substantial variation across regions, indicating a need for 

increased investment in local inventory assessments and monitoring to inform global 

systems models and improve national- or regional-scale projections of forest carbon futures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Global Sawtimber and Pulpwood Price Projections, US$/m3 (Average, and 95% Uncertainty 

Interval Bounds – value at the 2.5 and 97.5 percentiles)
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Figure 2: 
Global Sawtimber and Pulpwood Production Projections, million m3/decade (Average, and 

95% Uncertainty Interval Bounds – value at the 2.5 and 97.5 percentiles)
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Figure 3: Global forest area (billion hectares)
* The solid line represents the mean value while the lower and upper limits depict the value 

at the 2.5 and 97.5 percentiles (uncertainty interval bounds), respectively.
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Figure 4: 
Global carbon storage, and storage in components, including aboveground, soil, slash, and 

marketed products (Million tons CO2).
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Table 1:

Change in pulpwood output per year in 2050 and 2090 compared to 2010, 95% uncertainty interval in 

parentheses.

2050 2090

Change in output (million m3/yr)

Temperate

U.S. −4.7 (−57.6, 57) 115.7 (43.1, 190)

China 46.1 (16.9, 75.3) 56.1 (24.6, 88.1)

Canada −24.4 (−38.3, −8.7) −25.8 (−38.4, −9.9)

Russia 0.5 (−27.2, 28.5) 5.2 (−25.7, 35.7)

EU 13.4 (−29.9, 53.6) −4.5 (−50.5, 38.4)

Oceania −1.2 (−12.7, 10.6) 10.3 (−4.3, 26.3)

Japan 2.3 (−1.9, 6.3) −0.9 (−5.5, 3.1)

East Asia 11.4 (8.1, 14.7) 6 (0.4, 13.5)

Total Temperate 43.4 (−142.6, 237.3) 162.1 (−56.3, 385.2)

Tropical

Brazil 94.5 (37, 151.4) 119.3 (31.4, 203.2)

Rest of South America 3.9 (−14.6, 19.4) −4.3 (−19.9, 12.6)

Central America 1.4 (−2.6, 5.4) 2.1 (−4.1, 8.4)

South Asia −5.3 (−9.7, 0) −6 (−9.6, −2.4)

Subsaharan Africa 1.9 (−13.4, 16.3) −16.6 (−34.1, 0.2)

SE Asia 51.3 (27.1, 74) 71.4 (34.9, 108.1)

Africa/ME −1.1 (−2.6, 0.4) −1.4 (−3.2, 0.6)

Total Tropical 146.6 (21.2, 266.9) 164.5 (−4.6, 330.7)

Total 190 (−121.4, 504.2) 326.6 (−60.9, 715.9)
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Table 2:

Change in sawtimber output per year in 2050 and 2090 compared to 2010, 95% uncertainty interval in 

parentheses.

2050 2090

Change in output (million m3/yr)

Temperate

U.S. 9.5 (−10.2, 40.9) 75.3 (55.3, 110.6)

China 34.6 (29.9, 39.3) 50.5 (45.1, 56.5)

Canada −31.8 (−48.4, −17.2) −4.8 (−24.1, 16.4)

Russia −29.1 (−38.3, −20.8) −35 (−44.5, −26.2)

EU 80.3 (50.6, 107.1) 100.4 (68.1, 128.8)

Oceania 2.2 (−1, 5.2) −0.2 (−8.1, 6.1)

Japan 13.8 (11.4, 16.1) 17.3 (14.6, 20.3)

East Asia 1.5 (1.2, 1.8) 1.6 (1.3, 1.9)

Total Temperate 81 (−4.8, 172.4) 205.1 (107.7, 314.4)

Tropical

Brazil 14.6 (7.4, 22.3) 19.2 (11.7, 26.8)

Rest of South America 8.1 (−3.8, 19.8) 6.4 (−5, 17.8)

Central America 2.9 (2.1, 3.8) 3.8 (2.7, 4.8)

South Asia 4 (0.6, 7.4) 9.1 (4.7, 13.6)

Subsaharan Africa 8.2 (1.9, 14.6) 4.9 (−4.3, 12.6)

SE Asia 22 (12, 32) 23.4 (13.2, 33)

Africa/ME 1.1 (0.3, 2) 1.7 (0.9, 2.6)

Total Tropical 60.9 (20.5, 101.9) 68.5 (23.9, 111.2)

Total 141.9 (15.7, 274.3) 273.6 (131.6, 425.6)
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Table 3:

Average change in total carbon between 2010 and the year given, with the minimum and maximum changes 

based on the 95% uncertainty intervals in parentheses.

2050 2090

Change in Carbon Stored (Pg C)

Temperate

U.S. 2.7 (1.3, 4.2) 5.7 (4.2, 7.2)

China 6.8 (5.5, 8.2) 10.8 (9.2, 12.6)

Canada 1.9 (−1.9, 5.8) 2.9 (−0.9, 6.8)

Russia 35.5 (23.1, 48.5) 56.1 (40.8, 72)

EU 3.4 (−0.1, 6.9) 4 (0.5, 7.4)

Oceania 2.8 (1.5, 4) 4.9 (3.5, 6.4)

Japan 0.7 (0.4, 1.1) 0.8 (0.5, 1.2)

East Asia 0.2 (0.1, 0.3) 0.1 (0, 0.2)

Total Temperate 54 (29.9, 79) 85.3 (57.8, 113.8)

Tropical

Brazil 20.3 (−14.4, 55.5) 25.7 (−9.6, 62.3)

Rest of SA −2 (−8.2, 3.9) −3.8 (−9.7, 1.8)

Central America 0.2 (−0.6, 0.9) 0.2 (−0.6, 0.9)

South Asia −0.1 (−0.7, 0.4) −0.1 (−0.7, 0.4)

Subsaharan Africa 1.6 (−2.3, 5.5) 1 (−2.9, 4.8)

SE Asia −2.3 (−8.5, 3.6) −3.4 (−9.2, 2.3)

Africa/ME 0 (−0.2, 0.3) 0 (−0.3, 0.3)

Total Tropical 17.7 (−34.9, 70.1) 19.6 (−33, 72.8)

Total 71.7 (−5.0, 149.1) 104.9 (24.8, 186.6)
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Table 4a:

Weighted parameter estimates for sawtimber output, averaged 2010–2090 (n = 277).

Region Delta (δ) Pi (π) Own-price elasticity World Elasticity

Africa/Middle East 142.07 (8.07) 60.80 (16.14)

Brazil 12.31 1.24 (26.86) (7.54)

Canada 112.20 (1.48) 34.94 (29.81)

Central America 32.04 (0.86) 14.79 (2.13)

China 26.38 (0.32) 3.12 10.10

EU Annex I countries 80.95 (1.50) 10.10 6.48

EU non-annex I countries 69.73 (0.80) 14.98 8.58

East Asia 278.89 (4.49) 154.23 (98.77)

Japan 59.39 (1.50) 51.03 (6.15)

Oceania 41.56 (0.20) 2.92 (14.67)

Rest of South America 39.58 0.17 (6.59) (13.75)

Russia 16.99 (0.24) (7.58) 8.49

SE Asia (6.54) 0.80 (16.66) (6.84)

Sub-Saharan Africa 28.62 (0.22) (33.36) (13.72)

South Asia 96.47 (2.65) 47.53 (16.45)

United States 44.71 (0.45) 14.86 (16.58)
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Table 4b:

Weighted parameter estimates for pulpwood output, averaged 2010–2090 (n = 277).

Region Delta (δ) Pi (π) Own-price elasticity Global Elasticity

Africa/Middle East 14.66 (0.88) 5.90 (2.33)

Brazil 28.00 (0.47) 6.43 (7.89)

Canada 9.60 (0.16) (0.28) (0.91)

Central America 2.86 (0.20) 1.66 (0.21)

China 28.92 (0.63) 3.99 (3.60)

EU Annex I countries 113.85 (2.34) 10.63 0.48

EU non-annex I countries 51.11 (0.57) 7.64 1.61

East Asia 19.76 (0.34) 10.30 (9.66)

Japan 55.61 (1.56) 73.27 (20.00)

Oceania (0.89) (0.04) (1.34) 2.43

Rest of South America 0.39 (0.06) 0.53 0.07

Russia 2.41 (0.02) 0.10 (0.08)

SE Asia (1.68) (0.01) 0.79 1.41

Sub-Saharan Africa (0.09) (0.04) 1.58 (0.27)

South Asia 1.40 (0.02) 0.17 (0.16)

United States 6.31 (0.19) 6.63 0.63
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Table 5a:

Weighted parameter estimates for total carbon, cumulative change by 2090 (n = 277).

Region Delta (δ) Pi (π) Own-price elasticity Global Elasticity

Africa/Middle East 1434.70 (21.94) 787.02 (485.47)

Brazil 399210.35 (3407.94) 63926.82 (62828.47)

Canada 4833.41 (36.27) 2078.57 (873.64)

Central America 5545.67 (47.79) 1533.86 (1295.37)

China 3729.99 (43.20) 3654.70 (l386.8o)

EU Annex I countries 4296.97 (60.11) 4044.20 (2415.60)

EU non-annex I countries 1804.80 (23.38) 1966.23 (1214.95)

East Asia 378.17 (7.06) 632.03 (494.51)

Japan (36.76) (15.31) 3671.55 (898.54)

Oceania 3858.66 (32.08) 264.90 (46.48)

Rest of South America 36548.33 (814.69) (4195.14) (15723.55)

Russia 66237.85 (487.52) 3027.87 (2388.63)

SE Asia 20384.59 (298.69) 2215.27 (7322.43)

Sub-Saharan Africa 39445.55 (438.40) (2280.91) (12838.06)

South Asia 1109.49 (40.42) 1771.02 (1660.85)

United States 841.33 (15.95) 2014.63 (308.33)
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Table 5b:

Weighted Parameter Estimates for Land Carbon, Cumulative Change by 2090 (n = 277).

Region Delta (δ) Pi (π) Own-price elasticity Global Elasticity

Africa/Middle East 1420.70 (21.80) 783.40 (483.20)

Brazil 399020.40 (3406.50) 63922.00 (62830.50)

Canada 4680.60 (34.50) 2013.20 (823.70)

Central America 5533.90 (47.70) 1530.90 (1294.40)

China 3592.80 (40.70) 3571.60 (1342.50)

EU Annex I countries 3675.30 (51.30) 3803.30 (2323.00)

EU non-annex I countries 1708.00 (22.30) 1947.30 (1229.30)

East Asia 363.20 (6.80) 553.00 (453.10)

Japan (137.30) (12.80) 3490.90 (860.00)

Oceania 3821.80 (31.50) 258.20 (38.20)

Rest of South America 36306.50 (812.20) (4197.70) (15725.70)

Russia 65846.30 (484.20) 3023.90 (2393.00)

SE Asia 20199.50 (296.50) 2246.40 (7301.40)

Sub-Saharan Africa 39312.90 (437.40) (2282.10) (12839.70)

South Asia 1060.30 (39.50) 1732.60 (1626.90)

United States 615.90 (10.30) 1659.70 (295.70)
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Table 6:

Effect of a 10% change in each parameter on regional total carbon storage in 2090 in million tons C and as a 

% of the average baseline projection by 2090.

Region Delta (δ) (%) Pi (π) (%) Own-price elasticity Global Elasticity

Million tons C

Africa/Middle East 0.3, (3.8%) 0.2, (3.1%) 0.05, (0.7%) −0.09, (−1.1%)

Brazil 49.0, (8.2%) 25.7, (4.4%) 2.82, (0.5%) −5.18, (−0.9%)

Canada 4.1, (2.3%) 2.4, (1.3%) 0.37, (0.2%) −0.53, (−0.3%)

Central America 1.1, (5.8%) 0.6, (3.2%) 0.12, (0.6%) −0.20, (−1.1%)

China 2.3, (3.9%) 1.8, (3.0%) 0.42, (0.7%) −0.57, (−1.0%)

EU Annex I 2.5, (4.3%) 2.6, (4.5%) 0.70, (1.2%) −1.16, (−2.0%)

EU non-annex I 0.4, (4.0%) 0.5, (4.6%) 0.13, (1.3%) −0.21, (−2.2%)

East Asia 0.1, (1.7%) 0.1, (2.3%) 0.03, (0.9%) −0.05, (−1.6%)

Japan −0.1, (−0.1%) 0.1, (1.8%) 0.20, (2.9%) −0.24, (−3.6%)

Oceania 1.5, (3.7%) 0.6, (1.6%) 0.10, (0.3%) −0.13, (−0.3%)

Rest of SA 5.6, (5.8%) 7.6, (7.7%) −0.12, (−0.1%) −0.62, (−0.7%)

Russia 17.4, (4.0%) 13.8, (3.2%) 0.36, (0.1%) −0.61, (−0.1%)

SE Asia 6.7, (6.6%) 5.9, (5.9%) 0.17, (0.2%) −0.90, (−0.9%)

Sub-Saharan Africa 7.8, (7.1%) 5.3, (4.8%) −0.11, (−0.1%) −0.64, (−0.6%)

South Asia 0.2, (2.2%) 0.4, (3.7%) 0.11, (1.0%) −0.19, (−1.7%)

United States 1.5, (2.2%) 1.4, (2.2%) 0.48, (0.7%) −0.55, (−0.8%)
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